
applied  
sciences

Article

Analysis of a Three-Level Bidirectional ZVS
Resonant Converter

Bor-Ren Lin * and Wei-Po Liu

Department of Electrical Engineering, NYUST, 123, Section 3, University Road, Yunlin 640, Taiwan;
weber519liu@gmail.com
* Correspondence: linbr@yuntech.edu.tw; Tel.: +886-912-312-281

Received: 9 November 2020; Accepted: 18 December 2020; Published: 21 December 2020 ����������
�������

Abstract: A bidirectional three-level soft switching circuit topology is proposed and implemented for
medium voltage applications such as 750 V dc light rail transit, high power converters, or dc microgrid
systems. The studied converter is constructed with a three-level diode-clamp circuit topology with the
advantage of low voltage rating on the high-voltage side and a full-bridge circuit topology with the
advantage of a low current rating on the low-voltage side. Under the forward power flow operation,
the three-level converter is operated to regulate load voltage. Under the reverse power flow operation,
the full-bridge circuit is operated to control high-side voltage. The proposed LLC resonant circuit is
adopted to achieve bidirectional power operation and zero-voltage switching (ZVS). The achievability
of the studied bidirectional ZVS converter is established from the experiments.
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1. Introduction

Renewable power to reduce the effect of global warming has been developed by using high
efficiency power electronic based converters in local dc nanogrid or microgrid distribution [1–6]
between renewable energy power and local dc or ac loads. In order to maintain the voltage stability on
dc distribution system, energy storage power units are usually demanded between battery banks and dc
bus system to save (or restore) excess (or insufficient) energy on the dc bus. Therefore, the bidirectional
pulse-width modulation (PWM) converters have been proposed for the battery-based systems [7–14]
such as electric vehicles, hybrid electric vehicles, and dc microgrids. In dc microgrids, the unipolar
voltage (380 V) or bipolar voltage (±380 V or 760 V) distribution can be adopted on the dc bus voltage.
High frequency link medium voltage converters have been used for dc traction power units, three
phase industry power supplies and dc microgrids. Three-level dc converters with 600 V MOSFETs or
conventional PWM converters with 1200 V IGBTs or SiCs have been presented in medium voltage
input applications. The drawback of 1200 V IGBT is low switching frequency and the cost of 1200 V
SiC is expensive. Bidirectional PWM converters with dual active bridge (DAB) structure have been
studied to realize forward and reverse power transfer. Three-level bidirectional converters or cascaded
converters with the high frequency MOSFETs have been developed for high voltage systems such as
760 V input. PWM scheme is widely adopted in bidirectional DAB systems to control power flow and
realize soft switching turn-on characteristics. However, the control scheme for generating the PWM
signals is complicated and the circulating current under low duty cycle is high. Resonant converters
have the benefits of high circuit efficiency and low electromagnetic interference. A full-bridge resonant
circuit topology was proposed in [15] to achieve bidirectional power transfer. However, the soft
switching characteristics cannot be achieved in backward power flow. Bidirectional Full-bridge
resonant converters presented in [16–18] have symmetric circuit structure to achieve forward and
backward power flow so that power switches can realize zero-voltage switching. However, there is a
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circulating current on the parallel inductor in primary-side which will result in addition conduction
loss during forward power flow.

A soft switching three-level resonant converter is developed for high voltage to low voltage
conversion. The profits of the developed converter are forward and backward power flow capability and
zero-voltage turn-on characteristic. Three-level diode-clamp circuit topology is used on the primary-side
and full-bridge circuit topology is adopted on the secondary-side. The LLC circuit tank is employed to
control load voltage and achieve zero-voltage switching on active devices. For forward power transfer,
the three-level diode-clamp converter is controlled using the pulse-frequency modulation (PFM) to
control low-side voltage and active devices of full-bridge converter on the secondary-side are operated
as synchronous rectifiers. In order to implement the same resonant circuit structures for bidirectional
power flow, an additional inductor is connected on the primary-side during the reverse power flow
condition. In reverse power flow operation, the full-bridge converter on the low-voltage side is
operated with PFM scheme to control high-side voltage. The proposed converter with bidirectional
power flow capability can be applied in local dc nanogrid or microgrid distribution between renewable
energy power and local dc or ac loads. The circuit schematic and circuit operation are provided and
discussed in Sections 2 and 3. The circuit characteristic and experiments with a 1.44 kW laboratory
circuit are demonstrated and discussed to show the feasibility of the studied bidirectional power
converter in Section 4. Finally, a conclusion of the studied converter is given in Section 5.

