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Abstract: Non-intrusive load disaggregation (NILD) is of great significance to the development of smart
grids. Current energy disaggregation methods extract features from sequences, and this process easily
leads to a loss of load features and difficulties in detecting, resulting in a low recognition rate of low-use
electrical appliances. To solve this problem, a non-intrusive sequential energy disaggregation method
based on a multi-scale attention residual network is proposed. Multi-scale convolutions are used to
learn features, and the attention mechanism is used to enhance the learning ability of load features.
The residual learning further improves the performance of the algorithm, avoids network degradation,
and improves the precision of load decomposition. The experimental results on two benchmark datasets
show that the proposed algorithm has more advantages than the existing algorithms in terms of load
disaggregation accuracy and judgments of the on/off state, and the attention mechanism can further
improve the disaggregation accuracy of low-frequency electrical appliances.
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1. Introduction

Load disaggregation technology is a key technology in smart grids [1]. Traditional load monitoring
adopts intrusive methods, which are able to obtain accurate and reliable data with low data noise [2],
but they are difficult to be accepted by users due to their high implementation costs. Non-intrusive
methods can provide detailed information for residents in time, and have the advantages of low
cost and easy implementation. According to this technology, the power consumption behaviors of
users can be analyzed, and users can be guided toward a reasonable consumption of electricity and
hence reduce their power consumption costs. With the continuous development of power demand
side management [3], big data analysis, and other technologies, non-intrusive load disaggregation is
attracting more attention.

The microgrid is an important manifestations of the smart grid. With the development of clean
energy, such as solar and wind energy, and energy internet technology, the microgrid has emerged.
It is a small power system with distributed power sources, which can realize a highly reliable supply
of multiple energy sources and improve the quality of the power supply [4]. As NILM technology
becomes more mature, the intelligent dispatching of the microgrid can be realized through automation
in the future to improve the effective utilization of power resources, ensure the stable economic
operation of a power system, and avoid the unnecessary waste of power resources. Therefore, NILM
technology is important.
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The concept of non-intrusive load monitoring was firstly proposed by Hart [5]. It mainly uses
non-intrusive load disaggregation (NILD). In this method, the total power consumption is disaggregated
to each individual electrical appliance. Hart proposed the concept of “load characteristics”, which he
defined as the information change of the electrical power of an appliance in operation. Hart further used
the steady-state load characteristics [6] to design a simple NILD system to decompose power. However,
effective features extracted by the algorithm were limited, and large disaggregation errors occurred easily.

At present, combinatorial optimization (CO) methods and pattern recognition algorithms are
the main algorithms for realizing non-intrusive load disaggregation. Among them, NILD based on a
combinatorial optimization algorithm [7] determines the power consumption value of each appliance
by investigating load characteristics as well as error comparisons between power states of combined
appliances and the total power. Chang [8] and Lin [9] used the Particle Swarm Optimization (PSO)
algorithm to solve the disaggregation problem based on the steady state current on a few electrical
appliances, but the disaggregation result error was large. In order to solve the NILD problem, Piga [10]
proposed a sparse optimization method to improve the disaggregation accuracy. The combinatorial
optimization method is essentially an NP-hard problem, so its efficiency is a challenge. In addition,
the optimization theory could be only used to analyze discrete states of electrical appliances, so it is
difficult to model loads with large load fluctuations.

