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Abstract: In the past twenty years many experiments have demonstrated that quantum states of
light can be used for secure data transfer, despite the presence of many noise sources. In this paper
we investigate, both theoretically and experimentally, the role played by a statistically-distributed
asymmetric amount of loss in the degradation of nonclassical photon-number correlations between
the two parties of multimode twin-beam states in the mesoscopic intensity regime. To be as close
as possible to realistic scenarios, we consider two different statistical distributions of such a loss,
a Gaussian distribution and a log-normal one. The results achieved in the two cases show to what
extent the involved parameters, both those connected to loss and those describing the employed
states of light, preserve nonclassicality.

Keywords: mesoscopic quantum states of light; nonclassical photon-number correlations; lossy
transmission channels

1. Introduction

Since the seminal paper in which Bennett and Brassard dealt with the transmission of quantum
states and cryptographic keys through 0.3-m-long free-space air [1], Quantum Communication over
long distances has received a lot of interest. In the past two decades, many experiments have
been performed using both optical fibers [2–4] and free-space [5–7] channels. Starting from the
successful implementation of ground-to-ground atmospheric links [8,9], some most recent experiments
have also involved a satellite link [10–12]. Despite all these results, the development of a real
global communication network in free-space propagation is still prevented by the atmospheric
turbulence, which acts as a temporal and spatial variation of the air refraction index, thus varying
the transmittance of the links in a turbulent way. In order to understand the behavior of quantum
states of light propagating through atmospheric links, a deep investigation of quantum channels is
required [13]. In this respect, quite recent works have introduced different fluctuation loss models
capable of accurately describe some experimental results [14,15]. At the same time, it is also important
to investigate which kinds of quantum states and nonclassical features are more robust against
atmospheric fluctuations and can survive under specific conditions [16]. Until now, most experiments
have been implemented at the single-photon level. Recently, we have realized an experiment involving
mesoscopic twin-beam states, in which signal and idler were affected by different amounts of loss
distributed according to specific statistical distributions [17]. In particular, we have investigated
how nonclassicality changes as a function of the mean value of the distributions for fixed values
of their standard deviation. Here we face the problem from a different point of view, that is we
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consider the case in which the standard deviation of the distribution is varied and the mean value
of the distribution is fixed. At variance with the previous paper, we deeply analyze the behavior
of nonclassicality by choosing worse and worse situations, down to very low and very noisy
transmission-efficiency values. For all the chosen values of the parameters, we consider two possible
transmittance distributions, namely the log-normal distribution [18,19], which is typically used to
describe very turbulent transmission channels, and the Gaussian distribution, which can be exploited
to model free-space channels under specific weather conditions [20]. To investigate the nonclassicality
of the generated twin beams, which are entangled in the number of photons, we consider the noise
reduction factor (R). Indeed, it has been demonstrated that R < 1 represents a sufficient criterion for
entanglement in the case of bipartite Gaussian states [21]. Actually, many other nonclassicality criteria
exist and have been proposed over the years [22–27]. However, not all of them can be easily applied
to any experimental situation. Some of them, such as those based on separability criteria, require the
full reconstruction of the state under investigation. On the contrary, the noise reduction factor can
be calculated from experimental data in a more direct way, also because it can be defined in terms
of measurable quantities [28] (see the next section). The obtained results shed light on the different
behavior of nonclassicality according to the chosen distribution of the transmission efficiency and
on the evolution of such a behavior as a function of the different parameters. To be more exhaustive,
in this work we also investigate the role played by the mean number of photons per mode of the
employed quantum states in the entanglement degradation process.

Our analysis can give some useful hints not only for the exploitation of quantum states in
communication protocols, but also for their application in different contexts, such as for imaging
protocols [29–31].