2. Circuit Schematic of the Developed Converter

Figure 1a provides the converter schematic of the studied bidirectional converter. There is a
three-level diode-clamp circuit topology on the high-voltage side with the benefit of using low voltage
rating switches. Clamped diodes Da and Db and capacitor Cf are used to balance input voltages VCH1

= VCH2 and reduce the voltage stress on S1~S4. Full bridge circuit topology is used on the low-voltage
side to achieve full-wave rectification. Sac and Lb are series-connection and connect to points a and b in
order to achieve LLC circuit operation under backward power flow operation (Sac is ON). For forward
power operation from VH (high-side voltage) to VL (low-side voltage), Sac is OFF and Lb is disconnected
on the primary-side. Figure 1b gives the circuit structure under forward power operation. S1~S4

are main power devices to control output voltage VL. Lr, Lm and Cr are LLC resonant circuit and
Q1~Q4 are activated as synchronous switches. For reverse power operation from the VL terminal to
the VH terminal, Sac is ON and Figure 1c provides the circuit diagram of reverse power operation.
Switches Q1~Q4 are major power switches and Lr, Lb and Cr are resonant circuit. DS1~DS4 are operated
as a full-wave diode rectifier. Therefore, LLC resonant characteristics for both power flow are achieved
and the turn-on switching loss of major power switches is removed.
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Figure 1. Proposed converter (a) converter structure (b) forward power flow operation (Sac off) (c) 
backward power flow operation (Sac on, S1~S4 off). 

3. Circuit Operation 

For forward power delivery, the electric power energy is transferred from VH side to VL side and 
Sac is OFF. S1~S4 are controlled with PFM scheme. Due to PWM signals of S1~S4, there is a square wave 
with -VH/2 or VH/2 on the leg voltage vab. However, Q1~Q4 are operated as the synchronous switches 
instead of the rectifier diodes in conventional full-bridge rectifier to reduce conduction loss. The 
equivalent resonant circuit and PWM waveforms for forward power delivery are provided in Figure 
2. To realize the ZVS operation of S1~S4, the input impedance of LLC circuit must be inductive. Figure 
3 gives the corresponding equivalent circuits related to six operating steps in a switching period 
under fr (resonant frequency) > fsw (switching frequency). It is assumed that the Lr represents the 
external series resonant inductance and the leakage inductance of transformer and Cr represents the 
external series resonant capacitance and the parasitic capacitance on transformer winding turns. The 
output capacitances CS1–CS4 are assumed to be identical. In the same manner, CQ1 = … = CQ4. Since the 
current iCf on Cf is less than iS1 and iS2 in mode 1 and iS3 and iS4 in mode 4, iCf is ignored in PWM 
waveforms. Therefore, iS1 is equal to iS2 in steps 1–3 and 6 and iS3 is equal to iS4 in steps 3–6. 

Figure 1. Proposed converter (a) converter structure (b) forward power flow operation (Sac off)
(c) backward power flow operation (Sac on, S1~S4 off).

