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Featured Application: A system to detect pain in infants using facial expressions has been
developed. Our system can be easily adapted to a mobile app or a wearable device. The
recognition rate is above 95% when using the Radon Barcodes (RBC) descriptor. It is the first
time that RBC is used in facial emotion recognition.

Abstract: The recognition of facial emotions is an important issue in computer vision and artificial
intelligence due to its important academic and commercial potential. If we focus on the health
sector, the ability to detect and control patients’ emotions, mainly pain, is a fundamental objective
within any medical service. Nowadays, the evaluation of pain in patients depends mainly on the
continuous monitoring of the medical staff when the patient is unable to express verbally his/her
experience of pain, as is the case of patients under sedation or babies. Therefore, it is necessary to
provide alternative methods for its evaluation and detection. Facial expressions can be considered
as a valid indicator of a person’s degree of pain. Consequently, this paper presents a monitoring
system for babies that uses an automatic pain detection system by means of image analysis. This
system could be accessed through wearable or mobile devices. To do this, this paper makes use of
three different texture descriptors for pain detection: Local Binary Patterns, Local Ternary Patterns,
and Radon Barcodes. These descriptors are used together with Support Vector Machines (SVM) for
their classification. The experimental results show that the proposed features give a very promising
classification accuracy of around 95% for the Infant COPE database, which proves the validity of the
proposed method.

Keywords: emotion recognition; pattern recognition; texture descriptors; mobile tool

1. Introduction

Facial expressions are one of the most important stimuli when interpreting social interaction,
as they provide information on the identity of the person and on his emotional state. Facial emotions
are one of the most important signal systems when expressing to other people what happens to human
beings [1].

The recognition of facial expressions is especially interesting because it allows for detecting
feelings and moods in people, which are applicable in fields such as psychology, teaching, marketing
or even health, which is the main objective of this work.

The automatic recognition of facial expressions could be a great advance in the field of health,
in applications such as pain detection in people unable to communicate verbally, decreasing the
continuous monitoring by medical staff, or for people with Autism Spectrum Disorder, for instance,
who have difficulty when understanding other people emotions.
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Babies are one of the biggest groups that cannot express pain verbally, so this impossibility has
created the necessity of using other media for its evaluation and detection. In this way, pain scales
based on vital signals and facial changes have been created to evaluate the pain of neonates [2]. Thus,
the main objective of this paper is to create a tool which reduces the continuous monitoring by parents
and medical staff. For that purpose, a set of computer vision methods with supervised learning have
been implemented, making it feasible to develop a mobile application to be used in a wearable device.
For the implementation, this paper has used the Infant COPE database [3], a database composed of
195 images of neonates, which is one of the few available public databases for infants’ pain detection.

Regarding pain detection using computer vision, several previous studies have been carried out.
Thus, Roy et al. [4] proposed the extraction of facial features for automatic pain detection in adults,
using the NBC-McMaster Shoulder Pain Expression Archive Database [5,6]. Using the same database,
Lucey et al. [7] developed a system that classifies pain in adults after extracting facial action units.
More recently, Rodriguez et al. [8] used Convolutional Neural Networks (CNNs) to recognize pain
from facial expressions and Ilyas et al. [9] implemented a facial expression recognition system for
traumatic brain injured patients. However, when focusing on detecting pain in babies, very few works
can be found. Among them, Brahnam et al. used Principal Components Analysis (PCA) reduction for
feature extraction and Support Vector Machines (SVM) for classification in [10], obtaining a recognition
rate of up to 88% using a grade 3 polynomial kernel. Then, in [11], Mansor and Rejab used Local Binary
Patterns (LBP) for the extraction of characteristics, while, for classification, Gaussian and Nearest Mean
Classifier were used. With these tools, they achieved a success rate of 87.74–88% for the Gaussian
Classifier and of 76–80% with the Nearest Mean Classifier. Similarly, Local Binary Patterns were used
as well in [12] for feature extraction and SVM for classification, obtaining an accuracy of 82.6%. More
recently, and introducing deep learning methods, Ref. [13] fused LBP, Histogram of Oriented Gradients
(HOG), and CNNs as feature extractors, with SVM for classification, with an accuracy of 83.78% as
the best result. Then, in [14], Zamzmi et al. used pre-trained CNNs and a strain-based expression
segmentation algorithm as a feature extractor together with a Naive Bayes (NB) classifier, obtaining a
recognition accuracy of 92.71%. In [15], Zamzmi et al. proposed an end-to-end Neonatal Convolutional
Neural Network (N-CNN) for automatic recognition of neonatal pain, obtaining an accuracy of 84.5%.
These works validated their proposed methods using the Infant COPE database mentioned above.

Other recent works tested their proposed methods with other databases. Thus, an automatic
discomfort detection system for infants by analyzing their facial expressions in videos from a dataset
collected at the hospital Maxima Medical Center in Veldhoven, The Netherlands, was presented in [16].
The authors used again HOG, LBP and SVM with 83.1% correctly detected discomfort expressions.
Finally, Zamzmi et al. [14] used CNNs with transfer learning as a pain expression detector, achieving
90.34% accuracy in a dataset recorded at Tampa General Hospital and in [15] obtained an accuracy of
91% for the NPAD database.

