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Abstract: Air, an essential natural resource, has been compromised in terms of quality by economic
activities. Considerable research has been devoted to predicting instances of poor air quality, but most
studies are limited by insufficient longitudinal data, making it difficult to account for seasonal and other
factors. Several prediction models have been developed using an 11-year dataset collected by Taiwan’s
Environmental Protection Administration (EPA). Machine learning methods, including adaptive
boosting (AdaBoost), artificial neural network (ANN), random forest, stacking ensemble, and support
vector machine (SVM), produce promising results for air quality index (AQI) level predictions. A series
of experiments, using datasets for three different regions to obtain the best prediction performance
from the stacking ensemble, AdaBoost, and random forest, found the stacking ensemble delivers
consistently superior performance for R2 and RMSE, while AdaBoost provides best results for MAE.
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1. Introduction

Worldwide, air pollution is responsible for around 1.3 million deaths annually according to the
World Health Organization (WHO) [1]. The depletion of air quality is just one of harmful effects due to
pollutants released into the air. Other detrimental consequences, such as acid rain, global warming,
aerosol formation, and photochemical smog, have also increased over the last several decades [2].
The recent rapid spread of COVID-19 has prompted many researchers to investigate underlying
pollution-related conditions contributing to COVID-19 pandemics in countries. Several shreds of
evidence have shown that air pollution is linked to significantly higher COVID-19 death rates,
and patterns in COVID-19 death rates mimic patterns in both high population density and high PM2.5

exposure areas [3]. All the above mentioned raises an urgent need to anticipate and plan for pollution
fluctuations to help communities and individuals better mitigate the negative impact of air pollution.
To do so, air quality evaluation plays a significant role in monitoring and controlling air pollution.

The Environmental Protection Agency (EPA) tracks the commonly known criteria pollutants, i.e.,
ground-level ozone (O3), Sulphur dioxide (SO2), particulates matter (PM10 and PM2.5), carbon monoxide
(CO), carbon dioxide (CO2), and nitrogen dioxide (NO2). These substances are in compositions of
a common index, called the Air Quality Index (AQI), indicating how clean or polluted the air is
currently or forecasted to become in areas. As the AQI increases, a higher percentage of the population
is exposed. Different countries have their air quality indices, corresponding to different air quality
standards. In the United States, the US Environmental Protection Agency monitors six pollutants at
more than 4000 sites: O3, PM10, PM2.5, NO2, SO2, and lead. Rybarczyk and Zalakeviciute [4] reviewed
a selection of the 46 most relevant journal papers and found more studies with O3, NO2, PM10 and
PM2.5, and less on an overall AQI.
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Recent researches focus more on advanced statistical learning algorithms for air quality evaluation
and air pollution prediction. Raimondo et al. [5], Garcia et al. [6], and Park et al. [7] have used neural
networks to build models for predicting the prevalence of individual pollutants, e.g., particulates matter
measuring less than 10 microns (PM10). Raimondo et al. [5] used a support vector machine (SVM)
and artificial neural network (ANN) to train models. Their best ANN model attained almost 79% for
specificity with only a 0.82% false-positive rate, while their best SVM model at a specificity of 80%
with a false positive rate of only 0.13%. Yu et al. [8] proposed a random forest approach, named RAQ,
for AQI category prediction. Then, Yi et al. [9] applied deep neural networks for AQI category
prediction. Veljanovska and Dimoski [10] applied different settings to outperform k-nearest neighbor
(k-NN), decision tree, and SVM for predicting AQI levels. Their ANN model achieved an accuracy of
92.3%, outperforming all other tested algorithms.

The work presented in this paper focuses on the development of AQI prediction models for acute
air pollution events 1, 8, and 24 h in advance. The following machine learning (ML) algorithms are
investigated, i.e., random forest, adaptive boosting (AdaBoost), support vector machine, artificial neural
network, and stacking ensemble methods to train models. As well, this research observes how prediction
performance decays over longer time frames, and the precision is measured with three commonly
used scale-dependent error indexes: mean absolute error (MAE), root mean squared error (RMSE),
and R-squared (R2).

2. Machine Learning Prediction Methods

Machine learning involves computational methods which learn from complex data to build
various models for prediction, classification, and evaluation. The study attempts to build forecasting
models capable of efficient pattern recognition and self-learning. In this section, the underlying
principle of five machine learning methods as the canonical procedure will be discussed respectively.

2.1. Support Vector Machine

Support vector machine, a supervised learning method for classification, regression, and outlier
detection, constructs the hyperplane that acts as a boundary between distinct data points and thus
the output can be deduced hereafter [11]. Two distinctive versions of SVM are shown in Figure 1.
For classification problem in Figure 1a, data points that lie at the edge of an area closest to the
hyperplanes are considered as support vectors. The space between these two regions is the margin
between the classes. Hyperplanes will determine the number of classes incurred in the dataset and
the output of unseen data will be predicted according to which class holds the most similarity with
the new data. As for regression problem in Figure 1b, an approximation of such hyperplane to a
non-linear function is constructed at the maximal margin with linear regression. Hence, the additional
parameter, known as the ε-insensitive loss is introduced to tolerate some deviations that lie inside the ε
region tube [12].

