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Abstract: The operation mode of a single strip provides incomplete side-scan sonar image in a
specific environment and range, resulting in the overlapping area between adjacent strips often with
imperfect detection information or inaccurate target contour. In this paper, a sum-modified Laplacian
energy filtering (SMLF) and improved dual-channel pulse coupled neural network (IDPCNN) are
proposed for image fusion of side-scan sonar in the domain of nonsubsampled contourlet transform
(NSCT). Among them, SMLF energy is applied to extract the fusion coefficients of the low frequency
sub-band, which combines the characteristics of energy information, human visual contrast, and
guided filtering to eliminate the pseudo contour effect of block flow. In addition, the IDPCNN model,
which utilizes the average gradient, soft limit function, and novel sum-modified Laplacian (NSML)
to adaptively represent the corresponding excitation parameters, is applied to improve the depth
and activity of pulse ignition, so as to quickly and accurately select the image coefficients of the
high frequency sub-band. The experimental results show that the proposed method displays fine
geomorphic information and clear target contour in the overlapping area of adjacent strips. The
objective index values are generally optimal, which reflect the information of image edge, clarity, and
overall similarity.

Keywords: sonar image fusion; overlapping area between adjacent strips; nonsubsampled contourlet
transform; sum-modified Laplacian energy filtering; dual-channel pulse coupled neural network

1. Introduction

With the excellent propagation characteristics of sound waves in the water, side-scan sonar
provides high-resolution and high-accuracy image information for underwater operations. Full sea
area survey is general carried out by means of strip measurement, which requires the adjacent strip to
have a certain width of overlapping area [1]. However, owing to the effect of imaging time, hull attitude,
and ocean reverberation [2], underwater target and terrain texture in the overlapping area have a
certain degree of distortion. The overlapping area of a single strip image has incomplete information
detection, and the contours of underwater targets do not match. Therefore, the information fusion
of overlapping area between adjacent strips is of great significance, which lays a foundation for the
research of underwater target detection and distribution in public areas and classification of sediment
types [3–5].

In recent years, the effective combination of multi-scale transform domain and other intelligent
optimization methods has become a research hotspot of image fusion, especially the domain of

Appl. Sci. 2020, 10, 1028; doi:10.3390/app10031028 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-8883-7056
http://dx.doi.org/10.3390/app10031028
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/3/1028?type=check_update&version=2


Appl. Sci. 2020, 10, 1028 2 of 18

nonsubsampled contourlet transform (NSCT) [6]. Anandhi used NSCT and statistical fusion rules
for the information fusion of a multi-sensor image, which effectively preserved texture and image
edge information [7]. Zhang et al. combined NSCT and texture information for forward-looking sonar
image fusion, which weakened the effect of the registration error [8]. The image characteristics of
side-scan sonar are similar to forward-looking sonar, and NSCT can be applied to the side-scan sonar
image fusion of adjacent strips.

Generally, NSCT serves as a basis for multi-scale image fusion to decompose into low and high
frequency sub-band images [9]. After that, it is very important for image fusion to make a reasonable
fusion criterion for a low and high frequency image, respectively. For the sub-band coefficients of
a low frequency image, the weighted average strategy was a conventional fusion criterion, which
resulted in partial energy loss of the source image [10]. As for the fusion criterion of modified weighted
saliency, the threshold selection of matching degree in this model is more skillful [11]. Moreover, sparse
representation and its combination with dictionary learning were applied to select low frequency
sub-band coefficients [12,13]. Their scheme effectively avoided smoothing the texture, edge, and
other details of the original image, but the processing of the sliding window might interfere with the
correlation between the images, and the latter model involved a lot of training images in the process
of iterative learning. Hence, sum-modified Laplacian (SML) energy can be used to characterize the
clarity of the sub-band image, and it also reflects the gradient information to a certain extent. Huang
and Jing [14] introduced SML energy into the coefficient selection of a low frequency sub-band, which
eliminated the interference of fuzzy background region availably. Yong et al. combined visual effects
with SML to guide the selection of low frequency [15], which enhanced the judgment depth of multi
focus image fusion. However, the overlapping area image of adjacent strips is relatively noisy, and the
coefficient selection of a low frequency sub-band based on the above criteria can easily cause false
judgment, as well as the pseudo-contour of block flow at the target edge.

For the sub-band coefficients of the high frequency image, the previous fusion criteria include
maximum energy [16], regional variance [17], and direction contrast maximum [18], but they are easily
susceptible to noise interference, making the edge contour of the target blurred. Pulse coupled neural
network (PCNN) has been widely applied to guide the coefficient selection of high frequency [19].
Although the PCNN model has a good fusion effect, it contains a lot of non-linear parameters, and
the region discrimination of image darkening is not very sensitive. Moreover, Wang and Ma [20]
pioneered a dual-channel PCNN (DPCNN) model to enhance the selection and diffusion ability of
feature information, which was faster and simpler than single channel PCNN coupling judgment. In
the DPCNN model, some key parameters affected the quality and calculation efficiency of sub-band
coefficients to a certain extent, such as link strength, external excitation, and ignition output value. So,
the literature [21–25] has improved the model parameters of DPCNN. In essence, link strength was
usually set as local standard deviation [21], and Yang et al. calculated the fuzzy membership of each
pixel to adapt to the link strength of DPCNN, which obtained the fused image with high contrast [22].
El-taweel and Helmy adopted spatial frequency (SF) as the external excitation, which was capable
of effectively overcoming the Gibbs phenomenon at the target boundary [23]. The morphological
gradient of the sub-band was used as the external excitation value, which could availably judge the
detailed edge information of the high frequency sub-band [24]. Xiang et al. took the average gradient
as the link strength, and modified spatial frequency (MSF) as the external excitation value, which
enabled the DPCNN to achieve the extraction of rich details [25].