On the other hand, concerning emotion recognition and wearable devices, most of the proposed
methods until now relied on biomedical signals [17–20]. When using images, and more specifically,
facial images to recognize emotions, very few wearable devices can be found. Among them, one can
find the work by Kwon et al. [21], where they proposed a glasses-type wearable system to detect
a user’s emotion using facial expression and physiological responses, reaching around 70% in the
subject-independent case and 98% in the subject-dependent one. In [22], another system to automate
facial expression recognition that runs on wearable glasses is proposed, reaching a 97% classification
accuracy for eight different emotions. More recently, Kwon and Kim described in [23] another
glassed-type wearable device to detect emotions from a human face via multi-channel facial responses,
obtaining an accuracy of 78% at classifying emotions. Wearable devices have also been designed for
infants to monitor vital signs [24], body temperature [25], health using an electrocardiogram (ECG)
sensor [26], or as a pediatric rehabilitation device [27]. In addition, there is a growing number of
mobile applications for infants, such as SmartCED [28], which is an Android application for epilepsy
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diagnosis, or commercial devices with a smartphone application for parents [29] (smart socks [30] or
the popular video monitors [31]).

However, no smartphone application or wearable device related to pain detection through facial
expression recognition in infants has been found. Therefore, this work investigates different methods
to implement a reliable tool to assist in the automatic detection of pain in infants using computer
vision and supervised learning, extending our previous work presented in [2]. As mentioned before,
texture descriptors and, specifically, Local Binary Patterns, are among the most popular algorithms to
extract features for facial emotions recognition. Thus, this work will compare the results after applying
several texture descriptors, including Radon Barcodes, which is the first time that they are used to
detect facial emotions, this being the main contribution of this paper. Moreover, our tool can be easily
implemented in a wireless and wearable system, so it could have many potential applications, such as
alerting parents or medical staff quickly and efficiently when a baby is in pain.

This paper is organized as follows: Section 2 explains the main features about the methods used
in our research and outlines the proposed method; Section 3 describes the experimental setup and the
set of experiments completed and their interpretation; and, finally, conclusions and some future works
are discussed in Section 4.

2. Materials and Methods

In this section, some theoretical concepts are explained first. Then, at the end of the section,
the method followed to determine whether a baby is in pain or not is described.

2.1. Pain Perception in Babies

Traditionally, babies’ pain has been undervalued, receiving limited attention due to the thought of
babies suffering less pain than adults because of their supposed ’neurological immaturity’ [32,33]. This
has been refuted through several studies over the last few years, especially by the one conducted by
the John Radcliffe Hospital in Oxford in 2015 [34], which concluded that infants’ brains react in a very
similar way to adult brains when they are exposed to the same pain stimulus. Recent works suggest
that infants’ units in hospitals must adopt reliable pain assessment tools, since they may derive in
short- and long-term sequels [35,36].

As mentioned before, the impossibility of expressing pain in a verbal way has created the need
of using other media to assess pain, detect it, and take the appropriate actions. This is why pain
assessment scales based on behavioral indicators has been created, such as PIPP (Premature Infant
Pain Profile) [37], CRIES (Crying; Requires increased oxygen administration; Increased vital signs;
Expression; Sleeplessness) [38], NIPS (Neonatal Infant Pain Scale) [39], or NFCS (Neonatal Facial
Coding System) [40,41]. While most assessment scales use vital signals such as heart rate or oxygen
saturation, NFCS is based on facial changes through face muscles, mainly on forehead protrusion,
contraction of eyelids, nasolabial groove, horizontal stretch of the mouth, and tense tongue [42].
Figure 1 shows a graphical example of the NFCS scale. As this paper uses an image database, this last
scale is ideal to determine if the babies are or not in pain, by analyzing the facial changes in different
areas according to the NFCS scale.
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Figure 1. Facial expression of physical distress is the most consistent behavioral indicator of pain
in infants.

2.2. Feature Extraction

Feature extraction methods of facial expressions can be divided depending on their approach.
Generally speaking, features are extracted from facial deformation, which is characterized by changes
in shape and texture, and from facial motion, which is characterized by either the speed and direction
of movement or deformations in the face image [43,44].

As explained in the last section, in this paper, the NFCS scale has been selected, since its reliability,
validity, and clinical utility has been extensively proved [45,46]. The criteria of classification of
pain in the NFCS scale is based on facial deformations and it depends on the texture of the face.
Texture descriptors have been widely used in machine learning and pattern recognition, being
successfully applied to object detection, face recognition, and facial expression analysis, among other
applications [47]. Consequently, three texture descriptors are taken into account in this research:
the popular Local Binary Pattern descriptor; then, a variation of this descriptor, the Local Ternary
Patterns; and, finally, a recently proposed descriptor, the Radon Barcodes, which are based on the
Radon transform.

2.2.1. Local Binary Patterns

Local Binary Patterns (LBP) are a simple but effective texture descriptor which label every pixel of
the image analyzing its neighborhood. It identifies if the grey level of every neighbor pixel is above a
certain threshold and codifies this comparison with a binary number. This descriptor has become very
popular due to its good classification accuracy and its low computational cost, which allows real-time
image processing in many applications. In addition, this descriptor has a great robustness when there
are varying lighting conditions [48,49].

On its basic version, LBP operator works with a 3× 3 matrix that goes across the image pixel
by pixel, identifying the grey values of its eight neighbors and taking as a threshold the grey value
of the central pixel. Thus, the binary code is obtained as follows: if the neighbor pixels has a lower
value than the central one, they will coded as 0; otherwise, their code will be 1. Finally, each binary
value is weighted by its corresponding power of two and added to obtain the LBP code of the pixel.
In Figure 2, a graphic example is shown.

Figure 2. Graphic example of the LBP descriptor.
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This descriptor has been extended over the years, so that it can be used in circle neighborhoods of
different sizes. In this circular version, neighbors are equally spaced, allowing the use of any radio
and any number of neighboring pixels. Once the codes of all pixels are obtained, a histogram is
created. It is also common to divide the image into cells, so that a histogram per cell would be obtained,
being finally concatenated. In addition, the LBP descriptor has uniformity, which reduces negligible
information significantly, and therefore it provides low computational cost and invariance to rotations,
which become two important properties when applied to facial expression recognition in mobile and
wearable devices [50].