Figure 1. Overview of SVM algorithm: (a) SVM for classification; (b) SVM for regression.
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The boundary lines (dashed lines) across the hyperplane (solid line) in SVR (stands for support
vector regression) are defined with regards to parameter ε, in which the resulting lines are the shifted
function in the amount of –ε and +ε from the hyperplane (assume it is a straight line with an equation
of <w, xi > +b). The SVR uses a penalty concept introduced by parameter C (cost factor) for output
variables outside the boundaries either above (ξi) or below (ξ∗i ). Nevertheless, data points inside
the boundaries will be exempted. Since support vectors represent the data points located near these
boundary lines (see Figure 1b), if the ε moves further from the hyperplane, the number of support
vectors decreases; otherwise, the number of support vectors increases as the ε approximates towards
the hyperplane. Finally, since most realistic problems aren’t linear, the kernel trick is commonly
performed by mapping training data onto the high-dimensional feature space. Kernel functions, e.g.,
linear, polynomial, radial basis function (RBF), sigmoid, hyperbolic tangent, etc., are used to convert
the once inseparable input data into the separable ones.

The parameter ε has brought a couple of advantages, yet is sometimes difficult to tune. Hence,
scholars from Australian National University proposed the substitution of parameter ε into parameter
ν (hereinafter referred to as ν-SVM) to avoid such a tedious parameter tuning process for regression [13].
Moreover, parameter ν is also applicable for classification, where it becomes the replacement for cost
factor C [14]. Values of parameter v with the upper bound of training margin errors and lower bound
for the support vectors are recommended from 0 to 1 so that the ν-SVM can offer a more meaningful
parameter interpretation [15].

2.2. Random Forest

Another prominent machine learning method, random forest, a supervised learning ensemble
algorithm, combines multiple decision trees to form a forest and the bagging concept, that latter adds
the randomness into the model building. The random selection of features is used to split the individual
tree while the random selection of instances is used to create training data subset for each decision tree.
At each decision node in every tree, the variable from the random number of features is considered for
the best split. If the target attribute is categorical, random forests will choose the most frequent as its
prediction. On the other hand, if it’s numerical, the average of all predictions will be chosen.

Similar to SVM, the random forest can tackle both classification and regression case. For prediction,
each test data point is passed through every decision tree in the forest. The trees then vote on an
outcome and the prediction is produced from a majority vote among the models and henceforth
resulting in a stronger and more robust single learner. Random forests can overcome the prediction
variance that each decision tree has, in the way that the prediction average will approximate the ground
truth (classification) or true value (regression). Figure 2 shows the illustration of a random forest that
consists of m number of trees.

2.3. Adaptive Boosting

The next method, Adaptive Boosting, also came from a branch of ensemble methods where
combine several weak learners yet with the sequential arrangement instead of a parallel setting as
what random forest does. Boosting trains the base models in sequence one by one and assigns weights
to the classifiers based on their accuracy to predict a random set of input instances. By such means,
the more accurate classifiers will have more contribution in the final answer. The weights are also
attributed to each input item depending on how difficult the instance to be predicted as on average
by all classifiers. The higher the weight, the harder it is to estimate the ground truth for the instance
and therefore this item will have a higher chance to appear as the training subset in the succeeding
iteration. In other words, the boosting process concentrates on the training data that are hard to
classify and over-represents them in the training set for the next iteration. The loop will start to be
more substantial, as the focus is gathered to solve the difficult-to-predict instances using the stronger
classifiers. Classifiers are the base algorithms utilized to perform the prediction, where the common
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one used in AdaBoost is a decision tree. It also can be constructed from different types of algorithms,
e.g., mix of a decision tree, logistic regression, and naïve Bayes (for classification).

Figure 2. Illustration of a random forest algorithm.

2.4. Artificial Neural Network

The next approach preferred in this study is the artificial neural network. Being the earliest
algorithm invented among all, ANN is not only seen as the “universal approximator” which can
estimate any arbitrary function well [16], but also as the initiator of the most recent progress in the
artificial intelligence field as of now, called as deep learning or deep neural network. The neural
network simulates the structure and networks of the human brain in the process of information
learning. For a human, new things are learned by training the biological neurons in the brain using
some examples, where the knowledge extracted will later be stored in the memory. In an ANN,
a considerable amount of input data is fed into the artificial neurons where all neurons are trained
and the network is adjusted to get a better response, or more specifically output, e.g., in a prediction,
or a recognition task. The adjustment of the network is performed by updating the weight (wi,1, wi,2,
wi,3, . . . , wi,r) that each neuron has and biases which are the adder for each summation procedure
(see Figure 3). The complexity of the network itself is determined by the number of hidden layers.
Furthermore, the net output, denoted by ai, will be transformed non-linearly by the activation function
( f ) to form an output yi that will be forwarded to the next hidden layer. There are numerous types of
activation function that are employed to bring the non-linearity property to the input signal as to adapt
with a variety of instances and hence results to the highly adaptable network. These are including
sigmoid, ReLU, leaky ReLU, hyperbolic tangent (tanh) function, and so on.

