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Abstract: Deep learning (DL) has been shown to obtain superior results for classification tasks in the
field of remote sensing hyperspectral imaging. Superpixel-based techniques can be applied to DL,
significantly decreasing training and prediction times, but the results are usually far from satisfactory
due to overfitting. Data augmentation techniques alleviate the problem by synthetically generating
new samples from an existing dataset in order to improve the generalization capabilities of the
classification model. In this paper we propose a novel data augmentation framework in the context
of superpixel-based DL called dual-window superpixel (DWS). With DWS, data augmentation is
performed over patches centered on the superpixels obtained by the application of simple linear
iterative clustering (SLIC) superpixel segmentation. DWS is based on dividing the input patches
extracted from the superpixels into two regions and independently applying transformations over
them. As a result, four different data augmentation techniques are proposed that can be applied to
a superpixel-based CNN classification scheme. An extensive comparison in terms of classification
accuracy with other data augmentation techniques from the literature using two datasets is also
shown. One of the datasets consists of small hyperspectral small scenes commonly found in the
literature. The other consists of large multispectral vegetation scenes of river basins. The experimental
results show that the proposed approach increases the overall classification accuracy for the selected
datasets. In particular, two of the data augmentation techniques introduced, namely, dual-flip and
dual-rotate, obtained the best results.
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1. Introduction

Hyperspectral images (HSIs) are formed by a grid of pixels, each of them represented by a
high-dimensional vector capturing a fraction of the electromagnetic spectrum for that point, sampled
at different wavelengths [1]. The high density of the spectral information contained in HSIs, in the
order of tens to hundreds of bands for a single scene, increases the ability to identify the materials
present in it. This characteristic makes HSIs popular candidates for supervised classification in the
field of remote sensing [2].

Deep learning (DL) models have been introduced in the last few years for HSI classification
tasks [3–6] with promising results. Convolutional neural networks (CNNs) [7] in particular, have been
successfully used for solving problems requiring multi-class, multi-label classification involving feature
extraction (FE) from images [8]. CNNs operate over small cubes of data called patches instead of
relying on spectral information alone. These patches are centered around a pixel of the image and
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taken from a sliding window of a certain size in order to extract spatial-spectral information. A patch
is extracted for every pixel of the image using this procedure.

CNNs generally require large amounts of training samples in order to prevent overfitting.
Data augmentation is a technique that synthetically generates new samples by applying a set
of domain-specific transformations over the original input dataset to improve the generalization
capabilities of a classification model. Several data augmentation techniques applicable to HSIs have
been proposed, most of which are based on geometric transformations commonly used for image
recognition tasks [9]. More recently, [10,11] described hyperspectral data augmentation techniques
where pixels are grouped in blocks and different block pairs are used as the input to a CNN. In [12],
samples in the original dataset were shifted along its first principal component or based on the average
value in each band. Augmentation based on randomly erasing parts of the input patches has also
been proven effective for HSI classification in [13]. Finally, generative adversarial networks have been
proposed recently as a data augmentation technique in order to generate new samples mimicking the
distribution of the original data [14–16].

Segmentation is a preprocessing technique capable of simplifying images, reducing them to
meaningful, independent regions of pixels with high intra-region similarity and high inter-region
dissimilarity called segments. The simplification makes this technique useful to reduce the
complexity of subsequent processing tasks. Examples of the use of superpixels in hyperspectral
classification as a way to exploit context information can be found in [17–19], and as part of a DL
classification scheme in [20,21]. In our proposal, superpixel segmentation [22] is used to reduce the
computational cost associated with CNN-based classification. During the training and prediction
stages, only a representative subset of pixels from each superpixel of the image is selected, allowing
for a significant reduction of the computational cost when compared to the sliding window extraction
from pixel-based classification.

In this paper, several augmentation techniques relying on geometric transformations aimed
at efficient, superpixel-based DL classification for large images are introduced. The main
contributions are:

1. A data augmentation framework called dual-window superpixel (DWS), based on a combination
of superpixel segmentation for patch extraction and geometric transformations is proposed.
Patches are divided into two regions and the transformations are applied independently to them.
This framework is introduced as part of a CNN classification scheme capable of improving the
classification accuracy and significantly reducing the execution time of the classification process.

2. A number of fast and simple data augmentation techniques based on the DWS data augmentation
framework are also proposed.

The rest of the paper is divided into four sections. Section 2 describes DWS, the proposed
classification scheme and the derived data augmentation techniques. Section 3 details the experimental
setup and lists the results obtained. Section 4 presents the discussion about the experimental results.
Finally, Section 5 summarizes the main conclusions.