2.2.2. Local Ternary Patterns

Tan and Triggs [51] presented a new texture operator which is more robust to noise than LBP
in uniform regions. It consists of an LBP extended into 3-valued codes (0, 1, −1). Figure 3 shows a
practical example of how Local Ternary Patterns (LTP) work: first, threshold t is established. Then,
if any neighbor pixel has a value below the value of the central pixel minus the threshold, it is
assigned −1 and, if the value is over the value of the central pixel plus the threshold, it is assigned 1.
Otherwise, it is assigned 0. After the thresholding step, the upper pattern and lower pattern are
constructed as follows: for the upper pattern, all 1’s are assigned 1, and the rest of the values (0s and
−1’s) are assigned 0; for the lower pattern, all −1’s are assigned 1, and the rest of the values (0s and
1’s) are assigned 0. Finally, both patterns are encoded in two different binary codes, so this descriptor
provides two binary codes for one pixel instead of one as LBP does, that is, more information about
the texture of the image. All of this process is shown in Figure 3.

Figure 3. Graphic example of the LTP descriptor.

The LTP operator has been applied successfully to similar applications as LBP, including medical
images, human action classification and facial expression recognition, among others.

2.2.3. Radon Barcodes

The Radon Barcodes (RBC) operator is based on the Radon transform, which is having an
increasing interest in image processing, since it is extremely robust to noise and presents scale and
rotation invariance [52,53]. Moreover, it has been used for years to process medical images, and is
the basis of current computerized tomography. As mentioned before, facial expression features are
based on facial deformations and involve changes in shape, texture, and motion. As Radon transform
presents valuable features regarding image translation, scaling, and rotation, its application to facial
recognition of emotions has been considered in this work.
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Essentially, Radon transform consists of an integral transform which projects all pixels from
different orientations to a single vector. Consequently, RBCs are basically the sum (integral) of the
values along lines constituted by different angles. Thus, Radon transform is first applied to any input
image, and then projections are performed. Finally, all the projections are thresholded individually
to generate code sections, which are concatenated to build the Radon Barcode. A simple way for
thresholding the projection is to calculate a typical value using the median operator applied on all
non-zero values of each projection [53]. Algorithm 1 shows how RBC works [53] and in Figure 4 a
graphic example is shown.

Algorithm 1: Radon Barcode Generation [53]
Initialize Radon Barcode r ← ∅
Initialize angle θ ← and RN = CN ← 32
Normalize the input image I = Normalize(I, RN , CN)
Set the number of projection angles, e.g., np ← 8
while θ < 180 do

Get all projections p for θ

Find typical value Ttypical ← mediani(pi)|pi 6=0
Binarize projections: b← p ≥ Ttypical
Append the new row r ← append(r, b)
θ ← θ + 180

np

end
Return r

Figure 4. Graphic example of an RBC descriptor.

Until now, the main application of Radon Barcodes comes from medical image retrieval, where
it has given high accuracy. As in the recognition of facial expressions robustness in orientation,
illumination, and scale changes are needed, we consider that the RBC descriptor can be a good
technique to provide a reliable classification of pain/non-pain in infants using facial images, being the
first time that RBC are used in these kinds of applications.

2.3. Classification: Support Vector Machines

In order to classify properly the features extracted using any of the descriptors defined above,
Support Vector Machines (SVM) are chosen.

The main idea of SVM is to select a hyperplane that is equidistant to the training examples of
every class to be classified so that the so-called maximum margin hyperplane between classes is
obtained [54,55]. To define this hyperplane, only the training data of each class that fall right next to
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those margins are taken into account, which are called support vectors. In this work, this hyperplane
would be the one which separates the characteristics obtained from pain and non-pain facial images.
In cases where a linear function does not allow for separating the examples properly, a nonlinear SVM
is used. To define the hyperplane in this case, the input space of the examples X is transformed into a
new one, Φ(X), where a linear separation hyperplane is constructed using kernel functions as they are
represented in Figure 5. A kernel function K(x, x′) is a function that assigns to each pair of elements
x, x′ ∈ X a real value corresponding to the scalar product of the transformed version of that element in
a new space. There are several types of kernel, such as:

• Linear kernel:
K
(
x, x′

)
=< x, x′ >, (1)

• P-Grade polynomial kernel:
K
(

x, x′
)
=
[
γ < x, x′ > +τ

]p , (2)

• Gaussian kernel:
K
(

x, x′
)
=
[
exp(−γ

∥∥x, x′
∥∥2
)
]

, γ > 0, (3)

where γ > 0 is a scaling parameter and τ is a constant.

Figure 5. Representation of the transformed space for nonlinear SVM.

The selection of the kernel depends on the application and situation, and a linear kernel is
recommended when the linear separation of data is simple. In the rest of the cases, it will be necessary
to experiment with the different functions to obtain the best model for each case, since kernels use
different algorithms and parameters.

Once the hyperplane is obtained, it will be transformed back into the original space, thus obtaining
a nonlinear decision boundary [2].