2.5. Linear Regression

Linear regression is probably the method where most of the academicians started their first
machine learning experience. Its main working principle lies behind the fitting of one or more
independent variables with the dependent variable into a line in n dimensions. n usually denotes the
number of variables within a dataset. This line is supposedly created as it would be minimizing the
total errors when trying to fit all the instances into the line. Under machine learning, linear regression
is equipped with the capability to learn continuously by optimizing the parameters in the model.
These parameters are including w0, w1, w2, . . . , wm (as illustrated in Figure 4). Most commonly,
optimization is carried out by a method called gradient descent. It works by partially deriving the loss
function and all parameters will be updated by subtracting the previous value with the derivative
times a specified learning rate. The learning rate can be tuned by the simplest way, which is rule of
thumb (trial and error), or a more sophisticated rule, e.g., meta-heuristic. Another parameter that
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is left for tuning is the amount of generalization added to the model. Regularization is undergone
as an effort to lessen the chance of overfitting and increase the robustness of the model. Two types
of regularization used in linear regression are lasso and ridge regression. Lasso regularization will
eliminate less important feature by letting the feature’s coefficient to zero, and retain another more
important one. Ridge regularization on the other hand will not try to eliminate a feature, but instead,
tries to shrink the magnitude of coefficients to get a lower variance in the model.

Figure 3. Illustration of artificial neural network.

Figure 4. Demonstration of linear regression’s learning process.

2.6. Stacking Ensemble

Though coming from the same branch, stacking is quite different from the random forest and
boosting strategy in AdaBoost in several ways. In bagging, variance in the final ensemble model is
reduced by the random selection of a subset of features as well as instances for each predictor to execute
the parallel and independent learning. The outcomes are then aggregated by the averaging method to
generate an ensemble prediction. Boosting, on the other hand, will pass the dataset through all the
learners which are set sequentially. Each instance and learner are given the attribute, the so-called
weight, that is going to be updated on each pass (instance) and each iteration (learner). The weighting
procedure results in the uneven contribution of each learner to the final prediction, and uneven
prioritization to each instance for the training process - which substitutes the output averaging process
mechanism and randomization for training subset in the bagging concept.
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For stacking, each base predictor takes the whole dataset without any differentiation on the input
and works in the canonical way to produce the result. The special property of this method lies in the
aggregation mechanism. After the learning, the outputs from the predictors then become the inputs for
the aggregator algorithm to produce the final prediction. The training set in the first learning process
occupied by the base predictors is different with the one utilized by the aggregator algorithm because
the dataset fed into the predictors has been transformed into the models which are later combined
to form the new features. Fitting the aggregator algorithm onto the same instances causes a bias
since the inputs are created from these instances. However, splitting two types of datasets raises
another problem for a limited amount of data. To overcome this, the common k-folds cross-validation
approach is usually adopted to provide more data for training both predictors and aggregators thereby
facilitate a more accurate performance measure [17]. In practice, stacking usually considers multiple
types of learners to build the prediction, while bagging and boosting are more common to have only
homogenous learners. Besides the algorithms used, the design of stacking ensemble can also be
altered by the stacking level. If the number of levels is more than 2, the layer in the middle will be
filled with multiple aggregators. However, since increasing the number of levels will cost on the time
computation, this parameter usually remains in default (i.e., level size = 2).

3. Implementation Methodology

The methodology in this study consists of the following procedures: data collection and
preprocessing, feature selection, time windowing, and model building. All the machine learning
models exploited in this study will be constructed on the open-source data mining platform, Orange,
a software programmed under the python script. In this section, the details of procedures will be
discussed respectively.

3.1. Data Collection

The main pollutant emissions in Taiwan are due to energy production industry, traffic,
waste incineration and agriculture. In Taiwan, six pollutants (O3, PM2.5, PM10, CO, SO2, and NO2)
are monitored and controlled based on their concentration time-series. Types of data used as predictors
to perform analysis involve AQ: air quality data, MET: meteorological data, and TIME: the day of
the month, day of the week, and the hour of the day. From 1 January 2008 to 31 December 2018,
air quality data are collected from several monitoring stations across Taiwan and reported via the
EPA’s website [18]. With the same timeframe, meteorological data are provided in 1-h intervals by
Taiwan’s Central Weather Bureau (CWB) from three air monitoring stations: Zhongli (Northern Taiwan),
Chuanghua (Central Taiwan), and Fengshan (Southern Taiwan). The datasets represent different
environmental conditions related to air pollutant concentration.

3.2. Data Pre-Processing

The number of raw data points for the Zhongli, Changhua, and Fengshan monitoring stations
includes 91,672, 94,453, and 94,145, respectively. The analysis of these readings begins with a crucial
phase – data preprocessing. Various preprocessing operations precede the learning phase. At any
particular time, one invalid variable will not affect the whole data group, and thus it will just be either
marked blank or, where available, replaced by a value sourced from the CWB, without eliminating the
full row. The missing values are treated by imputation to recover the corresponding values. Given the
lack of spatial proximity of the readings to the original monitoring stations, the missing values are
imputed for relative humidity, temperature, and rainfall, without using wind speed or wind direction.
The next imputation process used the k-NN algorithm to substitute the rest of the invalid or missing
data that did not qualify for the previous imputation process. Note that the percentage of missing
values is lower than 1.3% in all three-station datasets.

Then, input and target data are normalized to eliminate potential biases; thus, variable significance
won’t be affected by their ranges or their units. All raw data values are normalized to the range of [0, 1].
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Inputs with a higher scale than others will tend to dominate the measurement and are consequently
given greater priority. Normalization not only improves the model learning rate, but also supports
k-NN algorithm performance because the imputation is decided by the distance measure.