With the development of machine learning, pattern recognition algorithms have been applied to
NILD. Batra [11] solved the depolymerization problem of low-power appliances using K-nearest neighbor
regression (KNN) [12], but the algorithm could not solve the problem of the large power difference between
appliances. Kolter [13] used the sparse coding algorithm to learn the power consumption models of each
electrical appliance and used these models to predict the power of each electrical appliance. Johnson [14]
used unsupervised learning for NILD, and this model had a high training speed. However, compared to
the supervised algorithms, the ability of Johnson’s method’s to identify complex continuous state loads was
limited because of the lack of prior knowledge. Kim [15] used the multi-factor hidden Markov algorithm
to disaggregate the continuous value of each electrical appliance according to the given total power
data. Some excellent machine learning algorithms, such as the support vector machine [16] and the
adaboost algorithm [17], achieved certain processes, but these methods shared the same problem: a
large number of load characteristics were required for identification, a requirement that was often
difficult to meet in practice. Different from traditional methods, the deep learning method [18,19] is
able to automatically extract features from original data [20]. In Kelly’s [21] experiment, various NILD
algorithms using deep learning were proposed, such as the Delousing AutoEncoder (DAE), the long-short
term memory network (LSTM), the gatedrecurrent unit (GRU), the Factorial Hidden Markov model
(FHMM), and the CO method. The DAE algorithm was proven to have good disaggregation results.
Zhang [22] used two convolutional neural network algorithms for load disaggregation. Compared
with Kelly’s method, the two CNN methods, sequence-to-sequence and sequence-to-point, achieved
better performance [23], but their layer numbers were small, and hence there were unable to extract
higher level load characteristics. In the above methods, the CO algorithm, the DAE, and the two CNN
methods were all trained by low-frequency data from the REDD dataset, which was first processed by
the NILM-TK toolkit. The sampling interval of the data was 3 s. With an improvement of the model
structure, Yang [24] proposed a semisupervised deep learning framework based on BiLSTM and the
temporal convolutional network for multi-label load classification. Akhilesh [25] proposed a multilayer
deep neural network based on the sequence-to-sequence methodology, and the algorithm, by reading
the daily load profile for the total power consumption, could identify the state of the appliances
according to the device-specific power signature. Since the neural networks were only trained for each
appliance and the computational cost was high, Anthony [26] proposed UNet-NILM for multi-task
appliances’ state detection and power estimation, which had a good performance compared with
traditional single-task deep learning.

The innovation of the algorithm proposed in this paper lies in the following: The multi-scale structure
is used to extract different load information according to the characteristics of load disaggregation.
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The attention mechanism is used to fuse the load information at different scales to further enhance the
feature extraction ability of the network, especially for the extraction of electrical features that are not
frequently used. The overall architecture uses a skip connection of the residual network [27] to improve
network performance. Experimental results on two benchmark datasets show that our method is superior
to other present methods.

2. Multi-Scale Attention Residual Network

2.1. Deep Residual Network

The depth of the neural network [28] is crucial to the performance of the model. Increasing the
depth of the neural network is helpful to extract more complex features and improve the accuracy
of the algorithm. However, at the same time, when the network reaches a certain depth, further
deepening would make the training accuracy saturated or even reduced. Traditional methods dealing
with gradient disappearance and gradient explosion, e.g., the activation function Relu and batch
normalization, are able to alleviate these problems to a certain extent, but not fundamentally solve
the problems.

The deep residual network (Resnet) [29] uses the idea of cross-layer connection. If those behind
the deep network are identity mapping, the model would degenerate directly into a shallow network,
and it is difficult to use the neural network stacked with hidden layers to fit into a potential identity
mapping function H(x) = x. However, if the network is designed to be H(x) = F(x)+ x, the procedure
can be translated into learning a residual function F(x) = H(x)− x. When F(x) = 0, it presents an
identity map F(x) = H(x). The residual network is a structure that outputs the features of front layers
to back layers. By introducing this structure, a neural network is able to perform well.

Assuming that the input of a forward neural network is x, the dimension is H ×W × C, and the
expected output of the network is H(x). The residual structure F(x) + x can be realized by a forward
neural network and a skip connection. When the number of input and output channels is the same,
the dimension of H(x) is also H ×W × C. A skip connection means that one or more layers of the
network are bypassed. A skip connection performs only one identity mapping and adds its outputs to
the outputs of stack layers.

The residual structure is shown in Figure 1. Each structure has two layers, where W1 and W2 are
the weight matrixes. The input is sequentially multiplied by the W1 matrix of the first layer, activated by
the relu function, and then multiplied by the W2 matrix of the second layer to obtain the forward output.
The forward neural network of the residual structure could be expressed as

F(x) = W2σ(W1x), (1)

where σ is the activation function. The right hand is the skip connection x of the residual structure,
and the final output is obtained after a summation operation. The formula is as follows:

y = F(x, Wi) + x, (2)

where F(x, Wi) is the residual mapping function that needs to be studied. Wi represents the weight
matrix of the hidden layer. When the input and output dimensions need to be changed, a linear
transformation W · x could be performed through the input at the skip connection residual structure.
Thus, the same figure of input and output characteristics could be expressed as

H(x) = F(x, Wi) + Wsx. (3)

According to Equation (3), it could be noted that for a deeper layer L, its relationship with the l
layer could be expressed as
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xL = xl +
L−1

∑
i−1

F(xl , Wl), (4)

where layer xL and layer xl are the residual unit inputs of layer L and layer l. According to Equation (4),
inputs of the residual unit in layer L could be expressed as the sum of inputs of a shallow residual unit
and all the complex mappings. The calculation power needed of the sum is much less than that of
the quadratics.