2.4. The Proposed Method

Our application has been implemented in MATLAB c© R2017. The toolboxes that have been used
are Statistics and Machine Learning and Computer Vision System. As mentioned in Section 1, for the
development of the tool, the Infant COPE database [3] has been used. This is a database that is
composed of 195 color images of 26 neonates, 13 boys, and 13 girls, with an age between 18 hours
and 3 days. For the images, the neonates have been exposed to the pain of the heel test and to three
non-painful stimuli: a corporal disturbance (movement from one cradle to another), air stimulation
applied to the nose, and the friction of a wet cotton in the heel. In addition, images of resting infants
have been taken.
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As mentioned before, this implementation could be applied to a mobile device and/or a wearable
system, so that, on the one hand, a baby monitor would continuously analyze the images it captures.
On the other hand, the parents or medical staff would wear a bracelet or have a mobile application to
warn them when the baby is suffering pain. The diagram in Figure 6 shows a possible example of the
implementation stages.

Figure 6. Flowchart of the different stages.

The first step is pre-processing the input image by detecting infants’ faces and then resizing
the resulting images and converting them into grey scale. All images are normalized to a size of
100× 120 pixels. Afterwards, features have been extracted using the texture descriptors mentioned
before. The NFCS scale will be followed, so descriptors have been applied only to relevant facial areas
to the NFCS scale: right eye, left eye, mouth, and brow. These areas are manually selected with sizes
30× 50 pixels for eyes, 40× 90 pixels for mouth, and 15× 40 pixels for brow. It was possible to make
an analysis to find the ideal sizes for each part due to the small size of the used database. Feature
vectors from each area have been concatenated to obtain the global descriptor.

Finally, a previously trained SVM classifier decides if the input frame corresponds with a baby in
pain or not. The system will be continuously monitoring the video frames obtained and sending an
alarm to the mobile device if a pain expression is detected.

3. Results

In this section, a comparison of three different methods for feature extraction is completed: Local
Binary Patterns, Local Ternary Patterns, and Radon Barcodes. According to the results obtained in [2],
a Gaussian Kernel has been chosen for SVM classification, since it provides an optimal behavior for the
Infant COPE database. SVM has been trained with 13 pain images and 13 non-pain images, and the
tests have been performed with 30 pain images and 93 non-pain images different from the training
stage. The unbalanced number of images is due to the number of pictures of each class available in
the database.

To evaluate the tests, confusion matrices, cross-validation and error rate have been used. In this
case, error rate has been calculated as the number of incorrect predictions divided by the total number
of evaluated predictions.



Appl. Sci. 2020, 10, 1115 9 of 15

3.1. Results on LBP

The parameters to be considered on the LBP descriptor are the radius, the number of neighbors
and the cell sizes. As mentioned before, images has been previously cropped into four different areas.
According to the previous results in [2], the best recognition rate is obtained when each of these areas
is not divided into cells. Therefore, as it is shown in Figure 7, the recognition rates for all the possible
combinations with radius 1, 2, and 3, and neighbors 8, 10, 12, 16, 18, 20, and 24 have been calculated to
select the optimum values.

Figure 7. Recognition rate according to radius and neighbors.

As shown in Figure 7, the parameters with the best recognition rate are radius 2 and 18 neighbors.
This combination presents the following confusion matrix CMLBP:

CMLBP =

(
27 3
10 83

)
(4)

It implies that there are three false positives and 10 false negatives, thus having an error rate of
10.57% and, therefore, a successful recognition rate of 89.43%.

3.2. Results on LTP

In this case, the parameters to be calculated on the LTP descriptor are the same as in LBP,
but adding threshold t. Let us consider the same values for the parameters which gave the best result
for LBP (radius 2 and 18 neighbors), and values from t = 1 to 10 for the threshold have been chosen.

As is shown in Figure 8, the best result is obtained for threshold t = 6, which presents the next
confusion matrix CMLTP:

CMLTP =

(
20 10
3 90

)
(5)

It implies that there are 10 false positives and three false negatives, thus having an error rate of
10.57% and, therefore, a recognition rate of 89.43%.
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Figure 8. Recognition rate according to LTP threshold.

3.3. Results on RBC

The parameter to be calculated in the RBC method is the number of projection angles. To do this,
typical values 4, 8, 16, and 32, as considered in [53], have been chosen. The results of the carried tests
are shown in Figure 9.

Figure 9. Recognition rate according to RBC projections.

As we can see in Figure 9, the best result is obtained with four projections, which presents the
next confusion matrix CMRBC:

CMRBC =

(
27 3
3 90

)
(6)

It implies that there are three false positives and three false negatives, thus having an error rate of
4.88% and, therefore, a recognition rate of 95.12%.

3.4. Final Results and Discussion

As shown throughout this section, the best results are obtained by RBC with a recognition rate of
95.12%, followed by LBP and LTP with a recognition rate of 89.43 %. These results show the validity
of applying Radon Barcodes to facial emotion recognition, as seen in Section 2, and it can be then
concluded that the RBC descriptor is a reliable, robust texture descriptor against noise and scale and
rotation invariance.
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Taking into account the cross-validation values of each method, LBP has a value of 7.69%, LTP
obtains 19.23%, and RBC a cross-validation score of 11.54%. With these results, it can be said that, in
terms of being independent from the training images, LBP is better than LTP and RBC. Considering
the runtime to identify the pain in an input image, LBP takes around 20 ms in processing a frame, LTP
around 300 ms, and RBC around 30 ms. Therefore, in terms of cross-validation score and execution
time results, LBP obtains better results. However, RBC behaves much better in terms of recognition
rate. In Table 1, there is a summary of the obtained results.

Table 1. A summary of texture descriptors’ results.