3.3. Feature Engineering

In regard to selecting features in the predictive models, the hourly AQI readings with the
highest index out of 6 pollutants: O3, PM2.5, PM10, CO, SO2, and NO2 are selected. To convert the
time-window-specific concentration of 6 pollutants, the AQI Taiwan Guidelines [18] are adopted and
the AQI is manually calculated using the following Equations (1) and (2), where index values of O3,
PM2.5, and PM10 are needed to define AQI in Taiwan, and the lack of one or more of these values will
significantly reduce the accurate assessment of current air quality.

AQI =

max{IO3, IPM2.5, IPM10, ICO, ISO2, INO2},IO3, IPM2.5, IPM10 , ∅

∅,otherwise
(1)

Pollutant concentration (valuei) is converted to pollutant index (Ii) by the following formula:

Ii = LB j +
valuei − lbi

ubi − lbi
×

(
UB j − LB j

)
(2)

where i = O3, PM2.5, PM10, CO, SO2, NO2; j denotes which level in AQI system occupied by the
concentration of the specific pollutant using categories of good, moderate, unhealthy which includes
specific groups, unhealthy, very unhealthy, and hazardous. The data transformation defines the
time-window-specific concentration to calculate Ii values. For example, based on the AQI from Taiwan’s
EPA website [18], the concentration valueO3 = 0.06 ppm will fall in the interval with lbO3 = 0.055 ppm
and ubO3 = 0.070 ppm corresponding to the “moderate” pollutant level with LBmoderate = 51 and
UBmoderate= 100. The valueO3 is defined by matching either of two conditions: if the 8-h average
concentration is more precautionary for a specific site and is also below 0.2 ppm, then this value is
used; otherwise, the 1-h average concentration will be considered. Both valuePM2.5 and valuePM10 are
the moving average values which consider two time-windows, i.e., the last 12 h and 4 h (see Table 1).
Other variables, such as valueCO and valueNO2 only account for a single time window, i.e., last 8 h and
1 h, respectively. Meanwhile, valueSO2 emphasizes the 24-h average concentration if the 1-h average
concentration exceeds 185 ppb; otherwise, the 1-h average value will be used.

The AQI mechanism introduces several new variables to train the prediction model (Table 1).
For several pollutants, time windows other than hourly are more sensitive in determining AQI;
therefore, the prediction interval related to the accuracy of long-term predictions is under investigation
to clarify the time dependency between consecutive data points. As the AQI calculation is already
established, the future value of the AQI readings in three different time intervals will be regarded as
target variables and are summarized in Table 2.

3.4. Performance Evaluation

According to Isakndaryan et al. [19], the most used metrics are RMSE (root mean squared error)
and MAE (mean average error), calculated based on the difference between the prediction result and the
true value, while another metric, R2 (R-squared) is essential to explain the strength of the relationship
between predictive models and target variables [20]. These three metrics provide a baseline for
comparative analysis across different parameter settings for each model and across different methods.
However, performance validation leads to a bias when the data set is split, trained, and tested only
one time. This also means the result drawn from the testing dataset may no longer be valid after the
testing subset is changed. To overcome this problem, each model is re-built 20 times using different
random subsets of training and testing samples. The splitting proportion remains the same (80:20).



Appl. Sci. 2020, 10, 9151 8 of 17

All metrics report only a single value from the average performance of 20 identical models validated
into 20 different subsets of testing instances.

Table 1. Other features added to the prediction model.

No Feature Type Description

1 O3 8-h Numeric Calculated based on O3 average of last 8 h

2 PM10 moving average Numeric Calculated as follows: (0.5× average of PM10 in the
last 12 h)+(0.5× average of PM10 in the last 4 h)

3 PM2.5 moving average Numeric Calculated using the same rule as the PM10
moving average

4 CO 8-h Numeric The average concentration for the last 8 h

5 AQI index Numeric
AQI value based on the maximum index between

the AQI pollutants (PM10, PM2.5, NO2, SO2,
O3, and CO)

Table 2. Description of target variables.

No. Target Type Description

1 F1-AQI Numeric AQI index for the next 1 h
2 F8-AQI Numeric AQI index for the next 8 h
3 F24-AQI Numeric AQI index for the next 24 h

4. Results and Discussion

This section is organized into three parts. First, a general description of the dataset is provided.
The datasets are mainly based on geographic distribution across Taiwan. The second part discusses
the detailed development of AQI prediction models following their parameter setting and imputation.
The last part evaluates the performance of the AQI forecasting models.

4.1. Data Summary

In the Zhongli dataset, moderate is the most frequent AQI level in any given month (Figure 5a).
Unhealthy occurs more frequently in December through April, indicating that peak pollution usually
occurs in winter and spring. The year-based grouping (Figure 5b) clearly shows a general drop in
pollution levels from 2014 to 2018, with a small uptick in 2016. In general, the moderate class accounts
for 51% cases while good and unhealthy, respectively, account for 28% and 21%.

Figure 5. Composition of AQI classes in Zhongli: (a) Month-based; (b) Year-based and Overall-based.