2. Materials and Methods

2.1. Statistical Distributions of the Transmittance Coefficient

The transmission of light through a linear medium can be described by a wavelength-
and polarization-dependent transmission coefficient. However, noise effects, such as absorption,
depolarization, dephasing and scattering, can occur simultaneously, thus determining a variable
transmittance coefficient or, more properly, a statistically-distributed transmittance coefficient.
The situation is even more critical when the transmitted light is not represented by a single state but
rather by a multipartite one. Indeed, in such a case, the different components of the state can experience
different transmission efficiencies. This fact can determine the degradation of the correlations existing
among the parties. It is thus crucial to quantify the amount of degradation in order to verify if the
employed multipartite state is still useful for applications or not [32]. For instance, in the case of
correlated bipartite systems, both classical and quantum, it is possible to get a fair estimation of the
occurrence of degradation in terms of the noise reduction factor R, which is defined as

R =
σ2(n1 − n2)

(〈n1〉+ 〈n2〉)
, (1)

in which σ2(n1 − n2) is the variance of the distribution of the photon-number difference between the
two parties, while (〈n1〉+ 〈n2〉) is the shot-noise-level, that is the value of σ2(n1 − n2) in the case of
coherent states having mean values 〈n1〉 and 〈n2〉.

Typically, the noise reduction factor is used to test the nonclassicality of quantum states of light,
R < 1 being a sufficient condition for entanglement be expressed in terms of measurable quantities,
such as the “detected” number of photons. As an example, in the case of multimode twin-beam states,
the measured noise reduction factor reads [33]

R = 1−
2
√

η1η2
√
〈m1〉〈m2〉

〈m1〉+ 〈m2〉
+

(〈m1〉 − 〈m2〉)2

µ(〈m1〉+ 〈m2〉)
(2)
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and the condition R < 1 proves the existence of sub-shot-noise correlations between the two parties.
In Equation (2), 〈m1〉 and 〈m2〉 are the mean number of detected photons in the two arms of twin beam,
µ is the number of modes, and η1 and η2 are the detection efficiencies. In Ref. [17] we considered the
presence of an asymmetric loss in the two arms of twin beam, and defined 〈m1〉 = 〈m〉 = η〈n〉 and
〈m2〉 = 〈m〉t = η〈n〉t (t ∈ (0,1)). The expression for R modifies as:

R = 1− 2ηt
1 + t

+
(1− t)2

(1 + t)
mµ, (3)

in which mµ = 〈m〉/µ is the mean number of photons per mode. As stated above, in realistic situations,
the asymmetric transmittance coefficient t is not constant but rather statistically distributed. In this
case, by following the procedure presented in Ref. [17], it is still possible to find an analytic expression
for the noise reduction factor R, that is

R = 1− 2η〈t〉
1 + 〈t〉 +

1− 〈t〉)2

1 + 〈t〉 mµ +
(
〈m〉+ mµ

) σ2(t)
1 + 〈t〉 . (4)

We notice that in Equation (4) only the first two moments of the statistics of t are involved, namely
〈t〉 and σ2(t). This makes the investigation of the degradation of entanglement for twin-beam states
particularly straightforward once the two moments of the distribution of t are known (or can be
calculated). As an example, in Figure 1 we show a 3D plot of R as a function of 〈t〉 and σ(t) for
η = 0.145, 〈m〉 = 2.23 and mµ = 0.04, which represent typical experimental values.

Figure 1. Theoretical expectation, according to Equation (4), of R (red surface) as a function of 〈t〉 and
of σ(t) for η = 0.145, 〈m〉 = 2.23 and mµ = 0.04. The gray surface at R = 1 represents the boundary
plane between classical and nonclassical correlations.

As expected, the observation of nonclassical correlations becomes very difficult both at low values
of 〈t〉 and at values of σ(t) exceeding a threshold that depends on 〈t〉.

In the following, we consider two loss distributions that are involved in the propagation process of
light through media. In particular, we deal with Gaussian and log-normal distributions. The Gaussian
distribution of t can be expressed as

Pg(t) =
1√

2πσ0
exp

[
−(t− t0)

2

2σ2
0

]
, (5)

where t0 and σ0 are the mean value and the standard deviation for t ∈ (−∞,+∞), while the log-normal
distribution is usually defined as

Pln(t) =
1√

2πσξ t
exp

[
−[−ξ + ln(t)]2

2σ2
ξ

]
, (6)
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in which ξ ∈ < is the so-called location parameter and σξ > 0 is the scale parameter. Both parameters
are linked to the mean value and the standard deviation of the distribution for t ∈ (0, +∞):
t0 = exp[ξ + σ2

ξ /2] and σ2
0 = (exp[2ξ + σ2

ξ ])(−1 + exp[σ2
ξ ]).

For the specific application we are considering, the transmittance coefficient t is limited to the
interval (0,1), which means that the distributions in Equations (5) and (6) must be properly normalized
in the interval (0,1). The resulting probabilities can be expressed through closed formulas and the same
holds for the first two moments of the distributions, 〈t〉 and σ(t).