With a loss function, and according to the chain rule of back propagation, we can obtain

∂ε

∂xl
=

∂ε

∂xL

∂xL
∂xl

=
∂ε

∂xL
(1 +

∂

∂xl

i=1

∑
L−1

F(xi, Wl)). (5)

This means that continuous multiplications generated in the network are replaced by plus
operations, and the problem of gradient disappearance is well solved. The use of residual structure is
able to increase the network depth and extract deeper load characteristics from the data, thus improving
the accuracy of disaggregation algorithms. Based on the residual network, in view of the characteristics
of load disaggregation, we replaced the convolutional layer with the multi-scale structure and the
attention structure. Therefore, we proposed the MSA-Resnet.

F( )x x+

F( )x Relu

1W

2W

Relu

x

x

Figure 1. The residual structure.

2.2. Attention Mechanism

A convolution kernel, the core of a CNN, is generally regarded as aggregating information spatially
and channel-wise on local receptive fields. A CNN is composed of a series of convolution layers, non-
linear layers, and down-sampling layers, among others, and captures required features from global
receptive fields [30].

However, in order to obtain better network performance, a squeeze and excitation attention
mechanism is used in the network [31]. Its structure is shown in Figure 2. One of the novelties of the
algorithm in this paper lies in the use of the attention mechanism in the residual structure to further
improve the feature extraction ability of the network, especially for the extraction of electrical features
that are not frequently used. This attention mechanism is different from the previous structure, as it
improves performance from feature channels. The first 3D matrix in Figure 2 is composed of a feature
graph C with a size of H ×W.
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Figure 2. The attention block.

According to Figure 2, the spliced feature map of a multi-scale module is obtained through the
global pooling layer to obtain attention vector zc, which is compressed from the spatial dimension
to obtain the global receptive field. zc is a high-dimensional vector containing the low-order global
feature information of the feature map, and its dimension is 1× 1× C. The expression equation is
as follows:

zc = Fsq(uc) =
1

h× w
(

i=1

∑
h

j=1

∑
w

uc(i, j)). (6)

Next, two fully connected layers are applied to establish correlations between channels as excitation
and to output the same number of weights as the input feature. The equation is

sc = Fex(zc, w2) = δ(w2σ(w1zc), (7)

where the dimensions of w1 and w2 are all C
s × C, s represents the scaling coefficient, and the attention

vector sc is obtained after being activated by the Relu function and the Sigmoid function. It is a
high-dimensional vector of high-order global feature information obtained on the basis of attention
vector zc. The attention vector sc further represents the change of load feature information in the
channel dimension, and its dimension is also 1× 1× C. A Sigmoid activation function is similar to
a gating processing mechanism, which generates different weights for each feature channel of the
attention vector sc. Finally, the original three-dimensional matrix uc is multiplied to complete the
weight recalibration. Therefore, the importance of each load feature is obtained according to the feature
map [32]. Finally, the useful load characteristics are enhanced and the less useful load characteristics
are suppressed, which can improve the accuracy of load disaggregation of low-usage appliances.
The equation is

X = Fscale(uc, sc) = uc · sc. (8)

2.3. Multi-Scale Attention Resnet Based NILD

From the point of view of neural networks, the problem of NILM can be interpreted in this way.
Assuming that Y(t) is the sum of all the active power consumption of appliances in the household,
it can be expressed as the following formula:

Y(t) =
I

∑
i

Xi(t) + e(t). (9)

In the formula, Xi(t) represents the power data of electrical equipment i at time t, I represents the
number of electrical equipment, and e represents the model noise. Therefore, there is a pair of data
(X, Y), a model can be trained to represent the relationship between X and Y. X = f (Y) is a non-linear
regression problem, and the neural network is an effective method to learn the function f .