The above DPCNN model achieves an excellent judgment of sub-band coefficients, but the
traditional DPCNN model [20] must wait for all sub-band coefficients to be activated before judging,
which may result in false fired pulses. Besides, the ignition output value was set to 1 or 0 in this
model [21], which made the active judgment unable to reflect the grade difference. Hence, a method of
selecting low and high frequency sub-band coefficients in NSCT domain is proposed for side-scan
sonar image fusion of adjacent strips. The frame design is shown in Figure 1.
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Figure 1. Flowchart of the proposed fusion method. CA/B/F is represented as the low frequency 
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dual-channel pulse coupled neural network; RLV, relating sum-modified Laplacian energy with 
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Figure 1. Flowchart of the proposed fusion method. CA/B/F is represented as the low frequency
sub-band image. dlj

A/B/F is denoted as the high frequency sub-band image. The characters in the matrix
are representative values of key parameters in the proposed fusion criteria. NSCT, nonsubsampled
contourlet transform; NSML, novel sum-modified Laplacian; SMLF, SML energy filtering; DPCNN,
dual-channel pulse coupled neural network; RLV, relating sum-modified Laplacian energy with visual
contrast value; MCF, multi-channel filters.

In this work, we have made the following progress: (1) SML energy filtering (SMLF) with multiple
parameters and technologies, such as relating sum-modified Laplacian energy with visual contrast
value (RLV), guide filter and multi-channel filter (MCF), is used to eliminate block flow in low frequency
sub-band images; (2) Improved DPCNN (IDPCNN) model is employed to increase the depth and
activity of pulse ignition, which can quickly and accurately select high frequency image coefficients;
and (3) multiple fusion metrics are applied to evaluate the performance of single and combined
fusion criteria.

The remaining of this paper is organized as follows. Section 2 introduces the proposed image
fusion method and process in detail. The experimental results and analysis are illustrated in Section 3.
Finally, the conclusions are presented in Section 4.

2. The Proposed Image Fusion Method

2.1. Fusion Pretreatment

The sonar image fusion in the overlapping area is to make full use of the complementary
information from the source image to enhance the feature information, such as the size and edge outline
of underwater target, the landform, and texture. The sonar image fusion pre-processing includes
noise filtering, image registration, multi-scale decomposition, and reconstruction. In general, median
filtering is used to de-noise the side-scan sonar image [26]. In addition, the method of speeding
up robust features is registered to obtain images of the overlapping area. Moreover, in order to
enhance the directional selectivity and obtain better spectral characteristics of image information,
NSCT transformation is used to decompose the source image into low frequency and high frequency
sub-band components. Then, different low frequency and high frequency fusion criteria are adopted
to select and determine the signal source. Finally, a new fusion image is generated according to the
combined signal reconstruction.

2.2. SML and SMLF Energy

2.2.1. SML Energy

The low frequency sub-band image retains most of the energy information from the source image,
so the selection of its fusion criterion is crucial for the reconstructed fusion image. The work of [14]
showed that SML can provide better performance than other focus functions for guiding the selection
of low frequency sub-bands, such as variance, energy of image gradient (EOG) [27], energy of Laplacian
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(EOL), SF, and so on. SML represents the Laplacian energy in the horizontal and vertical directions of
the image [28], and its parameter is defined as follows:

SML(x, y) =
1∑

p=−1

1∑
q=−1

EOL(x + p, y + q)2

EOL(x, y) =
∣∣∣2c(x, y) − c(x− 1, y) − c(x + 1, y)

∣∣∣+∣∣∣2c(x, y) − c(x, y− 1) − c(x, y + 1)
∣∣∣

(1)

where EOL (x, y) is the energy of Laplacian. c (x, y) denotes as the low frequency sub-band coefficient.
For a pair of the low frequency sub-band images obtained by NSCT decomposition, the difference

between the clear object and the fuzzy object in the image is relatively large, which reflects the feature
information in the local neighborhood by calculating its Laplace energy. Therefore, SML energy is
utilized to judge the low frequency sub-band coefficient, and the coefficient with larger SML energy is
taken as the low frequency coefficient after fusion.

2.2.2. SMLF Energy

Side-scan sonar image is characterized by uneven brightness and severe speckle noise [29], which
makes the SML energy unable to reflect the difference in image contrast and leads to false contours in
the fused low frequency images. Therefore, SMLF energy is applied to improve the above problems.
Its strategy can be described below. SML and the visual adjustment value α are nonlinearly combined
into the RLV value. RLV(x,y) is defined as follows:

RLV(x, y) =


SML(x,y)

c(x,y)(1+α) c(x, y) , 0

SML(x, y) c(x, y) = 0
(2)

where c (x, y) is the coefficient mean of centered on the pixels (x, y). α is the brightness value of the
visual adjustment, and α ∈ (0.6, 0.7) [30] and α = 0.65 are used in this paper.

Taking RLV as the guide map, the guided image coefficients GfA and GfB are obtained by the
guided filter (GF) [31]. The decision map can be obtained by judging the size of GfA and GfB and
filtering twice with multi-channel filters. p × q is 3 × 3 window size.

map =

1 G fA ≥ G fB
0 others

and, map1 =


1

∑
p∗q

map(i, j) ≥ 6

0 others
(3)

According to the value of dp, the low frequency coefficient matrix of fused image cF is finally
generated. cA and cB are the low frequency sub-band coefficients, respectively.

cF = map1 ∗ cA + (1−map1) ∗ cB (4)

2.3. DPCNN and Its Improved Model

2.3.1. DPCNN Model

Wang and Ma introduced a dual-channel PCNN (DPCNN) model to guide the fusion of high
frequency sub-band images, which keeps the coupling characteristics of PCNN model, and simplifies
parameter setting [20]. DPCNN model (Figure 2) is a simulation process in which cerebral cortex cells
respond to visual pulse signals. Its bidirectional excitation and global characteristics can enhance the
important information extraction from source images, which is conducive to the selection of detailed
features [32]. Its mechanism is defined as shown below.
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Figure 2. DPCNN model. Multiplication, summation, and difference between two sides are represented
by symbols ⊗, ⊕, and 	, respectively.