In order to appreciate the differences between the two distributions, in Figure 2 we show some
examples. We observe that, in general, at increasing the standard deviation, the discrepancies between
Gaussian and log-normal distributions become more evident, since the log-normal distribution
gets more asymmetric, while the Gaussian one remains symmetric. Moreover, comparing the two
distributions for a given choice of standard deviation and mean value shows that for small mean values
of t0 (see panels (a) and (b)) and large values of σ0 (see magenta curves) the log-normal distribution
is confined in the region corresponding to small values of t (dashed line), while the Gaussian one is
uniformly distributed all over the range (0,1) (solid line). On the contrary, for large mean values of
t0 (see panels (c) and (d)) and large values of σ0 (see magenta curves) the Gaussian distribution has
a longer tail towards small values of t than the log-normal one. At variance with these conditions,
in all panels for small values of σ0 (see black curves) the two distributions are more confined and
more similar.
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Figure 2. Gaussian (solid lines) and log-normal (dashed lines) probability distributions of t in the interval
(0, 1). The four panels (a–d) correspond to different choices of the mean value t0 of the distributions,
as indicated in the label on top of each panel. Inside each panel, the different colors correspond to different
choices of the standard deviation: σ0 = 0.15 is represented in black, while σ0 = 0.7 in magenta.

Before presenting the results of our investigation, we summarize the main features of the
experimental implementation and explain the method used to prepare the data according to the
specific distributions.
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2.2. Experimental Setup and Data Preparation

A sketch of the employed experimental setup in shown in Figure 3. The fundamental (at 1047 nm)
and the third harmonic (at 349 nm) of a Nd:YLF laser (IC-500, High Q Laser, Rankweil, Austria and
2003) regeneratively amplified at 500 Hz are sent to a β−barium-borate crystal (BBO1, cut angle = 37◦,
8-mm long) in order to produce the fourth-harmonic (at 262 nm) field by noncollinear sum-frequency
generation. The generated beam is used to pump spontaneous parametric downconversion in a second
BBO (BBO2, cut angle = 46.7◦, 6-mm long) crystal.

Nd:YLF laser
BBO2

BBO1

HPD

HPD

HWP PBS

Acquisition
system

I BF

IBF
MF

MF

L
L

Figure 3. (Color online) Sketch of the experimental setup. See the text for details.

Two twin portions at frequency degeneracy are selected both spatially and spectrally by means of
two irises (I) and two bandpass filters (BF), respectively. The filtered portions are then focused
into two multimode fibers (600-µm-core diameter) and delivered to two hybrid photodetectors
(HPD, mod. R10467U-40, Hamamatsu Photonics, Hamamatsu City, Japan and 2010). These are
photon-number-resolving detectors endowed with a partial photon-number-resolving capability and a
good linearity up to 100 photons. Each detector output is amplified, synchronously integrated and
digitized. As extensively explained in previous papers, by applying a self-consistent method to each
detector output it is possible to have access to detected photons and thus to the statistical properties of
the measured states [33,34].

In order to introduce a variable transmittance coefficient (from 0 to 1) only in one arm of the
twin-beam state, a half-wave plate (HWP) followed by a polarizing cube beam splitter (PBS) is
inserted in that arm. During the measurements, the half-wave plate is rotated in steps of 2◦ and
50,000 acquisitions are saved for each angle value.

To build a given distribution P(t) of the transmission coefficient, for each measured value ti in
the interval (0,1) we select a dataset of P(ti) elements on both arms and join all the chosen datasets
preserving the correspondence of the single data in the two arms. In such a way, the statistics of light in
the arm without variable transmittance remains unchanged, while that on the other arm gets modified.
This determines a degradation of the nonclassical photon-number correlations between the two arms,
which can be quantified by evaluating the noise reduction factor.

Note that this procedure allows us to check, starting from the same datasets, the effect of different
distributions of t by simply changing P(t) and choosing different values of t0 and σ0.