Similar to the Zhongli AQI pattern, pollution in Changhua peaks in March (Figure 6a). However,
the degree of air pollution is more severe in Changhua, with unhealthy accounting for 59% of March
readings, as opposed to 39% for Zhongli. Like Zhongli, higher AQI levels in Changhua are also
clustered in winter and spring, but September, October, and November also featured significant
instances of the unhealthy class (respectively 35%, 38%, and 41%). In general, Changhua has poorer air



Appl. Sci. 2020, 10, 9151 9 of 17

quality than Zhongli, with more frequent AQI > 100 incidents both monthly and annually. However,
the full-year AQI readings in Figure 6b show that air quality has gradually improved over time, with a
34% drop in instances of unhealthy from 2008 to 2018.

Figure 6. Composition of AQI classes in Changhua: (a) Month-based; (b) Year-based and Overall-based.

Southern Taiwan, especially Kaohsiung City, is notorious for its poor air quality due not only
to emissions from nearby industrial parks but from particulate matter blowing in from China and
Southeast Asia. Figure 7a,b shows significant instances of the unhealthy class (red bars) air quality for
most of the year, with reduced pollution levels only in May to September. The worst air quality is
concentrated in December and January (respectively 78% and 80% unhealthy).

Figure 7. Composition of AQI classes in Fengshan: (a) Month-based; (b) Year-based and Overall-based.

The winter spike in air pollution is partly due to seasonal atmospheric phenomena that trap
air pollution closer to the ground for extended periods. From October to March, Fengshan air
quality readings are good less than 5% of the time. In terms of year-based AQI class composition,
not much improvement is seen until in 2014–2015 with a sharply declined unhealthy scores after
which levels remain relatively stable. Overall, for the 11 years, the Fengshan dataset is dominated by
AQI > 100 (46%) followed by 51 ≤ AQI ≤ 100 (37%), and AQI ≤ 50 (17%).

4.2. AQI Prediction Model

Table 3 specifies the design of the parameters used to generate the prediction models for all dataset
(Zhongli, Changhua, and Fengshan). Note that each particular constant for each dataset supposedly
contains three values. However, to ease the documentation, any similar value being used across all
datasets or at least across different time steps will be written only once. For example, Changhua dataset
which uses the number of trees (i.e., 100) in AdaBoost for all time step categories. Additionally,
parameter m in the random forest has only one value in all models. To be able to evaluate the ability
of each model in accomplishing the task, 80% of data points will be fed into each training process,
while the remaining 20% are spared for the testing purpose.
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Table 3. Parameter Design of ML Methods.

Method
Parameter Design (F1/F8/F24)

Zhongli Changhua Fengshan

Random Forest
No. of Trees = 100/200/200 No. of Trees = 200 No. of Trees = 200/100/200

m= 4
Min. observation = 6/6/3 Min. observation = 6/3/3 Min. observation = 6/3/3

AdaBoost
# of Trees= 100

α = 0.8/0.9999/0.9 α = 0.8/0.9/0.9999 α = 0.8/0.9/0.8

SVM

Linear C = 3/0.1/0.12, v = 0.5 C = 3/0.12/0.1, v = 0.5 C = 3/0.12/0.1,
v = 0.5/0.5/0.9

Polynomial C = 3/0.7/0.9, v = 0.5/0.2/0.1,
γ = auto, c = 3/5/3, d = 1

C = 3/0.9/0.9, v = 0.5/0.2/0.1,
γ = auto, c = 3, d = 1

C =3/0.9/0.9, v = 0.5/0.2/0.9,
γ = auto, c = 3, d = 1

RBF C = 3/1/1, v = 0.5, γ = auto C = 3/3/1, v = 0.5, γ = auto C = 3/3/1, v = 0.5/0.5/0.2,
γ = auto

Max. # of Iterations = 3000

ANN
Activation function: Identity; Optimizer: L-BFGS-B;

No. of Input neurons = 24;
No. of Hidden neurons over layers = 50/50/50; No. of Output neurons = 1

α = 0.0001; Max. of Iterations = 300
Stacking Ensemble Regularization: L2 Ridge regression; α = 0.3

Table 4 describes the evaluation results of Zhongli F1-AQI prediction using 5 methods with
and without imputation. It can be inferred that machine learning algorithms performed very well
in predicting future AQI levels in Zhongli for the following hour. The linear kernel is shown to
be the best input transformation technique for SVM, with R2 results of 0.953 (without imputation)
and 0.963 (with imputation). Imputation allows SVM to produce improvement in all evaluation metrics.
Furthermore, in terms of MAE score, SVM-RBF outperforms SVM-Linear, but the opposite is true for
the RMSE score. This may be due to RBF having more samples with a larger prediction error despite a
smaller average error (larger errors produce a greater penalty for RMSE).

Table 4. Results of ML Algorithms for Zhongli F1-AQI Prediction.

Method
Without Imputation With Imputation

RMSE MAE R2 RMSE MAE R2

SVM-Polynomial 9.836 8.275 0.923 8.145 6.827 0.947
SVM-RBF 9.298 5.119 0.931 8.832 4.617 0.938

SVM-Linear 7.659 6.050 0.953 6.790 5.217 0.963
Random Forest 3.255 2.208 0.992 3.257 2.207 0.992

AdaBoost-Square 3.291 2.187 0.991 3.337 2.185 0.991
AdaBoost-Linear 3.328 2.191 0.991 3.308 2.189 0.991

AdaBoost-Exponential 3.336 2.193 0.991 3.327 2.193 0.991
ANN 3.572 2.438 0.990 3.378 2.396 0.991

Stacking Ensemble 3.236 2.196 0.992 3.243 2.199 0.992

The performance of random forest, AdaBoost, ANN, and stacking ensemble algorithm are all
comparable. Random forest and stacking ensemble algorithm obtain slightly better R2 performance
(0.001). Unlike with SVM, imputation does not affect the prediction results for AdaBoost, random forest
or the stacking ensemble algorithm, indicating their robustness to missing data. On the other hand,
imputation only provides a small degree of improvement on ANN, resulting in tied R2 values with
AdaBoost. Several loss regression functions (square, linear, exponential) are tested on AdaBoost but
without a decisive performance outcome due to efforts to avoid bias since the interpretation could be
distorted by randomness, especially given very minor degrees of difference.