3. Circuit Operation

For forward power delivery, the electric power energy is transferred from VH side to VL side and
Sac is OFF. S1~S4 are controlled with PFM scheme. Due to PWM signals of S1~S4, there is a square
wave with −VH/2 or VH/2 on the leg voltage vab. However, Q1~Q4 are operated as the synchronous
switches instead of the rectifier diodes in conventional full-bridge rectifier to reduce conduction loss.
The equivalent resonant circuit and PWM waveforms for forward power delivery are provided in
Figure 2. To realize the ZVS operation of S1~S4, the input impedance of LLC circuit must be inductive.
Figure 3 gives the corresponding equivalent circuits related to six operating steps in a switching
period under fr (resonant frequency) > fsw (switching frequency). It is assumed that the Lr represents
the external series resonant inductance and the leakage inductance of transformer and Cr represents
the external series resonant capacitance and the parasitic capacitance on transformer winding turns.
The output capacitances CS1–CS4 are assumed to be identical. In the same manner, CQ1 = . . . = CQ4.
Since the current iCf on Cf is less than iS1 and iS2 in mode 1 and iS3 and iS4 in mode 4, iCf is ignored in
PWM waveforms. Therefore, iS1 is equal to iS2 in steps 1–3 and 6 and iS3 is equal to iS4 in steps 3–6.
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Figure 2. Forward power operation (a) the equivalent LLC resonant circuit (b) pulse-width modulation
(PWM) waveforms.
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Figure 3. The corresponding equivalent circuits related to six operating steps for forward power
operation (a) step 1 circuit (b) step 2 circuit (c) step 3 circuit (d) step 4 circuit (e) step 5 circuit (f) step
6 circuit.

Step 1 (t0 ≤ t < t1): At t < t0, iLr < 0. Thus, iLr discharges CS1 and CS2 are discharged. At t0,
vCS1 = vCS2 = 0. Thus, DS1 and DS2 are conducting due to iLr < 0. The ZVS operation of S1 and S2 can
be achieved after time t0. If iLr < 0, Db is forward biased. The leg voltage vab = vCf = vCS3 = vCS4 = VH/2.
Since iLr > iLm, Q1 and Q4 turn on to conduct the secondary-side current. When iLr increases and iLr
> 0, Db becomes off. In this step, the magnetizing voltage vLm is equal to nVL, where n = np/ns is the
transformer turns ratio, and iLm increases. The ripple current ∆iLm in step 1 is equal to nVL∆t01/Lm

where ∆t01 = t1 − t0. The resonant frequency in step 1 is fr = 1/(2π
√

LrCr).
Step 2 (t1 ≤ t < t2): If fsw < fr, iQ1 and iQ4 will decrease to zero ampere at t1. Thus, Q1 and Q4 can

turn off after time t1. In step 2, the leg voltage vab = VH/2 and Lr, Lm and Cr are resonant.
Step 3 (t2 ≤ t < t3): At t2, S1 and S2 turn off. The positive current iLr(t2) will charge CS1 and

CS2. On the other hand, CS3 and CS4 are discharged in this step. The ZVS operation of S3 and S4 is
expressed in Equation (1).

iLm,p ≥
VH

2

√
CS
Lr

(1)

where iLm,p is the peak current on Lm and CS = CS1 = . . . = CS4. The peak current iLm,p is calculated
from Equation (2).

iLm,p =
∆iLm

2
≈

nVLTsw

4Lm
(2)

The dead time td between S3 and S1 (or S4 and S2) is approximately expressed in Equation (3).

td >
CSVH

iLm,p
=

4LmCSVH

nVLTsw
(3)

Therefore, the maximum magnetizing inductance is derived in Equation (4).

Lm ≤
nVLtdTsw

4CSVH
(4)

Step 4 (t3 ≤ t < t4): At t3, vCS3 = vCS4 = 0. Since iLr(t3) is positive, DS3 and DS4 are conducting.
Power devices S3 and S4 can turn on after t3 under zero voltage condition. Since iLr(t3) > 0, Da is
forward biased. The leg voltage vab = −VH/2 and vCf = vCS1 = vCS2 = VH/2. When iLr decreases and iLr
< 0, Da becomes off. On the secondary side, iQ2(t3) < 0 and iQ3(t3) < 0. Therefore, Q2 and Q3 turn on to
conduct the secondary-side current, the primary-side voltage vLm = −nVL and iLm decreases.