Algorithm Recognition Rate (%) Cross-Validation (%) Execution Time per Frame (ms)

LBP 89.43 7.96 20
LTP 89.43 19.23 300
RBC 95.12 11.54 30

Considering that typically videos work at 25–30 frames per second, it can be said that both LBP
and RBC would be able to analyze all frames detected in a second, allowing the system to be integrated
in a mobile app or a wearable device. However, since facial expressions do not change drastically in
less than a second, the recognition process would not lose accuracy by just analyzing a few frames per
second, instead of 25–30. This would also reduce workload, getting a more efficient tool in terms of
speed, as a result.

Finally, in Table 2, there is a comparison between our research and some previous works. All of
these works have made use of the Infant COPE database and different feature extraction methods and
classifiers such as texture descriptors, deep learning methods, or supervised learning methods.

Table 2. Comparison with other works.

Article Algorithm Recognition Rate (%)

Brahnam et. al. [3] PCA+SVM 82.55

Brahnam et. al. [10] PCA+SVM 88

Mansor and Rejab [11] LBP+Gaussian 87.74–88

LBP+K-NN 76–80

Nanni et. al [12] LBP+SVM 82.6

Celona and Maloni [13] LBP+HOG+ CNN 82.95

Zamzmi et al. [14] CNN+Strain+NB 92.71

Zamzmi et al. [15] N-CNN 84.5

The proposed method LBP+SVM 89.43

The proposed method LTP+SVM 89.43

The proposed method RBC+SVM 95.12

From the comparison of Table 2, it can be observed that the proposed method with Radon Barcode
achieves the best recognition rate, over 10%, compared with previous works working with the same
database. Therefore, it can be said that the proposed method can be used as a reliable tool to classify
infant face expressions as pain or non-pain. Moreover, the time to process the algorithm makes it
feasible to be implemented in a mobile app or a wearable device.

Finally, from the results in Table 2, it must be pointed out that different research that has used
the same algorithms may provide different recognition rate results. This may be the result of the
pre-processing stage in each work or due to the input parameters of the different feature extraction
methods and/or the classifier used.
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4. Conclusions

In this paper, a tool to identify infants’ pain using machine learning has been implemented.
The system achieves a great recognition rate when using Radon Barcodes, around 95.12%. This is the
first time that RBC is used to recognize facial expressions, which proves the validity of the Radon
Barcodes algorithm for the identification of emotions. In addition, as shown in Table 2, it has been
proved that Radon Barcodes improved the recognition results compared to other recent proposed
methods. Furthermore, the time to process frames for pain recognition with RBC makes it possible to
use our system in a real mobile application.

In relation to this, we are currently working in implementing the tool in real time and designing a
real wearable device to detect pain with facial images. We are beginning a collaboration with some
hospitals to perform different tests and develop a prototype of the final system. Finally, we are also
working with other infant databases and datasets with other ages to check the functionality and
validity of the implemented tool, and the definition of a parameter to estimate the degree of pain is
also under research.

Author Contributions: Conceptualization, F.A.P.; Formal analysis, H.M.; Investigation, A.M.; Methodology, F.A.P.;
Resources, H.M.; Software, A.M.; Supervision, F.A.P.; Writing—original draft, A.M.; Writing—review & editing,
H.M. All authors have read and agreed to the published version of the manuscript.

Funding: This work has been partially supported by the Spanish Research Agency (AEI) and the European
Regional Development Fund (FEDER) under project CloudDriver4Industry TIN2017-89266-R, and by the
Conselleria de Educación, Investigación, Cultura y Deporte, of the Community of Valencia, Spain, within the
program of support for research under project AICO/2017/134.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ekman, P. Facial expression and emotion. Am. Psychol. 1993, 48, 384–392. [CrossRef]
2. Pujol, F.A.; Mora, H.; Martínez, A. Emotion Recognition to Improve e-Healthcare Systems in Smart Cities.

In Proceedings of the Research & Innovation Forum 2019, Rome, Italy, 24–26 April 2019; Springer: Cham,
Switzerland, 2019; pp. 245–254. [CrossRef]

3. Brahnam, S.; Chuang, C.F.; Sexton, R.S.; Shih, F.Y. Machine assessment of neonatal facial expressions of acute
pain. Decis. Support Syst. 2007, 43, 1242–1254. [CrossRef]

4. Roy, S.D.; Bhowmik, M.K.; Saha, P.; Ghosh, A.K. An Approach for Automatic Pain Detection through Facial
Expression. Procedia Comput. Sci. 2016, 84, 99–106. [CrossRef]

5. Lucey, P.; Cohn, J.F.; Prkachin, K.M.; Solomon, P.E.; Matthews, I. Painful data: The UNBC-McMaster shoulder
pain expression archive database. In Face and Gesture 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 57–64.
[CrossRef]

6. Hammal, Z.; Cohn, J.F. Automatic detection of pain intensity. In Proceedings of the 14th ACM international
conference on Multimodal interaction—ICMI ’12, Santa Monica, CA, USA, 22–26 October 2012; p. 47.
[CrossRef]

7. Lucey, P.; Cohn, J.F.; Matthews, I.; Lucey, S.; Sridharan, S.; Howlett, J.; Prkachin, K.M. Automatically
Detecting Pain in Video Through Facial Action Units. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2011,
41, 664–674. [CrossRef]

8. Rodriguez, P.; Cucurull, G.; Gonzàlez, J.; Gonfaus, J.M.; Nasrollahi, K.; Moeslund, T.B.; Roca, F.X. Deep Pain:
Exploiting Long Short-Term Memory Networks for Facial Expression Classification. IEEE Trans. Cybern.
2017, 1–11. [CrossRef] [PubMed]