Table 5 summarizes the results for the 8-h Zhongli AQI prediction. The R2 value of 0.764 is the
best value obtained by the stacking ensemble method. Nonetheless, the performance of SVM becomes
worse with an R2 value less than 0.6 across all kernels. The values of MAE and RMSE are 17 and 23,
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respectively. However, ANN and random forest perform better than SVM, with R2 scores exceeding
0.7 and error metrics just slightly lower than those obtained with AdaBoost and stacking ensemble.
The results match the expectation since the uncertainty increases with the longer period and leads to
higher difficulty in the forecast. The study also finds that the overall values are worse than that of the
F1-AQI prediction.

Table 5. Results of ML Algorithms for Zhongli F8-AQI Prediction.

Method
Without Imputation With Imputation

RMSE MAE R2 RMSE MAE R2

SVM-Polynomial 24.308 17.981 0.526 23.244 17.135 0.567
SVM-RBF 23.375 17.283 0.562 23.358 17.278 0.563

SVM-Linear 24.262 18.327 0.528 26.674 20.174 0.430
Random Forest 17.471 12.408 0.755 17.477 12.413 0.755

AdaBoost-Square 17.386 11.801 0.758 17.352 11.788 0.759
AdaBoost-Linear 17.273 11.693 0.761 17.221 11.679 0.762

AdaBoost-Exponential 17.283 11.691 0.761 17.284 11.685 0.761
ANN 18.786 13.502 0.717 18.759 13.486 0.718

Stacking Ensemble 17.167 11.804 0.764 17.178 11.799 0.764

Table 6 shows that no method used for targeting F24-AQI prediction produced an R2 score
above 0.6, with the lowest score of 0.091. Simply put, the yielded predictions fit the dataset poorly.
Stacking ensemble still ranks first, but the R2 gap to the second-best method (AdaBoost-Linear) is larger
than in the previous cases. SVM performance tracked far behind the other methods with the highest
score for evaluation metrics obtained by RBF kernel. However, the R2 score is so low that the SVM
method is considered not preferable for 24-h prediction.

Table 6. Results of ML Algorithms for Zhongli F24-AQI Prediction.

Method
Without Imputation With Imputation

RMSE MAE R2 RMSE MAE R2

SVM-Polynomial 33.639 24.799 0.098 34.194 25.034 0.068
SVM-RBF 30.635 23.340 0.252 30.335 23.053 0.267

SVM-Linear 37.001 28.904 0.091 36.835 28.595 0.081
Random Forest 24.974 18.648 0.503 25.007 18.667 0.502

AdaBoost-Square 24.219 16.724 0.533 24.226 16.753 0.532
AdaBoost-Linear 24.039 16.586 0.540 24.074 16.614 0.538

AdaBoost-Exponential 24.053 16.574 0.539 24.099 16.620 0.537
ANN 29.150 21.957 0.323 29.113 21.927 0.325

Stacking Ensemble 23.825 16.667 0.548 23.831 16.693 0.548

Predictive model results for F1-AQI Changhua are similar to those for F1-AQI Zhongli.
Stacking ensemble, AdaBoost, and random forest provide the best performance for one-hour AQI level
prediction (see Table 7). These algorithms perform better for all evaluation metrics in Changhua than in
Zhongli. Also, the imputation process reduces the performance of SVM, but not the other algorithms.

When it comes to the F8-AQI prediction (as shown in Table 8), the Changhua prediction again
outperforms that of Zhongli. AdaBoost and stacking ensemble both yield R2 scores exceeding 0.8.
Without imputation, stacking ensemble outperforms the other methods. However, with imputation,
AdaBoost performance is comparable to that of stacking ensemble. SVM-linear gives the highest MAE
and RMSE results, i.e., 23.412 and 31.189, respectively. These error metrics can be further reduced to
19.623 and 25.628 by imputation.

In the Zhongli dataset, the time step selection affects the performance of machine learning
methods, and this is consistent with the results for the F24-AQI prediction models in Changhua
(Table 9). Declination occurs across all models with a very low R2. The SVM-Polynomial gives the
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worst performance for the imputed dataset and an MAE value exceeding 30, and an RMSE value
exceeding 40. The best performance is still obtained by the stacking ensemble method, with an
R2 score of 0.605, and MAE and RMSE values respectively below 19 and 26. Among all kernels
used by SVM, the radial basis function appears to be the most effective for 24-h AQI predictions.
Moreover, AdaBoost-exponential slightly underperforms stacking ensemble in terms of R2 and RMSE,
but consistently provides better MAE results.

Table 7. Results of ML Algorithms for Changhua F1-AQI Prediction.