3. Results

At variance with Ref. [17], in which we focused our attention on the possibility of keeping
observing nonclassicality in the presence of an asymmetric loss between the two parties of the
twin-beam states, here we aim at finding the limits imposed by the parameters that describe
the transmittance statistics, both for the Gaussian and the log-normal distributions. According to
Equation (4), the noise reduction factor is a function of the first two moments of the distribution of t,
independent of the considered distribution. This means that by choosing the same mean value 〈t〉 and
the same standard deviation σ(t), the Gaussian and the log-normal distributions act in the same way.
On the contrary, if we consider the values of t0 and σ0 over the entire domains, we expect different
results. To better emphasize this point, in panel (a) of Figure 4 we show, as contour plot, the difference
〈t〉GAUSS − 〈t〉LOG between the mean value 〈t〉 of the normalized Gaussian distribution and that of the
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normalized log-normal distribution as a function of t0 and σ0, while in panel (b) of Figure 4 we do the
same for the standard deviation σ(t), namely we plot the difference σ(t)GAUSS − σ(t)LOG. In panel (a)
(panel (b)), the pink region corresponds to values of 〈t〉GAUSS − 〈t〉LOG (σ(t)GAUSS − σ(t)LOG) larger
than 0, the gray region to values lower than 0, and the black-dashed line dividing the pink region
from the gray one corresponds to the condition 〈t〉GAUSS − 〈t〉LOG = 0 (panel (a)), and to the condition
σ(t)GAUSS − σ(t)LOG = 0 (panel (b)). As it can be noticed by comparing the two panels, it is not
possible to find a set of t0 and σ0 values corresponding to equal values of 〈t〉 and σ(t) for the two
distributions, unless one considers sparse choices of t0 and σ0 for σ0 < 0.05.

(a)
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Figure 4. Panel (a): Contour plot of the difference 〈t〉GAUSS − 〈t〉LOG of the Gaussian and log-normal
distributions defined over the interval (0,1) as a function of the mean value t0 and of the standard
deviation σ0 of the same distributions defined over the entire domain. Panel (b): The same as (a) for the
difference σ(t)GAUSS − σ(t)LOG. In both panels, the black-dashed line corresponds to the condition in
which the difference is equal to 0, the pink region to values larger than 0 and the gray region to values
lower than 0.

For the above reasons, a direct comparison between the distributions could be not essential. On the
contrary, it can be more interesting, for each one of the two distributions separately, to investigate the
survival of nonclassical correlations as a function of its first two moments.

In particular, it is straightforward to deal with the expressions defined over the entire domain and
their corresponding moments by considering the link among 〈t〉 and σ(t) in Equation (4) to t0 and σ0.

First of all, we consider the case of the Gaussian distribution. In Figure 5 we show the noise
reduction factor as a function of the standard deviation σ0 for different values of t0. Even if, in general,
σ0 can assume values larger than 1, in our analysis we explored only values in the interval (0,1) since
they are sufficient to observe the degradation of nonclassicality. The data, shown as colored dots
+ error bars, are superimposed to the theoretical fitting curves that can be obtained according to
Equation (4), in which we fix the values of 〈m〉 and η and leave mµ and t0,FIT as fitting parameters.
In particular, we set 〈m〉 = 2.23, which is the maximum value of the mean number of photons detected
in the variable arm, and η = 0.145, which is the quantum efficiency of the detection chain obtained
as η = 1− RMIN , being RMIN the value of the noise reduction factor corresponding to t = 1. In the
fitting procedure, we leave t0,FIT as a free fitting parameter to take into account the possibility that
the preparation of the distribution of t is not ideal due to the discrete values of t at our disposal.
By inspecting panel (a) of Figure 5, we notice that the smaller the mean value the more difficult the
observation of nonclassicality. Indeed, for t0 = 0.4 only small values of σ0 make the condition R < 1
possible. On the contrary, for t0 = 0.9 the chance to observe nonclassicality is higher.
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Figure 5. Noise reduction factor as a function of the standard deviation σ0 of the Gaussian (panel (a))
and log-normal (panel (b)) distributions defined over the entire domain for different values of t0.
The experimental data are shown as colored dots + error bars: pink dots refer to t0 = 0.4, magenta
dots to t0 = 0.5, green dots to t0 = 0.6, blue dots to t0 = 0.7, black dots to t0 = 0.8, and red dots to
t0 = 0.9. The corresponding theoretical fitting functions are plotted as colored curves with the same
color choice. In the fitting procedure we fixed 〈m〉 = 2.23 and η = 0.145 and we left t0,FIT and mµ as
fitting parameters. The values of such parameters are reported in Tables 1 and 2 together with the χ2

per degree of freedom.