Step 5 (t4 ≤ t < t5): The secondary-side switch currents iQ2 = iQ3 = 0 at t4. Then, Q2 and Q3 turn
off. In this step, vab = −VH/2 and Lr, Lm and Cr are resonant.
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Step 6 (t5 ≤ t <Tsw+t0): At t5, S3 and S4 turn off. In this step, iLr(t5) < 0 and vCS1 and vCS2

decrease. The ZVS condition of S2 and S1 is the same as S4 and S3 in Equation (1). The step 6 is ended
at time Tsw+t0.

The LLC resonant circuit is controlled to achieve ZVS operation and the bidirectional power
operation. The resonant circuit is based on the fundamental frequency analysis to achieve load voltage
regulation. According to the switching status of power devices S1~S4 and Q1~Q4, the voltage values
VH/2 and −VH/2 are observed on vab, and the other voltage values nVL and −nVL are generated on
the magnetizing inductor voltage vLm. Lr, Cr, Lm and Rac,L operate as a filter to suppress the high
order harmonics. The root mean square (rms) voltages at the fundamental frequency for input and
output sides are vab,rms =

√
2VH/π and vLm,rms = 2

√
2nVL/π. Based on the power balance between

the primary-side and the secondary-side of transformer, the primary-side load resistance is expressed
as Rac,L = 8n2RL/π2. The transfer function GH_L(s) between the output and input sides in Figure 2a is
obtained as:

GH_L(s) =
vLm,rms(s)
vab,rms(s)

=

sLmRac,L
sLm+Rac,L

sLmRac,L
sLm+Rac,L

+ sLr +
1

sCr

(5)

∣∣∣GH_L(F)
∣∣∣ = K1F2√

[F2(K1 + 1) − 1]2 + [Q1K1F(F2 − 1)]2
(6)

where F = fsw/fr, fr = 1/(2π
√

LrCr), K1 = Lm/Lr and Q1 =
√

Lr/Cr/Rac,L. From the given input voltage
VH, the output voltage VL and the circuit parameters Lr, Cr, Lm and RL, the switching frequency is
obtained from Equation (6).

For reverse power flow shown in Figure 1c, the developed converter transfers power from VL
terminal to VH terminal. Sac is turned on and Lb, Lr and Cr are operated as a series resonant circuit to
achieve voltage VH regulation. Power devices Q1~Q4 are controlled with PFM scheme and DS1~DS4

work as a full-wave rectifier. When |iLr|>|iLb|, DS1 and DS2 or DS3 and DS4 are conducting. Since the
LLC resonant circuit by Lr, Cr and Lb is operated at the inductive load, power devices Q1~Q4 are
operated at the zero-voltage turn-on switching. Figure 4a shows the ac equivalent resonant circuit at
reverse power flow operation. Lb and Rac,H are the parallel inductance and ac equivalent resistance.
Figure 4b gives the main PWM waveforms and Figure 5 demonstrates the corresponding equivalent
circuits at the reverse power flow operation.
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Figure 5. The corresponding equivalent circuits related to six operating steps under backward power
transfer (a) step 1 circuit (b) step 2 circuit (c) step 3 circuit (d) step 4 circuit (e) step 5 circuit (f) step
6 circuit.
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Step 1 (t0 ≤ t < t1): This step starts at t0 when vCQ4 = vCQ1 = 0. Then, the DQ4 and DQ1 conduct
and vQ2,ds = vQ3,ds = VL. Due to DQ1 and DQ4 are conducting, vQ4,ds and vQ1,ds = 0 and Q1 and Q4 can
turn on under zero voltage. Due to iLr(t0) + iLb(t0)<0, DS1 and DS2 are forward biased, CH1 is charged,
vLm = nVL, vab = VH/2 and iLm and iLb both increase. Before switches Q1 and Q4 turn off, iDS1 and iDS2