Method
Without Imputation With Imputation

RMSE MAE R2 RMSE MAE R2

SVM-Polynomial 12.419 11.09 0.907 14.116 12.683 0.880
SVM-RBF 9.672 4.639 0.944 9.596 4.497 0.944

SVM-Linear 9.169 7.055 0.949 10.033 7.638 0.939
Random Forest 3.059 2.055 0.994 3.105 2.066 0.994

AdaBoost-Square 3.093 2.046 0.994 3.126 2.054 0.994
AdaBoost-Linear 3.089 2.043 0.994 3.115 2.048 0.994

AdaBoost-Exponential 3.093 2.046 0.994 3.126 2.054 0.994
ANN 3.914 2.505 0.991 3.870 2.541 0.991

Stacking Ensemble 3.039 2.043 0.994 3.076 2.057 0.994

Table 8. Results of ML Algorithms for Changhua F8-AQI Prediction.

Method
Without Imputation With Imputation

RMSE MAE R2 RMSE MAE R2

SVM-Polynomial 26.225 20.082 0.585 25.818 19.919 0.598
SVM-RBF 25.548 19.422 0.606 25.730 19.597 0.600

SVM-Linear 31.189 23.412 0.413 25.628 19.623 0.603
Random Forest 18.435 13.711 0.795 18.423 13.707 0.795

AdaBoost-Square 17.877 12.747 0.807 17.871 12.734 0.807
AdaBoost-Linear 17.825 12.732 0.808 17.810 12.718 0.809

AdaBoost-Exponential 17.822 12.733 0.808 17.815 12.729 0.808
ANN 20.451 15.329 0.748 20.312 15.213 0.751

Stacking Ensemble 17.801 12.855 0.809 17.792 12.856 0.809

Table 9. Results of ML Algorithms for Changhua F24-AQI Prediction.

Method
Without Imputation With Imputation

RMSE MAE R2 RMSE MAE R2

SVM-Polynomial 40.662 31.689 0.006 41.834 32.727 0.052
SVM-RBF 34.879 26.977 0.269 34.852 26.948 0.270

SVM-Linear 37.451 29.047 0.157 37.092 28.703 0.173
Random Forest 26.765 20.281 0.570 26.786 20.299 0.569

AdaBoost-Square 26.282 18.781 0.585 26.288 18.799 0.585
AdaBoost-Linear 25.786 18.204 0.600 25.817 18.246 0.599

AdaBoost-Exponential 25.747 18.144 0.602 25.773 18.185 0.601
ANN 30.919 23.753 0.426 30.803 23.647 0.430

Stacking Ensemble 25.630 18.255 0.605 25.655 18.294 0.604

Table 10 summarizes the results for the one-hour prediction model without and with k-NN
imputation step in the Fengshan dataset. Stacking ensemble learning outperforms other techniques in
terms of RMSE and R2, while SVM obtains the worst performance in every prediction case. However,
imputation slightly enhances the results, particularly for the RBF and linear kernels, but not for the
polynomial kernel which shows a performance decline using the imputed dataset. Also note that while
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comparing with the results in the other two cities, Zhongli and Changhua, Fengshan shows the best
performance in all evaluation measures.

Table 10. Results of ML Algorithms for Fengshan F1-AQI Prediction.

Method
Without Imputation With Imputation

RMSE MAE R2 RMSE MAE R2

SVM-Polynomial 7.072 5.556 0.974 7.275 5.821 0.973
SVM-RBF 9.119 5.542 0.957 8.324 4.702 0.964

SVM-Linear 9.529 7.400 0.953 8.485 6.621 0.963
Random Forest 2.971 1.869 0.995 2.979 1.868 0.995

AdaBoost-Square 3.020 1.771 0.995 2.996 1.766 0.995
AdaBoost-Linear 2.995 1.767 0.995 2.983 1.760 0.995

AdaBoost-Exponential 3.020 1.771 0.995 2.996 1.766 0.995
ANN 3.966 2.544 0.992 3.821 2.585 0.992

Stacking Ensemble 2.925 1.823 0.996 2.921 1.814 0.996

In terms of eight-hour prediction, imputation has a significant impact on SVM-Linear, increasing R2

from 0.318 to 0.546 (as shown in Table 11). RMSE and MAE are also improved by 10% and shift closer
to the performance of other SVM kernels. Of the three locations, application of machine learning
algorithms has the biggest impact on 8-h predictions in Fengshan, with stacking ensemble providing
the greatest improvement, followed by AdaBoost, random forest, ANN, and SVM. This sequence is
consistent for all results.

Table 11. Results of ML Algorithms for Fengshan F8-AQI Prediction.

Method
Without Imputation With Imputation

RMSE MAE R2 RMSE MAE R2

SVM-Polynomial 25.658 19.806 0.659 25.512 19.606 0.663
SVM-RBF 25.810 20.392 0.655 25.665 20.248 0.659

SVM-Linear 36.292 26.859 0.318 29.598 23.028 0.546
Random Forest 16.634 12.111 0.857 16.606 12.100 0.857

AdaBoost-Square 16.440 11.399 0.860 16.498 11.391 0.859
AdaBoost-Linear 16.367 11.364 0.861 16.339 11.367 0.862

AdaBoost-Exponential 16.387 11.373 0.861 16.398 11.367 0.861
ANN 19.112 14.285 0.811 18.975 14.182 0.814

Stacking Ensemble 16.302 11.517 0.862 16.279 11.527 0.863

As summarized in Table 12, for the 24-h predictions in Fengshan, while overall SVM results are
not promising, the other methods show quite acceptable evaluation scores. The top three methods
(stacking ensemble, AdaBoost, and random forest) obtained R2 scores exceeding 0.71 for which the MAE
and RMSE results are comparable to the F8-AQI prediction for Fengshan. Surprisingly, the stacking
ensemble is found to be affected by imputation but, even with imputation, the MAE value is still higher
than that of all AdaBoost versions (linear, square, and exponential). AdaBoost and stacking ensemble
show consistent results, and AdaBoost generally obtains worse RMSE and R2 but better MAE.