The neuron (i, j) receives external excitation value and coupling values of peripheral neurons Lij
in the receiving domain, and internal activity items Uij

k are nonlinear modulated by link strength βij
k.

Fk
i j(n) =

∣∣∣∣Sk
i j(n)

∣∣∣∣, k = {1, 2}

Li j(n) = e−αLLi j(n− 1) + VL
∑
p∗q
ωi j,pqYi j,pq(n− 1)

Uk
i j(n) = Fk

i j(n)
(
CR + βi j

kLi j(n)
)
, k = {1, 2}

(5)

where n is the iteration number. Sij
k (k = 1, 2) is the external excitation. αL is the attenuation constant

of link input. VL is the amplification factor of link input. p × q is the neighborhood range. ωij,pq is the
connection weight. CR is the non-linear coefficient ratio between link input and external excitation.
Yij,pq is pulse activation value (1 or 0).

The maximum active item Uij is taken in the information fusion domain, and the dynamic
threshold θij is judged with it to generate a corresponding output activation signal.

Ui j(n) = max
{

U1
i j(n), U2

i j(n)
}

Yi j(n) =
{

1 Ui j(n) ≥ θi j(n− 1)
0 others

(6)

where Yij is the output of neurons (1 or 0).
When the neuron is activated, the channel corresponding to the maximum activity item is selected

as the fusion coefficient. Besides, dynamic threshold is updated to promote the activation of adjacent
neurons, and the method of iterative updating is adopted until all neurons are ignited.

θi j(n) = e−αθθi j(n− 1) + VθYi j(n) (7)

where αθ is an attenuation constant of threshold. Vθ is a magnification factor of threshold.

2.3.2. Improved DPCNN Model

(1) Theory of improved DPCNN model

By analyzing the mechanism of the DPCNN model, it can be found that the setting of some default
constants is very skillful for activating all neurons [33], which often affects the fusion performance
and running time, such as maximum iteration Kn, αθ, Vθ, and so on. Therefore, an improved DPCNN
(IDPCNN) model is proposed to select the coefficients of high frequency sub-band images. The
improved pulse activation process mainly occurs in the information judgment and pulse activation
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domain, as shown in Figure 3. The amplitude value Reij (k = 1, 2) is calculated by the soft limit
function [34], which is in conjunction with the dynamic threshold to determine whether the pulse is
activated and record each ignition time. After Kn iterations, the channel coefficients corresponding to
the larger cumulative output time

∑
Tij

k are served as the fused high frequency sub-band coefficients.

Rek
i j(n) = 1/

(
1 + e(θi j(n−1)−Ui j

k(n))
)

, k = {1, 2}

Yi j(n) =

1 max
{
Rek

i j(n)
}
≥ 0.5

0 others
Tk

i j(n) = Rek
i j(n)Yi j(n), k = {1, 2}

(8)

where Tij
k denotes as the pulse ignition time.
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(2) Key parameter settings of IDPCNN model

In the traditional DPCNN model, the parameters mainly depend on experience and massive
attempts [32]. A set of parameters that achieves good performance may be unsuitable for other data.
Therefore, key points in the IDPCNN model are as follows for the image fusion of side-scan sonar, 1)
pulse ignition time Tij

k; 2) link strength βij
k; and 3) external excitation Sij

k.
In this IDPCNN model, the soft limiting function is applied to reflect the amplitude difference of

the total ignition time (see Equation (9)). Moreover, considering that local gradient energy is also one
of image sharpness indicators, which can reflect the target edge and other detailed features, average
gradient [35] is adapted to the characterization of link strength. The average gradient d(x,y) is defined
as follows:

d(x, y) = 1
9

1∑
p=−1

1∑
q=−1

sqrt([g1(x + p, y + q) + g2((x + p, y + q))]/2) g1(x, y) = [d(x, y) − d(x + 1, y)]2

g2(x, y) = [d(x, y) − d(x, y + 1)]2

(9)

where d (x, y) is the high frequency sub-band coefficient. g1 (x, y) and g2 (x, y) represent the gradient
difference in the horizontal and vertical directions, respectively.
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Moreover, a novel sum-modified Laplacian (NSML) is set as external excitation, and denotes as:

nml(x, y) =
∣∣∣2× d(x, y) − d(x− 1, y) − d(x + 1, y)

∣∣∣
+

∣∣∣2× d(x, y) − d(x, y− 1) − d(x, y− 1)
∣∣∣

+
∣∣∣∣√2× d(x, y) −

(√
2/2

)
× d(x− 1, y− 1) −

(√
2/2

)
× d(x + 1, y + 1)

∣∣∣∣
+

∣∣∣∣√2× d(x, y) −
(√

2/2
)
× d(x− 1, y + 1) −

(√
2/2

)
× d(x + 1, y− 1)

∣∣∣∣
NSML(x, y) =

1∑
p=−1

1∑
q=−1

nml(x + p, y + q)2

(10)

2.4. Quality Evaluation of Fused Image

The evaluation of a fused image is usually performed by subjective visual and objective indexes.
Subjective vision is mainly used to judge the fused effect of image contrast, ambiguity, noise elimination,
target edge and texture features. Furthermore, objective indexes is able to accurately reflect the
overall effect of the fused image and the visual information content of important targets, which is a
complementary to the subjective visual effect. Therefore, some objective evaluation indexes of a fused
image and its mathematical formula are listed in Table 1. Combining the characteristics of underwater
sonar images, average gradient (AG) [36], figure definition (FD), information entropy (E) [37], root
mean square cross entropy (RCE) [38], mutual information (MI) [9], edge-based similarity measure
(QAB/F) [14], structural similarity index (SSIM) [39], and indexes of Piella [40] are applied to objectively
evaluate the fused image.