will decrease to zero if fsw < fr = 1/2π
√

CrLr.
Step 2 (t1 ≤ t < t2): At time t1, iDS2 = iDS1 = 0 and DS2 and DS1 are off. Lr, Lb, and Cr are series

resonant at frequency fp = 1/2π
√

Cr(Lb + Lr).
Step 3 (t2 ≤ t < t3): Q4 and Q1 turn off at t2. CQ2 and CQ3 are discharged in step 3. The ZVS

condition of Q3 and Q2 are obtained in Equation (7).

(Lb + Lr)i2Lb,p + Lmi2Lm,p ≥ 2CQV2
L (7)

where CQ = CQ1 =..= CQ4, iLm,p ≈ nVL/(4Lm fsw) and iLb,p ≈ VH/(8Lb fsw). At t3, vCQ3(t3) = vCQ2(t3) = 0.
The time interval ∆t23 is expressed in Equation (8).

∆t23 ≈
2VLCQ

n[iLm,p + iLb,p]
=

16LmLb fswVLCQ

n(2nLbVL + LmVH)
≤ td (8)

where td is dead time between Q4 and Q3 or Q2 and Q1.
Step 4 (t3 ≤ t < t4): Step 4 starts at t3 when vCQ2 = vCQ3 = 0. Therefore, DQ3 and DQ2 conduct and

Q3 and Q2 can turn on under zero voltage. In step 4, DS3 and DS4 conduct, vab = −VH/2, vLm = −nVL,
and iLm and iLb both decrease.

Step 5 (t4 ≤ t < t5): iDS3 = iDS4 = 0 at t4. In this step, Q2 and Q3 are still in the on state so that
vLm = −nVL. Lb, Cr and Lr are series resonant.

Step 6 (t5 ≤ t < Tsw+t0): Q2 and Q3 turn off at t5. Then, CQ1 and CQ4 are discharged and
vCQ1 = vCQ4 = 0 at tsw + t0.

The proposed converter has the similar operation principle for both forward and reverse power
operation. For the reverse power operation, Q1~Q4 are controlled as main power switches. DS1~DS4

are operated as diode rectifier to regulate voltage VH. The resonant circuit including Lb, Lr and Cr is
operated as a filter to suppress high order harmonics. The input rms voltage at fundamental frequency
(Figure 4a) is calculated as vLm,rms = 2

√
2nVL/π and the ac equivalent resistance at high voltage side

is Rac,H = 2RH/π2. The rms voltage on vab is expressed as vab,rms =
√

2VH/π. Components Rac,H, Lb,
Lr and Cr are resonant. The transfer function GL_H(s) and gain |GL_H(s)| are calculated in Equations (9)
and (10), respectively.

GL_H(s) =
vab,rms(s)
vLm,rms(s)

=

sLbRac,H
sLb+Rac,H

sLbRac,H
sLb+Rac,H

+ 1
sCr

+ sLr

(9)

∣∣∣GL_H(F)
∣∣∣ = K2F2√

[(F2 − 1)Q2K2F]2 + [F2(K2 + 1) − 1]2
(10)

where F = fsw/fr, fr = 1/(2π
√

LrCr), K2 = Lb/Lr and Q2 =
√

Lr/Cr/Rac,H. From the given input voltage
VH, output voltage VL and the circuit parameters Lr, Cr, Lb and RH, the switching frequency is obtained
from Equation (10).