The overall network structure of the multi-scale attention residual network (MSA-Resnet)
proposed in this paper is shown in Figure 3.
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Figure 3. The MSA-Resnet overall structure.

(a) The multi-scale module is composed of convolution kernels with sizes of 3× 1, 5× 1, and
1× 1 and the pooling layer [33]. By combining (b) the attention block and the residual structure, (c) the
multi-scale attention residual block is formed. The structure of (a) is shown in Figure 4.

Filter

1×1 1×1

1×1

3×1

3×1 5×1

Filter concatenation

1×1

Figure 4. Multi-scale block.

All convolution cores of original residual elements are 3× 1 in size, which makes it impossible for
convolution layers to observe load data from multiple scales, and difficult to obtain more abundant
load features. The multi-scale module first goes though a 3× 1 convolution, followed by four branches.
The first branch uses a 1× 1 convolution to increase the load characteristics transformation [34], and a
3× 1 convolution is then applied to obtain a feature map (map1). The second branch is convolved
at 1× 1, and a 5× 1 convolution is then added to obtain map2. The third branch is pooled at 3× 1
to obtain map3. The fourth branch uses a 1× 1 convolution to obtain map4. Finally, these feature
maps are concatenated to input vectors for the attention module. Because the actual load power
has a large number of different gear positions, switch starts and stops, and operating characteristics,
the multi-scale feature method can improve the network’s ability to extract load characteristics and
increase the diversity of different scales of the network, thus improving the accuracy of non-intrusive
load disaggregation.

In the network structure of MSA-Resnet, nine multi-scale attention residual blocks are used. Forty
convolution cores are used in the first three blocks, 60 convolution cores are used in the forth to sixth
blocks, and 80 convolution cores are allocated in the last three. The first convolution layer and each
output part of multi-scale attention residual block is activated by an activation function Leaky-Relu.
Relu and Leaky-Relu [35] are shown in Figure 5:
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Figure 5. The Comparison of Relu and Leaky-Relu.

The Relu activation function represents the “modified linear element,” which could accelerate the
convergence speed of the network. Its equation is

f (x) = max(0, x). (10)

When the input is positive, the derivative is not zero, so the learning is based on the gradient.
However, when the input is negative, the learning speed of Relu slows down and can even inactivate
the neurons, such that it cannot follow new weights. Equation (11) represents the Leaky-Relu activation
function, where λ ∈ (0, 1) modifies the data distribution and retains the value of the negative axis.
As a result, the information retention ability is improved without losing more load characteristics, and
the gradient is guaranteed not to appear.

f (x) =

{
x if x > 0

λx if x < 0
. (11)

3. Data Selection and Preprocessing

3.1. Data Sources

The experimental data in this paper is from the public dataset UK-DALE [36] and WikiEnergy [37].
The UK-DALE dataset is a public access dataset from the UK, and the sampling frequency is 1/6 Hz.
The WikiEnergy dataset was produced by the Pecan Street company in the UK and contains the data of
nearly 600 households. It includes the total power consumed by each household over a period of time
and the power consumed by each individual electrical appliance. The sampling frequency of the dataset
is 1/60 Hz [38]. Kettles, air conditioners, fridges, microwaves, washing machines, and dishwashers were
chosen as non-intrusive load disaggregation tasks for the following reasons: (1) The power consumption of
these electrical appliances is a large proportion of the total power consumption. They are representatives
of electrical appliances. (2) Electrical appliances with low frequency and minimal power consumption
used in the data are easily disturbed by noise and not easily disaggregated. (3) The power consumption
of these six electrical devices includes mode disaggregation from simple to complex.

3.2. Data Preprocessing

Firstly, the NILM-TK toolkit was used to export the power data of the selected home appliances from
the WikiEnergy database and UK-DALE database. We then created aggregate power profiles and used
them as the experimental data. Secondly, different evaluation indexes often have different dimensions,
and their values are quite wide ranged, and this may affect the analysis results. In order to eliminate the
influence of these differences, data standardization is needed. Here, the maximum and minimum value
normalization method was used to normalize the result between [0, 1]. The normalization equation is

x∗t =
xt − Xmin

Xmax − Xmin
, (12)
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where xt is the total unstandardized power at time t, Xmax is the maximum of the total power sequence,
Xmin is the minimum of the total power sequence, and x∗t is the standardized result at time t.