Table 1. Objective index and mathematical description of the fused image. AG, average gradient; RCE,
root mean square cross entropy; FD, figure definition; E, information entropy; MI, mutual information;
QAB/F, edge-based similarity measure; SSIM, structural similarity index.

Objective Indexes Mathematical Formulation

AG
AG =

1
M×N

M∑
i=1

N∑
j=1

√(∣∣∣ f (x, y) − f (x− 1, y)
∣∣∣2 + ∣∣∣ f (x, y) − f (x, y− 1)

∣∣∣2)/2

FD
FD =

1
M×N

M∑
x=1

N∑
y=1

√(∣∣∣ f (x + 1, y) − f (x, y)
∣∣∣2 + ∣∣∣ f (x, y + 1) − f (x, y)

∣∣∣2)/2

E E= −
L−1∑
i=0

pi log2 pi

RCE RCE =
√(

CE2
A,F + CE2

B,F

)
/2, CEA/B,F =

L−1∑
i=0

pA/B(i) log2
pA/B(i)

pF(i)

MI MI =
∑

(a,b): f
p(A,B):F( f , (a, b)) log2

p(A,B):F( f ,(a,b))
pF( f )·p(A,B)(a,b)

QAB/F QAB/F =
∑
∀m,n(QAF

m,nwA
m,n+QBF

m,nwB
m,n)∑

∀m,n(wA
m,n+wB

m,n)

SSIM
SSIM(A, B, F) = (SSIM(A, F) + SSIM(B, F))/2

SSIM(A/B, F) = (2µA/BµF+C1)(2σA/B,F+C2)(
µ2

A/B+µ
2
F+C1

)(
µ2

A/B+µ
2
F+C2

)

2.5. Implementation of Fused Technique

The scheme process of the proposed fusion method is discussed in detail, as shown in Algorithm
1. The fusion framework based on the NSCT domain includes image preprocessing and registration,
decomposed acquisition of the low and high frequency sub-band image, coefficient selection of the
sub-band image, reconstruction of the fused image, and quality evaluation. First, the adjacent sonar
images are registered using the speed up robust features (SURF) [41] method to obtain the information
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images of the overlapping area. NSCT is subsequently applied to decompose the pair of overlapping
area images into low and high frequency sub-band images.

Moreover, the sub-band coefficients of low and high frequency images are determined by the SMLF
and IDPCNN model, respectively. However, after the above fusion criteria are applied, there are some
random discrete or isolated pixels in the small neighborhood of sub-band coefficient matrices, which
are obviously different from the adjacent pixel source images [42]. Therefore, consistency verification
(CV) [43] is carried out through a window size of 3 × 3 to ensure the consistency relationship between
adjacent coefficient sources.

Finally, according to the selected sub-band images of low and high frequency, the fused image
is reconstructed by inverse transformation of NSCT, and the effect of fused image is quantitatively
analyzed and evaluated from subjective vision and multiple objective indexes.

Algorithm 1 Sonar Image Fusion Based on SMLF energy and IDPCNN Model

Input: Read in two sonar images of adjacent strip. Set some constant item values, Kn, αL, VL, αθ, Vθ, CR = 1.
Initialize some parameters and matrices, Yij is zero matrix, ωij,pq is ones matrix, the iteration number n = 1.
Output: Fused image, difference image and objective evaluation indexes
1: Image registration to obtain overlapped area image I1, I2;
2: Acquisition of low and high frequency image matrix CA/B, dij

A/B with NSCT transform;
3: Calculate the SML energy of low frequency sub-band coefficient by Equation (1);
4: Relate SML energy with visual adjustment value to obtain RLV parameter values based on Equation (2);
5: Decision map is obtained by the guided filter and multiple filters based on Equation (3);
6: Determine the coefficient source of low frequency sub-band by using Equation (4);
7: while (iteration number n ≤maximum iteration Kn)
8: Average gradient d (x, y) and NSML (x, y) is obtained by Equations (9) and (10);
9: Get Fij

k (n), Lij (n), Uij
k (n) of each neuron in the receiving domain by Equation (5);

10: Judge whether the pulse signal is activated by Equation (8);
11: if Amplitude value Re (i, j) ≤ 0.5
12: The neuron (i, j) is activated, Yij = 1. Record the ignition time of each iteration Tij

k (n), and update
dynamic threshold θij (n) by Equation (7);
13: end if

n = n + 1;
14: end while
15: After Kn iterations, high frequency sub-band coefficients are selected according to the total ignition time;
16: Sub-band coefficients of low and high frequency pass the window verification to ensure the consistency of
adjacent coefficient sources;
17: The fused image of overlapping area is reconstructed by NSCT inverse transform;
18: return Fused image is subtracted from overlapping image to obtain the difference image, and the objective
evaluation indexes of fused image are obtained by Table 1.