4. Circuit Parameters and Test Results

For forward power transfer, the input and output voltages are VH = 750 V to 800 V and VL = 48 V.
The rated power is 1440 W (vL = 48 V and IL= 30 A). For reverse power transfer, the input and output
voltages are VL = 36 V to 52 V and VH = 800 V. The transfer functions in Equations (6) and (10) for
forward and backward power transfer operations are similar. Thus, the circuit parameters design
operated at forward power flow is presented in this section. The dc voltage gain under VH = 800 V



Appl. Sci. 2020, 10, 9136 11 of 18

input and VL,max = 52 V output is designed to be unity. The transformer turns ratio is calculated
in Equation (11).

n =
∣∣∣GH_L

∣∣∣× VH,max

2VL,max
≈ 7.7 (11)

In the prototype circuit, the selected primary and secondary turns are nH = 48 and nL = 6. Thus,
the actual transformer turns ratio is n = nH/nL = 8. With the adopted turns ratio, the actual maximum
and minimum voltage gains at VL,nom = 48 V condition are given in Equations (12) and (13).

∣∣∣GH_L
∣∣∣
max =

2nVL,nom

VH,min
≈ 1.024 (12)

∣∣∣GH_L
∣∣∣
min =

2nVL,nom

VH,max
≈ 0.96 (13)

The control parameters K1 and Q1 can be selected at full load PL,full and minimum input voltage
VH,min conditions. To reduce circulating current, the inductor ratio K1=10 is used in this prototype
circuit. For Q1 = 0.38 and K1 = 10, it can obtain the peak gain of |GH_L(s)| is 1.13. The ac equivalent
resistance Rac,L at the rated power is obtained in Equation (14).

Rac,L =
8n2

π2 RL =
8× (48/6) 2

3.141592 ×
48
30
≈ 83Ω (14)

The circuit parameters Cr = 1/2πQ1 frRac,L ≈ 50 nF and Lr = 1/(2π fr)
2Cr ≈ 50 µH under

fr = 100 kHz. The actual resonant inductance and capacitance are Cr = 47 nF and Lr = 54 µH and the
magnetizing inductance Lm = K1Lr = 540 µH. The theoretical primary rms current is calculated as:

Ipri,rms =
πIo

2
√

2n
≈ 4.2 A (15)

The theoretical minimum switching frequency is obtained as fsw,min = 1/2π
√

Cr(Lr + Lm) ≈ 30 kHz.
The minimum switching frequency will result in the maximum rms magnetizing current.

ILm,rms =
1

2
√

3

nVL

4 fsw,minLm
≈ 1.7 A (16)

Therefore, the rms resonant inductor current is obtained in Equation (17).

ILr,rms =
√

I2
Lm,rms + I2

pri,rms ≈ 4.53 A (17)

The flying capacitor Cf is used to realize voltage balance of CH1 and CH2 so that VCH1 = VCH2 = VH/2.
The theoretical voltage stresses of power semiconductors can be calculated as vS1,stress = .. = vS4,stress
= VH,max/2 = 400 V and vQ1,stress = .. = vQ4,stress = VL,max = 52 V. The switch currents approximate
IS1,rms = .. = IS4,rms ≈ ILr,rms/

√
2 ≈ 3.2 A and IQ1,rms = .. = IQ4,rms ≈ πIo/4 ≈ 23.6 A. Power devices

S1~S4 are implemented using IRG4PC40W with 600 V/20 A rating. Power switches Q1~Q4 are
implemented using IRFB3307 with 75 V/150 A rating. Sac is implemented using two G20N50C with
500 V/20 A rating. The parallel inductor Lb is selected as 230 µH and K2 = Lb/Lr = 4.25 under reverse
power flow operation. The clamp diodes Da and Db are implemented with ultrafast recovery diodes
HFA15TB60PBF with 600 V/15 A rating. The other circuit parameters used in the prototype are
CH1 = CH2 = 330 µF/400 V, Cf = 2.2 µF/630 V and CL = 4400 µF/100 V. The parameters and specifications
used in the laboratory prototype are given in Table 1.
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Table 1. Parameters and specifications of the presented converter.