3.3. Sliding Window

Deep learning training relies on a large amount of data. The NILM-TK toolkit was used to process
the database. We selected the desired electrical data and sorted it into an Excel file. The top 80% of
the processed data was taken as training data. The total power sequence X was taken as the input
sequence, and the individual electrical appliance Y was taken as the target sequence. The remaining
20% of the processed data was taken as testing data. In order to increase the training data of the
network and improve the expression ability of the data, the data was processed by using a sliding
window [39].

As shown in Figure 6a, the overlap sliding window [40] was used to process the total power
sequence and the target sequence in the training data to increase the data samples. Assuming that the
length of power sequence is M, a window of length N was cut from the original data with a sliding
step of 1, and the sliding operation was then carried out to obtain M − N + 1 samples. However,
as shown in Figure 6b, the non-overlap sliding window was used to process the testing data to save
time. Assuming that the sequence length is H, H

N samples could be obtained.

sliding sliding

a Overlap sliding b Non-overlap sliding

Figure 6. Sliding operation.

4. Result

This experiment used the Keras neural network framework. The computer processor was AMD2600,
and the graphics card was 1060 6G. After data was standardized, the length of the sliding window was
set to 200, the learning rate of the network was set to 0.001, and the Adam optimizer was selected as the
network optimizer.

Kelly’s experiments indicate that the DAE algorithm performs well in NILD, and Zhang C’s
work also shows a good performance of CNNs in sequence-to-sequence and sequence-to-point load
disaggregation. From the WikiEnergy data, we selected the air conditioner, fridge, microwave, washing
machine, and dishwasher from Household 25. From the UK-DALE dataset, the kettle, fridge, microwave,
washing machine, and dishwasher of Household 5 were selected. In order to verify the effectiveness and
stability of the algorithm proposed in this paper, four approaches were compared with the MSA-Resnet:
the KNN, the DAE, the CNN sequence-to-sequence learning (CNN s-s), and the CNN sequence-to-point
learning (CNN s-p). Firstly, the WikiEnergy dataset was tested. Figure 7 shows the disaggregation effect
diagrams of five appliances of WikiEnergy from Household 25, and the actual power consumption
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data of these appliances. The figure compares the four disaggregation methods with the MSA-Resnet
proposed in this paper.

Figure 7. Comparison load disaggregation results of Household 25 in the WikiEnergy dataset.

In order to verify the effectiveness of the proposed method, two evaluation indexes were selected
to evaluate the performance of the algorithm: the Mean Absolute Error (MAE) and the Signal Aggregate
Error (SAE). The MAE evaluation index was used to measure the average error of power consumption
and the actual power consumption of individual electrical appliances disaggregated at each moment.
The MAE is expressed as the following:

MAE =
1
T

t=1

∑
T
|pt − gt| , (13)

where gt represents the actual power consumed by an appliance at time t, pt represents the disaggregation
power of the appliance at time t, and T represents the number of time points.

Equation (14) is the expression of the SAE, where ê and e represent the power consumption
predicted by disaggregation within a period of time and the real power consumption within a period
of time. This index is helpful for daily electricity reports.

SAE =
|ê− e|

e
. (14)