3. Experiments and Analysis

3.1. Data Description

To evaluate the proposed low and high frequency fusion criteria and their performance in the
NSCT domain, three sets of side-scan sonar images are used to verify the performance of the fusion
criteria. Data 1 is a small-scale image of aircraft debris with clear target profile features. Data 2 is a
medium-scale pipeline detection image, which contains more information, such as oil pipeline targets,
rich terrain texture, and different types of sediment characteristics. The above source images were
subjected to median filtering, and local Gaussian blurring (sigma = 5) is performed on the left and
right sides, as shown in Figures 4 and 5. This procedure is an imitation process that the overlapping
area image generated by the echo intensity of adjacent strips is not relatively clear in complex waters.
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The phenomenon of clear underwater topography and small noise interference exists in the right strip,
but the image information of left strip is the opposite.Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 18 
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Data 3 is the sonar images with a high overlap rate, which is collected from the port area of
Rhode Island, USA, in 2011. Two sonar images are processed by seabed tracking, time variable gain,
image de-noising, and image registration to obtain the large-scale overlapping areas. Stacking the
overlapped area image together reflects the information differences between two images (Figure 6).
Partially enlarged areas of Figure 6 indicate that underwater protective embankment and the position
of underwater target reef have basically overlapped after strict registration. In addition, image color
values display that the amount of information is different with the overlapped area of adjacent strips,
and local area information is missing. Moreover, the emphasis of the measured underwater target is
different and the terrain relief texture details are diverse in the local area.
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3.2. Comparison of Fusion Criteria

NSCT transform is adopted to decompose the images into low and high frequency sub-band
images, and the information extraction influence of different fusion criteria is analyzed. Among them,
the shared parameters of the PCNN or IDPCNN model are set as follows: max iteration Kn is 200, link
input attenuation constant αL =1, link input amplification factor VL = 1, threshold attenuation constant
αθ = 0.2, threshold amplification factor Vθ = 20, and non-linear combination coefficient ratio between
link input and external excitation CR = 1. The specific design schemes are as follows.

3.2.1. Low Frequency Fusion

The low frequency sub-band image inherits a large amount of energy information from the source
image, so Data 1 is applied to analyze the influence of different fusion criteria on information extraction.
Selection criteria include the following: (1) Mean; (2) Local_STD; (3) PCNN; (4) SML; (5) EOL Filtering;
(6) SMLF. The parameter descriptions of low frequency fusion criteria are shown in Table 2, and the
experimental results are shown in Figure 7.

Table 2. Parameter description of low frequency fusion criteria. NSML, novel sum-modified Laplacian;
SMLF, SML energy filtering; PCNN, pulse coupled neural network; EOL, energy of Laplacian;
RLV, relating sum-modified Laplacian energy with visual contrast value; GF, guided filter; CV,
consistency verification.

Criterion Parameter Description

Mean Average process
Local_STD Maximum value of local standard deviation

PCNN Tij: soft limiting function. βij: average gradient. Sij: NSML
SML Maximum of SML value

EOL Filtering Guidance map: EOL. Edge detection: GF. Source consistency: CV.
SMLF Guidance map: RLV. Edge detection: GF. Source consistency: CV.
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Figure 7a illustrates that the low frequency sub-band image processed by the Mean criterion is
relatively blurred. The criterion of Mean smoothens the whole low frequency image and is not able
to reflect the streamline profile of the aircraft wreck. Although the sub-band images (Figure 7b–d)
maintain the advantages of high contrast and clear brightness, there is a pseudo-contour effect of
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block flow around the edges of the aircraft wreckage, especially, the sub-band image processed by
the criterion of Local_STD leaves the most, followed by the result of the PCNN criterion. This is the
reason that PCNN model is not adopted to select the sub-band coefficients of low frequency in the
early processing of subsequent experiments, so as to avoid the interference of the analysis. Figure 7e
shows that the fused image processed by the criterion of EOL filtering possesses distinct brightness on
the whole aircraft (nose, wings, tail), but insufficient brightness exists in the shadow of the aircraft
wreckage. This fusion criterion results in a reduced visual contrast of low frequency sub-band image.
Figure 7f displays that the low frequency sub-band image processed by the SMLF energy criterion has
a clear contour, relatively high contrast; the brightness is roughly the same as the source image; and no
false fusion pseudo-contour effect is generated. In general, the visual effect of the sub-band image
processed by the proposed low frequency fusion criterion is superior to other fusion strategies.

3.2.2. High Frequency Fusion

The high frequency sub-band image contains the detailed feature information from the source
image, such as target contour and terrain texture. On the basis of the optimal low frequency fusion
criterion of SMLF energy, experiments are conducted with Data 1 and 2, and the performance of
high frequency fusion criteria is evaluated by the fused image and difference image (Figures 8
and 9). The fusion criteria include the following: (1) Energy_Max; (2) Direction contrast maximum
(Dire_Contrast_Max); (3) PCNN (NSML); (4) IDPCNN (MSF) [25]; (5) IDPCNN (NSML). Among the
PCNN and IDPCNN model, ignition time and link strength are represented by the soft limiting function
and AG value, respectively, which are the optimal choice directly. It mainly discusses the influence of
external excitation value on these models, which are represented by MSF and NSML, respectively.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 18 

Figure 7a illustrates that the low frequency sub-band image processed by the Mean criterion is 

relatively blurred. The criterion of Mean smoothens the whole low frequency image and is not able 

to reflect the streamline profile of the aircraft wreck. Although the sub-band images (Figure 7b–d) 

maintain the advantages of high contrast and clear brightness, there is a pseudo-contour effect of 

block flow around the edges of the aircraft wreckage, especially, the sub-band image processed by 

the criterion of Local_STD leaves the most, followed by the result of the PCNN criterion. This is the 

reason that PCNN model is not adopted to select the sub-band coefficients of low frequency in the 

early processing of subsequent experiments, so as to avoid the interference of the analysis. Figure 7e 

shows that the fused image processed by the criterion of EOL filtering possesses distinct brightness 

on the whole aircraft (nose, wings, tail), but insufficient brightness exists in the shadow of the 

aircraft wreckage. This fusion criterion results in a reduced visual contrast of low frequency 

sub-band image. Figure 7f displays that the low frequency sub-band image processed by the SMLF 

energy criterion has a clear contour, relatively high contrast; the brightness is roughly the same as 

the source image; and no false fusion pseudo-contour effect is generated. In general, the visual effect 

of the sub-band image processed by the proposed low frequency fusion criterion is superior to other 

fusion strategies. 