Items Parameter

High voltage VH 750 V~800 V

Low voltage VL 48 V

Rated power Po 1440 W

Resonant frequency fr 100 kHz

High-side capacitances CH1, CH2 330 µF/400 V

Low-side capacitance CL 4400 µF/100 V

Resonant capacitance Cr 47 nF

Flying capacitance Cf 2.2 µF

Resonant inductance Lr 54 µH

Parallel inductance Lb 230 µH

Power switches S1~S4 IRG4PC40W (600 V/20 A)

Power switches Q1~Q4 IRFB3307 (75 V/150 A)

Power switch Sac G20N50C (500 V/20 A)

Clamp diodes Da, Db HFA15TB60PBF (600 V/15 A)

Winding turns of T: nH, nL 48, 6

Magnetizing inductance Lm 540 µH

Figures 6–10 provide the test results for forward power operation and Figures 11–14 provide
the measured waveforms for reverse power operation. The PWM signals of S1–S4 at 100% load are
presented in Figure 6. S1 (S3) and S2 (S4) have the same gate-to-source voltage signals. The converter
at VH = 750 V input has less switching frequency than VH = 800 V input condition. Figure 7 gives
the experimental results of leg voltage vab, iLr and vCr at 100% load. It can be seen that the measured
waveforms iLr and vCr are almost the sinusoidal waves due to fsw close to fr for both 750 V and 800 V
inputs. Figure 8 shows the experimental results of VCH1, VCH2, VCf, VDa and VDb. The dc voltage
differences between VCH1, VCH2 and VCf are about 5V. Figure 9 demonstrates the switch currents of
Q1–Q4 at 100% load. Figure 10 illustrates the PWM waveforms of S1–S4 at 20% load. It can observe
that S1–S4 all turn on under ZVS at 20% load. Figure 11 gives the PWM signals of Q1~Q4 under
backward power operation and different input voltages. Power devices Q1 (Q2) and Q4 (Q3) have the
same gate-to-source voltage signals. Figure 12 illustrates the measured results of iLr, iLb and vCr under
for reverse power operation. The parallel inductor current iLb is similar to the magnetizing current
on conventional LLC resonant converter to achieve voltage step-up capability. Figure 13 shows the
measured capacitor voltages VCf, VCH1 and VCH2 on the high voltage side. These three voltages VCH1,
VCH2 and VCf are almost balanced with about 7 V voltage difference. Figure 14 gives the measured
PWM waveforms of Q1~Q4 under 20% load. It can observe that Q1–Q4 can turn on under zero voltage
at 20% load. For forward power operation (buck mode), the measured circuit efficiencies are 89.7% at
20% load, 92.1% at 50% load and 91.8% at 100% load under 800 V input. For reverse power operation
(boost mode), the measured circuit efficiencies are 86.3% at 20% load, 89.4% at 50% load and 88.9%
at 100% load under 40 V input case. Figure 15a gives the picture of the prototype circuit and the
experimental setup is given in Figure 15b.
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5. Conclusions

A new three-level resonant converter is proposed, analyzed, and discussed to realize bidirectional
power transfer and soft switching operation capability. A three-level diode clamp series resonant
converter is used on the high-voltage side to have low voltage rating on active devices. For forward
power operation, the conventional LLC circuit is selected to have ZVS operation on all power switches.
Full-wave rectifier with synchronous switches is adopted on the low-voltage side to reduce conduction
loss on power semiconductors. To overcome the low voltage gain problem on conventional LLC
converter under reverse power operation, a parallel inductor is connected to the leg terminal of
three-level diode-clamp resonant converter. Thus, the proposed converter can achieve voltage step-up
and step-down for forward and reverse power operation by using PFM scheme. Compared to the
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bidirectional LLC circuit [15], the proposed converter can achieve ZVS operation for both power flow
directions. Compared to the symmetric LLC converters in [16–18], the proposed LLC converter has
less freewheeling current on primary-side for forward power operation. However, one ac switch is
needed in the studied circuit compared to conventional bidirectional LLC circuit topology. Finally,
the theoretical analysis is confirmed by experiments with a laboratory prototype.
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