9. Ilyas, C.M.A.; Haque, M.A.; Rehm, M.; Nasrollahi, K.; Moeslund, T.B. Facial Expression Recognition for
Traumatic Brain Injured Patients. In Proceedings of the 13th International Joint Conference on Computer
Vision, Imaging and Computer Graphics Theory and Applications, Funchal, Madeira, Portugal, 27–29
January 2018; SCITEPRESS—Science and Technology Publications: Setúbal, Portugal, 2018; pp. 522–530.
[CrossRef]

10. Brahnam, S.; Chuang, C.F.; Shih, F.Y.; Slack, M.R. Machine recognition and representation of neonatal facial
displays of acute pain. Artif. Intell. Med. 2006, 36, 211–222. [CrossRef] [PubMed]

http://dx.doi.org/10.1037/0003-066X.48.4.384
http://dx.doi.org/10.1007/978-3-030-30809-4_23
http://dx.doi.org/10.1016/j.dss.2006.02.004
http://dx.doi.org/10.1016/j.procs.2016.04.072
http://dx.doi.org/10.1109/FG.2011.5771462
http://dx.doi.org/10.1145/2388676.2388688
http://dx.doi.org/10.1109/TSMCB.2010.2082525
http://dx.doi.org/10.1109/TCYB.2017.2662199
http://www.ncbi.nlm.nih.gov/pubmed/28207407
http://dx.doi.org/10.5220/0006721305220530
http://dx.doi.org/10.1016/j.artmed.2004.12.003
http://www.ncbi.nlm.nih.gov/pubmed/15979291


Appl. Sci. 2020, 10, 1115 13 of 15

11. Naufal Mansor, M.; Rejab, M.N. A computational model of the infant pain impressions with Gaussian and
Nearest Mean Classifier. In Proceedings of the 2013 IEEE International Conference on Control System,
Computing and Engineering, Penang, Malaysia, 29 November–1 December 2013; pp. 249–253. [CrossRef]

12. Nanni, L.; Lumini, A.; Brahnam, S. Local binary patterns variants as texture descriptors for medical image
analysis. Artif. Intell. Med. 2010, 49, 117–125. [CrossRef]

13. Celona, L.; Manoni, L. Neonatal Facial Pain Assessment Combining Hand-Crafted and Deep Features.
In Proceedings of the New Trends in Image Analysis and Processing—ICIAP 2017, Catania, Italy, 11–15
September; Springer: Cham, Switzerland, 2017; pp. 197–204. [CrossRef]

14. Zamzmi, G.; Goldgof, D.; Kasturi, R.; Sun, Y. Neonatal Pain Expression Recognition Using Transfer Learning.
arXiv 2018, arXiv:1807.01631.

15. Zamzmi, G.; Paul, R.; Goldgof, D.; Kasturi, R.; Sun, Y. Pain assessment from facial expression: Neonatal
convolutional neural network (N-CNN). In Proceedings of the 2019 International Joint Conference on
Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–7,

16. Sun, Y.; Shan, C.; Tan, T.; Long, X.; Pourtaherian, A.; Zinger, S.; With, P.H.N.d. Video-based discomfort
detection for infants. Mach. Vis. Appl. 2019, 30, 933–944. [CrossRef]

17. Lisetti, C.L.; Nasoz, F. Using Noninvasive Wearable Computers to Recognize Human Emotions from
Physiological Signals. EURASIP J. Adv. Signal Process. 2004, 2004, 929414. [CrossRef]

18. Marín-Morales, J.; Higuera-Trujillo, J.L.; Greco, A.; Guixeres, J.; Llinares, C.; Scilingo, E.P.; Alcañiz, M.;
Valenza, G. Affective computing in virtual reality: Emotion recognition from brain and heartbeat dynamics
using wearable sensors. Sci. Rep. 2018, 8, 1–15. [CrossRef] [PubMed]

19. Miranda Calero, J.A.; Marino, R.; Lanza-Gutierrez, J.M.; Riesgo, T.; Garcia-Valderas, M.; Lopez-Ongil, C.
Embedded Emotion Recognition within Cyber-Physical Systems using Physiological Signals. In Proceedings
of the 2018 Conference on Design of Circuits and Integrated Systems (DCIS), Lyon, France, 14–16 November
2018; pp. 1–6. [CrossRef]

20. Chen, M.; Ma, Y.; Li, Y.; Wu, D.; Zhang, Y.; Youn, C.H. Wearable 2.0: Enabling Human-Cloud Integration in
Next, Generation Healthcare Systems. IEEE Commun. Mag. 2017, 55, 54–61. [CrossRef]

21. Kwon, J.; Kim, D.H.; Park, W.; Kim, L. A wearable device for emotional recognition using facial expression
and physiological response. In Proceedings of the 2016 38th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 5765–5768,
ISSN 1557-170X. [CrossRef]

22. Washington, P.; Voss, C.; Haber, N.; Tanaka, S.; Daniels, J.; Feinstein, C.; Winograd, T.; Wall, D. A Wearable
Social Interaction Aid for Children with Autism. In Proceedings of the 2016 CHI Conference Extended
Abstracts on Human Factors in Computing Systems, CHI EA ’16, San Jose, CA, USA, 7–12 May 2016; ACM:
New York, NY, USA, 2016; pp. 2348–2354. [CrossRef]

23. Kwon, J.; Kim, L. Emotion recognition using a glasses-type wearable device via multi-channel facial
responses. arXiv 2019, arXiv:1905.05360.