3.2.2. High Frequency Fusion 

The high frequency sub-band image contains the detailed feature information from the source 

image, such as target contour and terrain texture. On the basis of the optimal low frequency fusion 

criterion of SMLF energy, experiments are conducted with Data 1 and 2, and the performance of 

high frequency fusion criteria is evaluated by the fused image and difference image (Figures 8 and 

9). The fusion criteria include the following: (1) Energy_Max; (2) Direction contrast maximum 

(Dire_Contrast_Max); (3) PCNN (NSML); (4) IDPCNN (MSF) [25]; (5) IDPCNN (NSML). Among the 

PCNN and IDPCNN model, ignition time and link strength are represented by the soft limiting 

function and AG value, respectively, which are the optimal choice directly. It mainly discusses the 

influence of external excitation value on these models, which are represented by MSF and NSML, 

respectively.  

   

 

(a) (b) 

    
(c) (d) 

Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 18 

 

  

 

 (e)  

Figure 8. Fused image (left) and difference image (right) of Data 1. (a) Energy_Max. (b) 

Dire_Contrast_Max. (c) PCNN (NSML). (d) Improved DPCNN (IDPCNN) (modified spatial 

frequency (MSF)). (e) IDPCNN (NSML). 

Figure 8b shows that the contrast of fused image is reduced and the feature of detail changes is 

smoothed, while other fused images are basically consistent with the source image, with good 

subjective visual effects. In addition, the difference image of Figure 8b displays that the remaining 

information leaves a lot on the left side, and the information extraction of the aircraft contour edge is 

not sufficient, which indirectly indicates that the Dire_Contrast_Max criterion is not applicable to 

sonar image fusion. The difference image of Figure 8a shows that there still exists an insufficient 

partial integration. The remaining information of Figure 8c–e is almost 0, which corresponds to the 

clear left area and blurred right area of source image. Better visual effects illustrate that the high 

frequency fusion model of the PCNN family (criterion 3, 4, 5) can fully extract the source image 

favorable information, which is more suitable for sonar image fusion. 

Figure 9b shows that the information extraction of texture and features is not sufficient, but 

other fused images have good visual effects. In addition, the difference images display that the 

residual error in Figure 9b is the greatest, followed by the fusion criterion of Energy_Max, which 

fully reflects the poor ability of the two criteria in processing strip fusion. On the contrary, the 

residual errors on the left side of Figure 9c, d are almost 0. The terrain and geomorphology texture of 

the fused image are clear, and the peripheral contour of the petroleum pipeline has no false contour 

phenomenon, which basically inherits the detail information features from the source image. 

  
(a) (b) 

Figure 8. Fused image (left) and difference image (right) of Data 1. (a) Energy_Max.
(b) Dire_Contrast_Max. (c) PCNN (NSML). (d) Improved DPCNN (IDPCNN) (modified spatial
frequency (MSF)). (e) IDPCNN (NSML).



Appl. Sci. 2020, 10, 1028 12 of 18

Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 18 

 

  

 

 (e)  

Figure 8. Fused image (left) and difference image (right) of Data 1. (a) Energy_Max. (b) 

Dire_Contrast_Max. (c) PCNN (NSML). (d) Improved DPCNN (IDPCNN) (modified spatial 

frequency (MSF)). (e) IDPCNN (NSML). 

Figure 8b shows that the contrast of fused image is reduced and the feature of detail changes is 

smoothed, while other fused images are basically consistent with the source image, with good 

subjective visual effects. In addition, the difference image of Figure 8b displays that the remaining 

information leaves a lot on the left side, and the information extraction of the aircraft contour edge is 

not sufficient, which indirectly indicates that the Dire_Contrast_Max criterion is not applicable to 

sonar image fusion. The difference image of Figure 8a shows that there still exists an insufficient 

partial integration. The remaining information of Figure 8c–e is almost 0, which corresponds to the 

clear left area and blurred right area of source image. Better visual effects illustrate that the high 

frequency fusion model of the PCNN family (criterion 3, 4, 5) can fully extract the source image 

favorable information, which is more suitable for sonar image fusion. 

Figure 9b shows that the information extraction of texture and features is not sufficient, but 

other fused images have good visual effects. In addition, the difference images display that the 

residual error in Figure 9b is the greatest, followed by the fusion criterion of Energy_Max, which 

fully reflects the poor ability of the two criteria in processing strip fusion. On the contrary, the 

residual errors on the left side of Figure 9c, d are almost 0. The terrain and geomorphology texture of 

the fused image are clear, and the peripheral contour of the petroleum pipeline has no false contour 

phenomenon, which basically inherits the detail information features from the source image. 

  
(a) (b) Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 18 

  
(c) (d) 

Figure 9. Fused image (top) and difference image (bottom) of Data 2. (a) Energy_Max. (b) Dire 

_Contrast_Max. (c) IPCNN (MSF). (d) IDPCNN (NSML). 

From the perspective of subjective vision, the fused images of criteria 3, 4, and 5 meet the 

requirements of high information retention. In order to further evaluate the performance of the 

criterion, some objective indexes are analyzed quantitatively, as shown in Tables 3 and 4. 

Table 3. Objective evaluation indexes of the fused aircraft debris image (Data 1). 