Figure 7 describes disaggregations of Household 25 in the WikiEnergy dataset. It can be seen that
the above algorithms can basically achieve effective load disaggregation for the air conditioner. In the
load disaggregation diagram of the fridge, the DAE and CNN s-s algorithms fluctuate greatly in the
mean area of the appliance, compared with other algorithms. The KNN algorithm has the worst load
disaggregation effect on the last three kinds of electrical appliances, so it could not realize an effective
disaggregation of mutation points. For these three low-frequency electrical appliances, the load
disaggregation of CNN s-s and CNN s-p algorithms are stable compared with the other two algorithms,
but the load disaggregation of the CNN s-p method fluctuates greatly in the region of low power
consumption. In summary, compared with other methods in load disaggregation, the MSA-Resnet
shows the best performance on each electrical appliance, based on the power consumption curve.
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Table 1 shows comparisons of MAE and SAE indexes of Household 25 load disaggregation in the
WikiEnergy dataset. It can be seen that MSA-Resnet has obvious advantages in the disaggregations
of the air conditioner, fridge, microwave, washing machine, and dishwasher. According to the MAE
index, the MSA-Resnet performs better than the other four methods. For the SAE, the MSA-Resnet
achieves the lowest value on the fridge, washing machine, and dishwasher, and accurate disaggregation
of energy is achieved over a period of time. Combined with Figure 7 and Table 1, it can be inferred
that the shallow CNN s-s and CNN s-p have difficulty accurately disaggregating the total power into
the appliances with lower frequency. Compared with KNN and MSA-Resnet, the disaggregation
errors of CNN s-s and CNN s-p are larger, because the structure of shallow CNNs is not able to extract
deeper and more effective load characteristics, and their disaggregation effect is not as good as that of
MSA-Resnet. There are two reasons for this: firstly, the residual is used to deepen the network and
better enhance the ability to learn unbalanced samples; secondly, the ability to deal with low frequency
appliances by multi-scale convolutions is strong. As can be seen in Figure 7, the overall disaggregation
effect of the KNN on the washing machine is not good, but the disaggregation error is small in terms
of two indicators. To explain this phenomenon, certain interval periods are selected for comparative
analysis, as shown in Figure 8, the disaggregation comparison diagram shows each algorithm on each
electrical appliance with a finer scale. The figure reflects the ability of the KNN to detect peak values.
It can be seen in Figure 8b,c that the KNN is not able to accurately disaggregate mutation points, but it
could process regions with a power close to 0.
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Figure 8. Load disaggregation comparison for Household 25 of the WikiEnergy dataset.
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Table 1. Comparison of load disaggregation index of Household 25 of the WikiEnergy dataset.

Index Method Air Fridge Microwave Washing Machine Dish Washer

MAE

KNN 38.484 34.014 6.928 6.677 10.630
DAE 36.964 39.520 17.015 12.081 25.107

CNN s-s 61.129 38.413 9.973 18.497 19.084
CNN s-p 39.635 13.760 13.155 11.959 11.624

MSA-Resnet 36.388 10.440 4.862 2.161 2.013

SAE

KNN 0.0006 0.026 0.060 0.323 0.121
DAE 0.0001 0.071 2.317 2.835 1.405

CNN s-s 0.013 0.051 0.060 3.925 0.886
CNN s-p 0.006 0.074 0.319 2.467 0.098

MSA-Resnet 0.014 0.025 0.143 0.152 0.052

After the disaggregation of load, power thresholds of electrical appliances were used to distinguish
the on/off states, so as to calculate their evaluation indexes. The thresholds of the air conditioner,
fridge, microwave, washing machine, and dishwasher were set to 100 W, 50 W, 200 W, 20 W, and 100 W,
respectively. Recall rate, precision rate, accuracy rate, and F1 values [41] were used to further evaluate
the performance of the different algorithms in their on/off states.

Recall represents the probability of predicting correctly in the instance with a positive label:

Recall =
TP

TP + FN
, (15)

where True Positive (TP) represents the number of predicted states that are disaggregated as “on”
when their ground truth state is “on”, and False Negative (FN) denotes the number of predicted states
that are “on” when their ground truth state is “off”. There are two possibilites: one is to predict the
original positive class as a positive class (TP), and the other is to predict the original positive class as a
negative class (FN).

Precision refers to the proportion of samples that are predicted to be in an “on” state and are
indeed in an “on” state:

Precision =
TP

TP + FP
, (16)

where False Positive (FP) represents the number of states that are actually “off” when their predicted
states are “on”. Accuracy refers to the ratio of the number of samples correctly predicted to the number
of the total dataset:

Accuracy =
TP + TN

P + N
, (17)

where P is the number of positive samples, and N is the number of negative samples. F1 can be
expressed as

F1 = 2× precision× recall
precision + recall

. (18)

Table 2 is a comparison of the evaluation indexes for judging “on” or “off” states of Household
25 electrical appliances. It can be seen from Table 2 that for Accuracy and F1, MSA-Resnet achieves
the best performance in various electrical appliances.The disaggregation diagrams of the microwave,
the washing machine, and the dishwasher are in Figure 8, which shows that, in the actual power
consumption of these three electrical appliances, their proportion of “on” states is significantly lower
than that of the first two electrical appliances. In such unbalanced sample data with a small sample
size, the “on” states of the washing machine cannot be effectively predicted using the CNN s-s and
CNN s-p, whereas the MSA-Resnet presents better results.
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Table 2. Performance comparison of different algorithms for electrical on/off judgement of Household
25 in the WikiEnergy dataset.