The behavior exhibited by the noise reduction factor in the case of the log-normal distribution,
shown in panel (b) of Figure 5, is quite similar. Indeed, also in this case, observing the nonclassicality
is particularly difficult for small values of t0. However, it is interesting to notice that, at variance
with the Gaussian distribution, for large values of t0 the values of R linearly increase as a function of
σ0, while for small values the behavior is more similar to a sigmoid. The different behavior of R for
different choices of t0 is due to the nontrivial and asymmetric shape of the log-normal distribution
at different mean values, as already shown in Figure 2. The fitting parameters corresponding to the
data shown in Figure 5 are summarized in Table 1 for the Gaussian distributions and in Table 2 for the
log-normal ones. In particular, we note that the fitted values of mµ are almost constant in the case of
Gaussian distributions, while they change in the case of log-normal ones.

Table 1. Values of the fitting parameters t0,FIT and mµ of the noise reduction factor as a function of σ0

for 〈m〉 = 2.23 and η = 0.145 in the case of Gaussian distributions of t. In the last column the χ2 per
degree of freedom is shown.

t0 t0,FIT mµ χ2
ν

0.4 0.460 ± 0.002 0.2171 ± 0.0007 0.018
0.5 0.523 ± 0.002 0.2115 ± 0.0007 0.060
0.6 0.616 ± 0.002 0.2115 ± 0.0008 0.054
0.7 0.721 ± 0.002 0.213 ± 0.001 0.118
0.8 0.839 ± 0.003 0.217 ± 0.002 0.198
0.9 0.964 ± 0.003 0.226 ± 0.002 0.463

Table 2. Values of the fitting parameters t0,FIT and mµ of the noise reduction factor as a function of σ0

for 〈m〉 = 2.23 and η = 0.145 in the case of log-normal distributions of t. In the last column the χ2 per
degree of freedom is shown.

t0 t0,FIT mµ χ2
ν

0.4 0.369 ± 0.007 0.077 ± 0.004 0.418
0.5 0.508 ± 0.007 0.126 ± 0.006 0.784
0.6 0.618 ± 0.004 0.161 ± 0.005 0.423
0.7 0.734 ± 0.002 0.189 ± 0.003 0.309
0.8 0.852 ± 0.002 0.213 ± 0.003 0.346
0.9 0.964 ± 0.003 0.226 ± 0.006 0.697
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4. Discussion

The different behavior of the mean number of photons per mode for the two distributions can
be ascribed to the fact that, when the mean number of photons is varied in one arm of the twin
beam, also the number of modes changes. Indeed, the number of modes we obtain from the first
two moments of the light statistics is an “effective” one describing the multimode state as the tensor
product of µ equally-populated single-mode states. This is just a useful approximation since in the
real experiment the different modes are differently populated [35]. For this reason, the attenuation
of light by a filter (the HWP followed by the PBS is equivalent to such a condition) can vary the
number of effective modes since some of the real modes can be so attenuated to go below the detection
threshold. In particular, we experimentally observed that the number of effective modes monotonically
increases at increasing the values of the mean number of photons. The variability of the number of
modes is amplified when the data are combined according to specific distributions of t. As discussed
above, this is more visible in the case of log-normal distribution due to its nontrivial shape at different
mean values.

To better investigate the role played by the mean number of photons per mode in the calculation
of the noise reduction factor for the two considered distributions, we theoretically study the behavior
of R as a function of σ0 by properly fixing the parameters appearing in Equation (4). In particular,
we set 〈m〉 = 2.23, η = 0.145 and consider two possible values of mµ, 0.1 and 0.04. The resulting
expressions for R are plotted in Figure 6.
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Figure 6. Theoretical values of the noise reduction factor as a function of the standard deviation σ0 of
the Gaussian (panels (a,b)) and log-normal (panels (c,d)) distributions for different values of t0. For all
the shown curves we set 〈m〉 = 2.23, η = 0.145. In panels (a,c) mµ = 0.1, while in panel (b,d) mµ = 0.04.
In each panel, the pink curve corresponds to t0 = 0.4, the magenta curve to t0 = 0.5, the green curve to
t0 = 0.6, the blue curve to t0 = 0.7, the black curve to t0 = 0.8 and the red curve to t0 = 0.9.