Criterion Energy_Max Dire_Contrast_Max 
PCNN 

(NSML) 

IDPCNN 

(MSF) 

IDPCNN 

(NSML) 

AG 6.6622 3.9657 6.7027 6.7025 6.7031 

E 6.9263 6.8291 6.9261 6.9261 6.9263 

RCE 0.0895 0.0527 0.0825 0.0822 0.0822 

FD 9.5084 5.3125 9.5364 9.5366 9.5373 

QAB/F 0.6362 0.4134 0.6414 0.6417 0.6417 

IFQI 1 0.7732 0.3769 0.7834 0.7826 0.7834 

WFQI 2 0.9092 0.5074 0.9242 0.9247 0.9247 

EFQI 3 0.4545 0.3793 0.4756 0.4793 0.4813 
1 IFQI denotes as the overall similarity with source image. 2 WFQI denotes as local regional 

significance. 3 EFQI is described as edge image similarity. MSF, modified spatial frequency. The 

parameter settings of following categories are similar, and they are not repeated for comment.  

Table 4. Objective evaluation indexes of the rich terrain fused image (Data 2). 

Criterion 
Energy_M

ax 

Dire_Contrast_

Max 

PCNN 

(NSML) 

IDPCNN 

(MSF) 

IDPCNN 

(NSML) 

AG 9.7983 5.6267 9.8573 9.8565 9.8580 

E 7.0776 6.9663 7.0835 7.0835 7.0836 

RCE 0.0409 0.0429 0.0438 0.0441 0.0439 

FD 13.3184 7.3078 13.3596 13.3582 13.3608 

QAB/F 0.6783 0.4031 0.6814 0.6817 0.6818 

IFQI 0.7361 0.3585 0.7470 0.7474 0.7474 

WFQI 0.8894 0.4604 0.9003 0.9003 0.9004 

EFQI 0.0409 0.0429 0.0438 0.0441 0.0439 

Tables 3 and 4 show that each index value based on the criterion of Dire_Contrast_Max is the 

smallest. For example, the index values of AG, FD, and QAB/F are only 3.9657, 5.3125, and 0.4134 in 

Data 1, which indicates that the fused image deviates greatly from the source image and exhibits the 

phenomenon of distortion. The index value of maximum energy is not as good as that of the PCNN 

family. The quality of the fused image can be improved by using the PCNN family model to select 

Figure 9. Fused image (top) and difference image (bottom) of Data 2. (a) Energy_Max. (b) Dire
_Contrast_Max. (c) IPCNN (MSF). (d) IDPCNN (NSML).

Figure 8b shows that the contrast of fused image is reduced and the feature of detail changes
is smoothed, while other fused images are basically consistent with the source image, with good
subjective visual effects. In addition, the difference image of Figure 8b displays that the remaining
information leaves a lot on the left side, and the information extraction of the aircraft contour edge
is not sufficient, which indirectly indicates that the Dire_Contrast_Max criterion is not applicable to
sonar image fusion. The difference image of Figure 8a shows that there still exists an insufficient partial
integration. The remaining information of Figure 8c–e is almost 0, which corresponds to the clear left
area and blurred right area of source image. Better visual effects illustrate that the high frequency fusion
model of the PCNN family (criterion 3, 4, 5) can fully extract the source image favorable information,
which is more suitable for sonar image fusion.

Figure 9b shows that the information extraction of texture and features is not sufficient, but other
fused images have good visual effects. In addition, the difference images display that the residual error
in Figure 9b is the greatest, followed by the fusion criterion of Energy_Max, which fully reflects the
poor ability of the two criteria in processing strip fusion. On the contrary, the residual errors on the
left side of Figure 9c, d are almost 0. The terrain and geomorphology texture of the fused image are
clear, and the peripheral contour of the petroleum pipeline has no false contour phenomenon, which
basically inherits the detail information features from the source image.
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From the perspective of subjective vision, the fused images of criteria 3, 4, and 5 meet the
requirements of high information retention. In order to further evaluate the performance of the
criterion, some objective indexes are analyzed quantitatively, as shown in Tables 3 and 4.

Table 3. Objective evaluation indexes of the fused aircraft debris image (Data 1).

Criterion Energy_Max Dire_Contrast_Max PCNN
(NSML)

IDPCNN
(MSF)

IDPCNN
(NSML)

AG 6.6622 3.9657 6.7027 6.7025 6.7031
E 6.9263 6.8291 6.9261 6.9261 6.9263

RCE 0.0895 0.0527 0.0825 0.0822 0.0822
FD 9.5084 5.3125 9.5364 9.5366 9.5373

QAB/F 0.6362 0.4134 0.6414 0.6417 0.6417
IFQI 1 0.7732 0.3769 0.7834 0.7826 0.7834

WFQI 2 0.9092 0.5074 0.9242 0.9247 0.9247
EFQI 3 0.4545 0.3793 0.4756 0.4793 0.4813

1 IFQI denotes as the overall similarity with source image. 2 WFQI denotes as local regional significance. 3 EFQI is
described as edge image similarity. MSF, modified spatial frequency. The parameter settings of following categories
are similar, and they are not repeated for comment.

Table 4. Objective evaluation indexes of the rich terrain fused image (Data 2).