Index Method Air Fridge Microwave Washing Machine Dish Washer

Recall

KNN 0.998 0.996 0.759 0.290 0.561
DAE 0.999 0.996 1 0.451 0.833

CNN s-s 0.999 0.990 0.949 0.290 0.868
CNN s-p 0.999 1 0.987 0.129 0.596

MSA-Resnet 1 0.986 0.880 0.806 1

Precision

KNN 0.987 0.870 0.198 0.236 0.336
DAE 0.987 0.853 0.050 0.229 0.281

CNN s-s 0.939 0.847 0.033 0.428 0.391
CNN s-p 0.995 0.996 0.050 0.047 0.414

MSA-Resnet 0.999 0.988 0.795 0.962 0.884

Accuracy

KNN 0.991 0.889 0.967 0.993 0.978
DAE 0.991 0.872 0.812 0.992 0.967

CNN s-s 0.958 0.864 0.729 0.995 0.978
CNN s-p 0.997 0.980 0.816 0.986 0.982

MSA-Resnet 0.999 0.981 0.997 0.999 0.998

F1

KNN 0.993 0.928 0.314 0.260 0.421
DAE 0.993 0.919 0.095 0.304 0.421

CNN s-s 0.968 0.913 0.064 0.346 0.539
CNN s-p 0.997 0.986 0.096 0.069 0.489

MSA-Resnet 0.999 0.987 0.835 0.877 0.938

In order to prove the effectiveness of the Leaky-Relu function, under the same conditions,
comparative experiments are conducted with WikiEnergy’s Household 25 using the Relu function.
According to the experimental results in Table 3, at the two indicators of the MAE and the SAE,
the algorithm using the Leaky-Relu function is better.

Table 3. Comparison of activation function of Household 25 of the WikiEnergy dataset.

Index Function Air Fridge Microwave Washing Machine Dish Washer

MAE Relu 46.029 10.799 6.954 3.403 4.539
Leaky-Relu 36.388 10.440 4.862 2.161 2.013

SAE Relu 0.015 0.034 0.234 0.287 0.157
Leaky-Relu 0.014 0.025 0.143 0.152 0.052

For further verification, we selected five electric appliances from Household 5 in the UK-DALE
dataset for additional experiments. Figure 9 shows the results of disaggregation. The figure shows that all
of the above algorithms are able to achieve effective disaggregation for the kettle, an electrical appliance
that is used often. For the fridge, the KNN and the DAE work worse than the CNN s-s, the CNN s-p, and
the MSA-Resnet. For the microwave, the washing machine, and the dishwasher, which are infrequently
used and have a low power consumption, the MSA-Resnet has better disaggregation results than the
other two deep learning algorithms, mainly because it could better detect peaks and state changes.

Table 4 shows Household 5’s load disaggregation evaluation index in the UK-DALE dataset.
Table 4 shows that the MSA-Resnet does better in MAE and SAE compared with other methods.
For the MAE, the MSA-Resnet performs better with respect to the kettle, the fridge, the washing
machine, and the dishwasher. The MSA-Resnet has smaller SAE values in the kettle, the fridge, and
the washing machine.
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Figure 9. Comparison load disaggregation results of Household 5 in the UK-DALE dataset.

Table 4. Comparison of the load disaggregation indexes of Household 5 of the UK-DALE dataset.

Index Method Kettle Fridge Microwave Washing Machine Dish Washer

MAE

KNN 1.413 2.407 0.378 4.032 3.274
DAE 8.867 8.218 1.226 14.920 12.756

CNN s-s 8.829 3.866 1.125 20.696 9.101
CNN s-p 4.002 4.517 1.159 23.881 9.747

MSA-Resnet 0.804 2.136 0.906 3.618 2.601

SAE

KNN 0.076 0.015 0.054 0.018 0.001
DAE 0.377 0.021 0.748 0.006 0.340

CNN s-s 0.522 0.032 0.880 0.315 0.213
CNN s-p 0.242 0.024 0.845 0.302 0.154

MSA-Resnet 0.001 0.013 0.720 0.0007 0.050

Table 5 shows the judgement results of “on” and “off” states of Household 5 in the UK-DALE
dataset. The thresholds of the kettle, the fridge, the microwave, the washing machine, and the dishwasher
were set to 100 W, 50 W, 200 W, 20 W, and 100 W, respectively. Table 5 shows that the Recalls of the
washing machine and the dishwasher using the CNN s-s and the CNN s-p are low, the number of positive
samples is small, and its ability to predict the “on” state is poor. If the task of judging the electrical state is
considered as classification, appliances with a high utilization rate have better classification results.