4.3. Implementation of AQI Forecasting Model

This section describes a simulation-like AQI forecasting using stacking ensemble and AdaBoost
(the two best methods from the analyses in Section 4.2) as backend techniques. Each prediction is
accompanied by a prediction interval (PI) within a 95% confidence level, which describes a given
tolerance for the prediction value such that there is 95% chance that the actual observation could fall
within this range. The prediction interval is calculated using the formula below [21]:

PI = zα/2 × σ(3) (3)
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where σ represents the standard deviation of the residual errors defined as [22]:

σ =

√√
1

n− 2

n∑
i=1

(yi − ŷi)
2 (4)

Prediction intervals that reflect the uncertainty of a model’s output should be adjusted dynamically
as new observations are received every hour, thus ensuring that the prediction interval is always
current. The one-month samples (December 2018) from the Zhongli dataset are used to obtain the
standard deviation.

Table 12. Results of ML Algorithms for Fengshan F24-AQI Prediction.

Method
Without Imputation With Imputation

RMSE MAE R2 RMSE MAE R2

SVM-Polynomial 35.203 28.025 0.357 35.330 28.140 0.353
SVM-RBF 37.696 30.300 0.263 35.368 28.485 0.351

SVM-Linear 35.954 28.520 0.329 36.511 28.763 0.309
Random Forest 23.388 17.476 0.716 23.384 17.485 0.716

AdaBoost-Square 22.935 15.932 0.727 22.927 15.939 0.727
AdaBoost-Linear 22.663 15.743 0.734 22.654 15.753 0.734

AdaBoost-Exponential 22.708 15.777 0.733 22.723 15.790 0.732
ANN 27.008 20.542 0.622 26.882 20.416 0.625

Stacking Ensemble 22.872 16.372 0.729 22.618 16.105 0.735

As shown in Figure 8a, the higher the prediction time step, the wider the tolerance needed to
represent the estimation. AdaBoost and stacking ensemble outperform the other techniques tested in
the previous section, obtaining similar predictions and prediction intervals. The predictions here are
all based on authentic data, where the best models in each prediction category are reused. Figure 8b
shows another forecast constructed during winter, providing an example of poor air quality cases
captured in the prediction of F1-AQI, F8-AQI, and F24-AQI using AdaBoost and stacking ensemble.

Figure 8. Forecast of AQI: (a) on 28 May 2019, 07:00; (b) on 4 February 2019, 03:00.

Figure 9 provides an illustration on how the information will be provided and visualized given a
sample of upcoming data for the monitoring and forecasting of the air quality. Noted that as shown by
the graph, the higher the time step of prediction the wider the tolerance needed to escort the estimation.
AdaBoost and stacking are two methods that outperform other techniques tested in the previous
section. Their predictions are close to each other and so are the prediction intervals. The predictions
here are based on the real scheme, where the best models of them in each category of prediction were
reused again by incorporating the actual values from 24 features.
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Figure 9. Illustration of Air Quality Monitoring and Forecasting System.

5. Conclusions

Applying artificial intelligence methods provides promising results for AQI forecasting. This study
obtained data collected by EPA and CWB of Taiwan over 11 years. Three regions (North: Zhongli, Central:
Changhua, South: Fengshan) in Taiwan were considered, including two notorious places (Changhua and
Fengshan) for their bad air quality all year round. With good results for R2, stacking ensemble and
AdaBoost offer the best performance of target predictions based on three different datasets. To be more
specific, the stacking ensemble delivers the best RMSE results, while AdaBoost provides the best MAE
results. All results show that SVM yields the worst results among all methods explored, and only
provides meaningful results for 1-h predictions. The results also confirm that the two machine learning
methods, AdaBoost and stacking ensemble, employed in this study can outperform popular methods in
the literature, such as SVM, random forest, and ANN. In other words, AdaBoost and stacking ensemble
can be considered new and superior alternatives for AQI forecast.

This study also indicates that prediction performance varies over different regions in Taiwan.
Comparing results from datasets sourced from three different regions displays best results for
Fengshan AQI prediction (Southern Taiwan), where performance decay with increased time step is less
pronounced than those in Zhongli (north) and Changhua (central). Also, 95% confidence intervals for
1-h, 8-h and 24-h forecast are calculated, respectively. Compared to the single value prediction, the 95%
C.I. can provide a better reference to the decision-maker. For example, an event planner can decide if
the outdoor activities can go on based on the air quality forecast with better confidence. Future work
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should focus on improving performance using stacking ensemble, AdaBoost and random forest with
hyperparameter optimization, particularly for predictions with larger time steps (F8-AQI and F24-AQI).
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