24. Dias, D.; Paulo Silva Cunha, J. Wearable Health Devices—Vital Sign Monitoring, Systems and Technologies.
Sensors 2018, 18, 2414. [CrossRef]

25. Chen, W.; Dols, S.; Oetomo, S.B.; Feijs, L. Monitoring Body Temperature of Newborn Infants at Neonatal
Intensive Care Units Using Wearable Sensors. In Proceedings of the Fifth International Conference on Body
Area Networks, BodyNets ’10, Corfu Island, Greece, 10–12 September 2010; ACM: New York, NY, USA, 2010;
pp. 188–194. [CrossRef]

26. Mahmud, M.S.; Wang, H.; Fang, H. Design of a Wireless Non-Contact Wearable System for Infants
Using Adaptive Filter. In Proceedings of the 10th EAI International Conference on Mobile Multimedia
Communications, Chongqing, China, 13 July 2017. [CrossRef]

27. Lobo, M.A.; Hall, M.L.; Greenspan, B.; Rohloff, P.; Prosser, L.A.; Smith, B.A. Wearables for Pediatric
Rehabilitation: How to Optimally Design and Use Products to Meet the Needs of Users. Phys. Ther. 2019,
99, 647–657. [CrossRef]

28. Cattani, L.; Saini, H.P.; Ferrari, G.; Pisani, F.; Raheli, R. SmartCED: An Android application for neonatal
seizures detection. In Proceedings of the 2016 IEEE International Symposium on Medical Measurements
and Applications (MeMeA), Benevento, Italy, 15–18 May 2016; pp. 1–6. [CrossRef]

29. Bonafide, C.P.; Jamison, D.T.; Foglia, E.E. The Emerging Market of Smartphone-Integrated Infant Physiologic
Monitors. JAMA 2017, 317, 353–354. [CrossRef]

http://dx.doi.org/10.1109/ICCSCE.2013.6719968
http://dx.doi.org/10.1016/j.artmed.2010.02.006
http://dx.doi.org/10.1007/978-3-319-70742-6_19
http://dx.doi.org/10.1007/s00138-018-0968-1
http://dx.doi.org/10.1155/S1110865704406192
http://dx.doi.org/10.1038/s41598-018-32063-4
http://www.ncbi.nlm.nih.gov/pubmed/30209261
http://dx.doi.org/10.1109/DCIS.2018.8681496
http://dx.doi.org/10.1109/MCOM.2017.1600410CM
http://dx.doi.org/10.1109/EMBC.2016.7592037
http://dx.doi.org/10.1145/2851581.2892282
http://dx.doi.org/10.3390/s18082414
http://dx.doi.org/10.1145/2221924.2221960
http://dx.doi.org/10.4108/eai.13-7-2017.2270652
http://dx.doi.org/10.1093/ptj/pzz024
http://dx.doi.org/10.1109/MeMeA.2016.7533708
http://dx.doi.org/10.1001/jama.2016.19137


Appl. Sci. 2020, 10, 1115 14 of 15

30. King, D. Marketing wearable home baby monitors: Real peace of mind? BMJ 2014, 349. [CrossRef]
31. Wang, J.; O’Kane, A.A.; Newhouse, N.; Sethu-Jones, G.R.; de Barbaro, K. Quantified Baby: Parenting and the

Use of a Baby Wearable in the Wild. Proc. Acm -Hum.-Comput. Interact. 2017, 1, 1–19. [CrossRef]
32. Roofthooft, D.W.E.; Simons, S.H.P.; Anand, K.J.S.; Tibboel, D.; Dijk, M.v. Eight Years Later, Are We Still

Hurting Newborn Infants? Neonatology 2014, 105, 218–226. [CrossRef]
33. Cruz, M.D.; Fernandes, A.M.; Oliveira, C.R. Epidemiology of painful procedures performed in neonates: A

systematic review of observational studies. Eur. J. Pain 2016, 20, 489–498. [CrossRef]
34. Goksan, S.; Hartley, C.; Emery, F.; Cockrill, N.; Poorun, R.; Moultrie, F.; Rogers, R.; Campbell, J.; Sanders, M.;

Adams, E.; et al. fMRI reveals neural activity overlap between adult and infant pain. eLife 2015, 4, e06356.
[CrossRef] [PubMed]

35. Eriksson, M.; Campbell-Yeo, M. Assessment of pain in newborn infants. Semin. Fetal Neonatal Med. 2019,
24, 101003. [CrossRef] [PubMed]

36. Pettersson, M.; Olsson, E.; Ohlin, A.; Eriksson, M. Neurophysiological and behavioral measures of pain
during neonatal hip examination. Paediatr. Neonatal Pain 2019, 1, 15–20. [CrossRef]

37. Stevens, B.; Johnston, C.; Petryshen, P.; Taddio, A. Premature Infant Pain Profile: Development and Initial
Validation. Clin. J. Pain 1996, 12, 13. [CrossRef] [PubMed]

38. Krechel, S.W.; Bildner, J. CRIES: A new neonatal postoperative pain measurement score. Initial testing of
validity and reliability. Paediatr. Anaesth. 1995, 5, 53–61. [CrossRef]

39. Lawrence, J.; Alcock, D.; McGrath, P.; Kay, J.; MacMurray, S.B.; Dulberg, C. The development of a tool to
assess neonatal pain. Neonatal Netw. NN 1993, 12, 59–66. [CrossRef]

40. Grunau, R.V.E.; Craig, K.D. Pain expression in neonates: Facial action and cry. Pain 1987, 28, 395–410.
[CrossRef]

41. Grunau, R.V.E.; Johnston, C.C.; Craig, K.D. Neonatal facial and cry responses to invasive and non-invasive
procedures. Pain 1990, 42, 295–305. [CrossRef]

42. Peters, J.W.B.; Koot, H.M.; Grunau, R.E.; de Boer, J.; van Druenen, M.J.; Tibboel, D.; Duivenvoorden, H.J.
Neonatal Facial Coding System for Assessing Postoperative Pain in Infants: Item Reduction is Valid and
Feasible:. Clin. J. Pain 2003, 19, 353–363. [CrossRef]