Appl. Sci. 2020, 10, 9094 9 of 12

We note that the choice 〈m〉 = 2.23, and mµ = 0.1 corresponds to a twin-beam state with
∼22 modes, while 〈m〉 = 2.23, and mµ = 0.04 corresponds to a twin-beam state with ∼56 modes,
which represents a more reliable experimental condition than the first choice.

The curves shown in panels (a) and (b) are for Gaussian distributions, while those in panels (c)
and (d) are for log-normal distributions. In general, the plots resemble the experimental behavior
of the plots in Figure 5. However, we notice that depending on the choice of mµ, the value of σ0 at
which the noise reduction factor is equal to 1, namely the boundary between classical and nonclassical
correlations, changes. In particular, the lower the value of mµ, the larger the threshold value of σ0.
Indeed, according to Equation (4), the lower the value of mµ, the lower the value of R. To better
investigate this result, in Figure 7 we plot the values of σ0 at which, for fixed choices of 〈m〉 and η

and for 4 possible choices of mµ, the theoretical value of R is equal to 1 as a function of t0. We show
the results in the case of Gaussian distributions in panel (a) and those for log-normal distributions in
panel (b). In general, we can see that the threshold values of σ0 increase at increasing values of t0 with
different slopes for the two distributions. Moreover, for log-normal distributions of t the growth is
more rapid than for Gaussian distributions.

The direct comparison among the curves corresponding to the same kind of distribution leads us
to conclude that reducing the mean number of photons per mode, that is increasing the number of
modes, makes it possible the detection of nonclassical correlations in the case of wider distributions
of t, that is for a highly fluctuating transmittance of the communication channel. Thus, a proper
tailoring of the mode structures of the state can make the employed twin beam more robust to losses.
We also notice that all the results achieved so far encourage us to test our optical states in more realistic
situations. Indeed, as reported in Ref. [20], the probability distributions of t corresponding to free-space
quantum channels under diverse weather conditions are characterized by mean values that range
from 0.9 down to 0.3. In some cases, the model that describes the transmission efficiency is more
symmetric thus resembling a Gaussian distribution, whereas in other situations is more similar to a
log-normal distribution.
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Figure 7. Expected threshold value of σ0 obtained by setting R = 1 in Equation (4) for 〈m〉 = 2.23
and η = 0.145. The data are shown as a function of t0 for different choices of mµ: 0.2 (black curve),
0.1 (red curve), 0.04 (blue curve) and 0.02 (green curve). Panel (a) corresponds to the case of Gaussian
distributions of t0, while panel (b) to the case of log-normal distributions.

5. Conclusions

In this paper we explored the survival of nonclassical correlations between the parties of
mesoscopic twin-beam states propagating through an asymmetric lossy channel, in which the
transmission coefficient was statistically distributed. In particular, we considered the case of Gaussian
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distributions and that of log-normal ones. We investigated the role played by the parameters
characterizing the light (mean number of photons and mean number of photons per mode),
the transmission channel (mean value and standard deviation of the distribution) and the detection
chain (quantum efficiency). In general, we can conclude, as expected, that the larger the mean value
of the distribution the better the observation of nonclassicality. Moreover, at a given mean value
of the distribution, the larger its standard deviation the worse the observation of nonclassicality.
In general, these results hold for both the Gaussian and the log-normal distributions. Not surprisingly,
the different shape of the distributions is responsible for the different behavior for the same choice of
parameters. In addition, we studied the dependence of the robustness of sub-shot-noise correlations
undergoing a statistically distributed amount of loss on the number of modes. We found that high
multimode twin-beam states are more robust to loss than low-multimode ones. This result can be
ascribed to the fact that a twin beam endowed with many modes has a photon-number distribution
less thermal, and thus less fluctuating, than a single-mode one [36–38]. Such a result suggests that,
in order to optimize the propagation of light in the presence of loss, a proper tailoring of the employed
quantum state should be performed in advance.
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sub-Poissonian light generation from twin beams by photon-number resolving detectors. J. Opt. Soc. Am. B
2014, 31, 20–25.

37. Allevi, A.; Bondani, M. Statistics of twin-beam states by photon-number resolving detectors up to pump
depletion. J. Opt. Soc. Am. B 2014, 31, B14–B19. [CrossRef]
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