Figure 10 shows load disaggregation comparisons of these five methods over a period of time.
It can be seen from the figure that, compared with other algorithms, the MSA-Resnet could better
disaggregate equipments, whereas the KNN and the DAE have the worst decomposition abilities.
For the low-frequency washing machine and dishwasher, the MSA-Resnet could still well fit the
power curve, because of its network structure. It uses multi-scale convolutions to obtain rich load
characteristics, and it improves the performance of the network through the attention mechanism and
the residual structure.
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Table 5. Performance comparison of different algorithms for electrical on/off judgement of Household
5 in the UK-DALE dataset.

Index Method Kettle Fridge Microwave Washing Machine Dish Washer

Recall

KNN 0.987 0.988 0.944 0.911 0.968
DAE 0.985 0.944 0 0.921 0.938

CNN s-s 0.969 0.990 0 0.857 0.904
CNN s-p 0.993 0.923 0 0.838 0.928

MSA-Resnet 1 0.994 0.951 0.927 0.946

Precision

KNN 0.998 0.974 0.933 0.617 0.799
DAE 0.650 0.932 0 0.471 0.813

CNN s-s 0.946 0.944 0 0.663 0.835
CNN s-p 1 0.968 0 0.701 0.829

MSA-Resnet 0.996 0.996 1 0.672 0.850

Accuracy

KNN 0.999 0.986 0.999 0.981 0.996
DAE 0.997 0.955 0.999 0.967 0.996

CNN s-s 0.999 0.975 0.999 0.983 0.996
CNN s-p 0.999 0.961 0.999 0.984 0.996

MSA-Resnet 1 0.996 0.999 0.985 0.997

F1

KNN 0.992 0.981 0.939 0.736 0.875
DAE 0.783 0.938 Nan 0.623 0.871

CNN s-s 0.957 0.967 Nan 0.748 0.868
CNN s-p 0.996 0.945 Nan 0.764 0.876

MSA-Resnet 0.998 0.995 0.975 0.779 0.895
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Figure 10. Load disaggregation comparison for Household 5 of the UK-DALE dataset.
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In order to prove the effectiveness of the Leaky-Relu function, a comparative experiment with the
Relu function was also done on the UK-DALE dataset. Table 6 can prove that the Leaky-Relu function
is still the best.

Table 6. Comparison of the activation function of Household 5 of the UK-DALE dataset.

Index Function Kettle Fridge Microwave Washing Machine Dish Washer

MAE Relu 2.449 4.506 1.371 25.126 4.706
Leaky-Relu 0.804 2.136 0.906 3.618 2.601

SAE Relu 0.286 0.061 0.950 0.253 0.036
Leaky-Relu 0.001 0.013 0.720 0.0007 0.050

5. Conclusions

Load disaggregation is an important part of smart grids. At present, existing non-intrusive load
disaggregation methods based on deep learning have some problems; for example, they easily lose
features and have difficulty in detection, they do not identify low-use electrical appliances well, and their
networks degrade easily due to gradient disappearance. The disaggregation effects of traditional methods
are also very poor. In order to solve these problems, the MSA-Resnet is proposed for NILD. The residual
network deepens the network structure, avoids the gradient, and reduces the optimization difficulty.
Multi-scale convolutions obtain richer load characteristics and avoids feature simplification. The attention
mechanism is used to enhance the ability of the network to learn load characteristics and improves the
performance of the network. With its excellent performance on the WikiEnergy and UK-DALE datasets,
the MSA-Resnet is shown to be an effective way to solve non-intrusive load disaggregation. In future
work, we will conduct further experiments on public datasets such as REDD and real household data of
the State Grid to verify the generalization performance of the model.
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