43. Sumathi, C.P.; Santhanam, T.; Mahadevi, M. Automatic Facial Expression Analysis A Survey. Int. J. Comput.
Sci. Eng. Surv. 2012, 3, 47–59. [CrossRef]

44. Kumari, J.; Rajesh, R.; Pooja, K.M. Facial Expression Recognition: A Survey. Procedia Comput. Sci. 2015,
58, 486–491. [CrossRef]

45. Arias, M.C.C.; Guinsburg, R. Differences between uni-and multidimensional scales for assessing pain in
term newborn infants at the bedside. Clinics 2012, 67, 1165–1170. [CrossRef]

46. Witt, N.; Coynor, S.; Edwards, C.; Bradshaw, H. A Guide to Pain Assessment and Management in the
Neonate. Curr. Emerg. Hosp. Med. Rep. 2016, 4, 1–10. [CrossRef] [PubMed]

47. Ahmed, M.; Shaukat, A.; Akram, M.U. Comparative analysis of texture descriptors for classification.
In Proceedings of the 2016 IEEE International Conference on Imaging Systems and Techniques (IST), Chania,
Greece, 4–6 October 2016; pp. 24–29. [CrossRef]

48. Ahonen, T.; Hadid, A.; Pietikäinen, M. Face Recognition with Local Binary Patterns. In Computer
Vision—ECCV 2004; Pajdla, T., Matas, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 469–481,

49. Shan, C.; Gong, S.; McOwan, P. Robust facial expression recognition using local binary patterns.
In Proceedings of the IEEE International Conference on Image Processing 2005, Genoa, Italy, 11–14 September
2005; Volume 2, p. II-370, ISSN 2381-8549. [CrossRef]

50. Liu, L.; Fieguth, P.; Wang, X.; Pietikäinen, M.; Hu, D. Evaluation of LBP and Deep Texture Descriptors with a
New Robustness Benchmark. In Lecture Notes in Computer Science, Proceedings of the Computer Vision—ECCV
2016, Amsterdam, The Netherlands, 11–14 October 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer
International Publishing: Cham, Switzerland, 2016; pp. 69–86. [CrossRef]

51. Tan, X.; Triggs, B. Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting
Conditions. In Analysis and Modeling of Faces and Gestures; Springer: Berlin/Heidelberg, Germany, 2007;
pp. 168–182. [CrossRef]

52. Hoang, T.V.; Tabbone, S. Invariant pattern recognition using the RFM descriptor. Pattern Recognit. 2012,
45, 271–284. [CrossRef]

http://dx.doi.org/10.1136/bmj.g6639
http://dx.doi.org/10.1145/3134743
http://dx.doi.org/10.1159/000357207
http://dx.doi.org/10.1002/ejp.757
http://dx.doi.org/10.7554/eLife.06356
http://www.ncbi.nlm.nih.gov/pubmed/25895592
http://dx.doi.org/10.1016/j.siny.2019.04.003
http://www.ncbi.nlm.nih.gov/pubmed/30987943
http://dx.doi.org/10.1002/pne2.12006
http://dx.doi.org/10.1097/00002508-199603000-00004
http://www.ncbi.nlm.nih.gov/pubmed/8722730
http://dx.doi.org/10.1111/j.1460-9592.1995.tb00242.x
http://dx.doi.org/10.1016/0885-3924(91)91127-U
http://dx.doi.org/10.1016/0304-3959(87)90073-X
http://dx.doi.org/10.1016/0304-3959(90)91142-6
http://dx.doi.org/10.1097/00002508-200311000-00003
http://dx.doi.org/10.5121/ijcses.2012.3604
http://dx.doi.org/10.1016/j.procs.2015.08.011
http://dx.doi.org/10.6061/clinics/2012(10)08
http://dx.doi.org/10.1007/s40138-016-0089-y
http://www.ncbi.nlm.nih.gov/pubmed/27073748
http://dx.doi.org/10.1109/IST.2016.7738192
http://dx.doi.org/10.1109/ICIP.2005.1530069
http://dx.doi.org/10.1007/978-3-319-46487-9_5
http://dx.doi.org/10.1007/978-3-540-75690-3_13
http://dx.doi.org/10.1016/j.patcog.2011.06.020


Appl. Sci. 2020, 10, 1115 15 of 15

53. Tizhoosh, H.R. Barcode annotations for medical image retrieval: A preliminary investigation. In Proceedings
of the 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, 27–30
September 2015; pp. 818–822. [CrossRef]

54. Smyser, C.D.; Dosenbach, N.U.F.; Smyser, T.A.; Snyder, A.Z.; Rogers, C.E.; Inder, T.E.; Schlaggar, B.L.; Neil,
J.J. Prediction of brain maturity in infants using machine-learning algorithms. NeuroImage 2016, 136, 1–9.
[CrossRef] [PubMed]

55. Guenther, N.; Schonlau, M. Support vector machines. Stata J. 2016, 16, 917–937. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ICIP.2015.7350913
http://dx.doi.org/10.1016/j.neuroimage.2016.05.029
http://www.ncbi.nlm.nih.gov/pubmed/27179605
http://dx.doi.org/10.1177/1536867X1601600407
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Pain Perception in Babies
	Feature Extraction
	Local Binary Patterns
	Local Ternary Patterns
	Radon Barcodes

	Classification: Support Vector Machines
	The Proposed Method

	Results
	Results on LBP
	Results on LTP
	Results on RBC
	Final Results and Discussion

	Conclusions
	References