Criterion Energy_Max Dire_Contrast_Max PCNN
(NSML)

IDPCNN
(MSF)

IDPCNN
(NSML)

AG 9.7983 5.6267 9.8573 9.8565 9.8580
E 7.0776 6.9663 7.0835 7.0835 7.0836

RCE 0.0409 0.0429 0.0438 0.0441 0.0439
FD 13.3184 7.3078 13.3596 13.3582 13.3608

QAB/F 0.6783 0.4031 0.6814 0.6817 0.6818
IFQI 0.7361 0.3585 0.7470 0.7474 0.7474

WFQI 0.8894 0.4604 0.9003 0.9003 0.9004
EFQI 0.0409 0.0429 0.0438 0.0441 0.0439

Tables 3 and 4 show that each index value based on the criterion of Dire_Contrast_Max is the
smallest. For example, the index values of AG, FD, and QAB/F are only 3.9657, 5.3125, and 0.4134 in
Data 1, which indicates that the fused image deviates greatly from the source image and exhibits the
phenomenon of distortion. The index value of maximum energy is not as good as that of the PCNN
family. The quality of the fused image can be improved by using the PCNN family model to select the
coefficients. Moreover, compared with the traditional PCNN model, the index values of the IDPCNN
series are relatively larger. This is because the IDPCNN model combines the input of information
from both source images, which reduces the ability of misjudging the information source. Compared
with the IDPCNN model with the MSF parameter, most indicator values of the IDPCNN model with
the NSML value are larger, which demonstrates that the IDPCNN model with the NSML value can
better reflect the energy information of the sonar image, and conform to its own characteristics of the
source image.

3.2.3. Combination of Low and High Frequency Fusion Criteria

In order to verify the combined performance of the superior low and high frequency fusion criteria
mentioned above, experiments are performed using measured Data 3. The combined fusion criteria
are shown in Table 5. The fused image (Figure 10) is highlighted by L1–L6 areas, and the characteristics
of each region are used to analyze the performance of the combined fusion criteria. In addition, some
objective indexes are applied to evaluate the algorithm’s ability, as shown in Table 6.
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Table 5. Combination method of low and high frequency fusion criteria.

Fusion Technique Low Frequency High Frequency

Technique 1 IDPCNN (NSML) IDPCNN (NSML)
Technique 2 EOL Filtering IDPCNN (MSF)
Technique 3 EOL Filtering IDPCNN (NSML)
Technique 4 SMLF IDPCNN (MSF)

Proposed Technique 5 SMLF IDPCNN (NSML)
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Table 6. Objective evaluation indexes of fused underwater port image.

Indexes Technique 1 Technique 2 Technique 3 Technique 4 Proposed Technique 5

AG 1.3041 1.3036 1.3045 1.2342 1.3042
E 3.9577 3.9626 4.0599 3.9346 4.0776

FD 1.4626 1.4614 1.4667 1.3894 1.4708
RCE 0.0641 0.0641 0.0730 0.1097 0.1290
MI 1.5594 1.5631 1.6243 1.5281 1.6661

QAB/F 0.4272 0.4259 0.4285 0.3922 0.4302
SSIM 0.8409 0.8390 0.8397 0.8313 0.8624
IFQI 0.1967 0.2001 0.2007 0.1606 0.2027

WFQI 0.6059 0.6100 0.6269 0.4535 0.5781
EFQI 0.2765 0.2760 0.2790 0.2649 0.2862

Compared with each area in Figure 10, different features and information are displayed
comprehensively. In the image edge area L1 and the terrain fluctuation area L4, the phenomenon of
incomplete fusion and discontinuous shadows are generated by the processing of combined technique
1, 2, and 3, and the combined technique 4 is unable to availably extract the information and topographic
relief change characteristics of this area. For the L2 and L3 areas with incomplete detection information,
the combined technique 4 and 5 fully absorb the complementary information of the two strips, showing
a clear overview of the slope and boundary characteristics. In addition, the combined technique 1, 2,
and 3 have no capacity for weakening the interference effect of residual error in the L5 area, and the
fused image still retains the error traces after the subsea tracking processing. As for the edge contour
area L6, the combined technique 5 proposed in this paper can effectively fuse the missing information
of adjacent strips in the overlapping area, and the shadow trace of fused discontinuous discrimination
is not produced.

Table 6 shows that many objective indexes of the proposed technique 5 are close to or better than
other methods, for example, the indexes of AG, FD, RCE, and IFQI are 1.3042, 1.4708, 0.1290, and
0.2027, respectively, which demonstrate that the proposed method can better integrate the overlapping
area information of adjacent strips. The larger value of AG and FD reflects the contour of reef, subtle
features of geographic texture, and clarity of the fused image. Moreover, the image edge index QAB/F

and EFQI reflect that the edge details of the fused image generated by the proposed method carry
more information. Furthermore, the greater similarity indexes (MI, SSIM) demonstrate that the fused
image processed by the proposed method fully combines the respective feature information of the
multi-source image. Therefore, the evaluation results of multiple indexes objectively demonstrate
that the proposed fusion criteria of SMLF energy and IDPCNN (NSML) is more suitable for the sonar
image fusion processing of adjacent strips.

4. Conclusions

This paper details a method combining SMLF energy and the IDPCNN model for side-scan sonar
image fusion in the NSCT domain. Compared with the common fusion criteria, such as mean, STD,
SML, and PCNN, the optimal selection of low frequency fusion criteria is analyzed using the aircraft
debris data. The experimental results demonstrate that SMLF energy can effectively eliminate the
pseudo-contour effect of block flow from the target edge. In addition, in order to analyze the high
frequency fusion criteria more comprehensively, experiments are carried out with aircraft debris and
rich geomorphic data, and maximum energy, local directional contrast, and PCNN are utilized. It is
revealed that the IDPCNN model can extract more detailed feature information from the source image
and reduce the ability of misjudgment. Finally, the superiority of combined fusion criterion in the NSCT
domain is demonstrated by using the measured sonar data of the port. Multiple areas display that the
overall and detailed information processed by the proposed method were effectively integrated, which
reflect the complete target contour and rich features of seabed topography fluctuation. In addition, the
fused image clearly shows the stitching conversion line left by the image registration. In the future, in
order to ensure the image brightness on both sides is the same, the image fusion of eliminating the
stitching conversion line is the next topic to be further studied.
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