2. Dual-Window Superpixel Data Augmentation (DWS)

This section describes in detail the DWS data augmentation framework developed as part of
this work, and the data augmentation techniques obtained from it. The main stages of DWS are
explained below.

2.1. Superpixel-Based Patch Extraction

Usually, in hyperspectral classification using CNNs, a sliding window of a certain size is
applied [23] to extract spatial-spectral information from the image I. The contents of this window P,
also called patch, are then fed to the network.
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The proposed scheme replaces the sliding window with the extraction of patches based on
superpixel information in order to reduce the computational cost. These superpixels are obtained
by applying simple linear iterative clustering (SLIC) [24], a low-complexity superpixel segmentation
method commonly used in computer vision, to the image I. Figure 1 shows the result of applying
SLIC to the Salinas hyperspectral scene. Strong adherence of the superpixel boundaries to the edges of
the image can be observed.

Figure 1. Cropped section of the Salinas scene after SLIC superpixel segmentation.

Figure 2 shows the first stages of DWS, related to the acquisition of the patches, prior to the data
augmentation itself. The chosen patch size in this example is 25× 25× B, B being the number of bands
in the image I. After the application of SLIC to I, each of the resulting superpixels is considered a
sample, and a patch is extracted from its center. This reduces the number of processed patches from
W × H, W and H being the spatial dimensions of the image, to a much smaller number of superpixels.

Hyperspectral 
image

W x H x B

I

Segmented 
image

W x H x B

Patch 
25 x 25 x B 

P

SLIC
Patch

centering

Patch 
25 x 25 x B
Subpatch 

15 x 15 x B  

Patch
subdivision

Figure 2. Patch preparation stages of the dual-window superpixel data augmentation (DWS) framework.

2.2. Patch Subdivision

Augmentation operations are commonly performed on the patch as a whole. The complete
patch is flipped, rotated, etc. This paper hypothesizes that, in contrast, applying transformations over
independent regions of the patch would produce better results. The patch subdivision operation in
Figure 2 depicts the patch subdivision stage proposed in this paper. Patches are divided into two
regions according to the distance from the central pixel. In the example, the inner region is set to
15× 15 pixels. This subdivision makes it possible to apply transformations to the inner region and
outer regions of the patch independently. Any transformation able to operate over a patch of data can
be applied, regardless of its nature.

The process of patch extraction and subdivision is shown in more detail in Figure 3. On the left,
the borders of the different superpixels obtained after applying SLIC over the image are depicted, along
with the central pixel of one of the superpixels. The black square centered on that same pixel represents
a patch of the desired dimensions that will be extracted at that location. The patch, shown on the right,
is then subdivided into two regions as part of this stage.
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Central pixel of the superpixel
Outer patch
Inner patch
Superpixel edge

Figure 3. Details of the patch extraction and patch subdivision stages.

2.3. Patch Transformation

Several augmentation techniques are introduced in this paper using the patch subdivision
principle described in the previous section in combination with the traditional rotate and flip
transformations. They can be divided into techniques with transformations applied to the inner
region (prefixed with the term inner) and techniques with transformations applied to both the outer
and inner regions independently (prefixed with the term dual).

Figure 4 shows examples of the outputs of all the techniques considered in this paper.
None indicates that no data augmentation is applied to the input patch. Random occlusion
(RO), as presented in [13], performs selective data erasing. Rotate and flip are the traditional
data augmentation techniques where the homonymous operation is applied over the whole patch.
In addition to those, the following techniques are proposed:

1. Inner-Rotate (4×): A set of 90, 180, and 270-degree rotation operations are applied to the inner
region only, yielding up to four samples.

2. Inner-flip (4×): A set of three flip or mirroring operations is applied to the inner region only,
yielding up to four samples.

3. Dual-rotate (4×/16×): A set of 90, 180 and 270-degree rotation operations are applied to the full
patch, yielding four samples. Afterward, for each of those four samples, the same operations are
applied again to only the inner region, producing up to sixteen samples per input patch.

4. Dual-flip (4×/16×): A set of three flip or mirroring operations is applied to the full patch,
yielding four samples. Afterward, for each of those samples, the same operations are applied
again to only the inner region, producing up to sixteen samples per input patch.

Rotate

Dual-Rotate

Random Occlusion

Inner-Rotate Inner-Flip

Flip

Dual-Flip

None

Figure 4. List of data augmentation techniques considered. The red orientation marks (dots) are shown
to indicate the orientation of the data relative to the original image.
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The dual-flip 16× technique is illustrated in Figure 5. The arrows next to the patches indicate flip
transformations performed on certain axes. Long arrows each represent a flip applied to the outer
patch, whereas small arrows each represent the same operation applied to the inner region. During
dual-flip 16× patch transformation, the following operations take place: first, flip transformations
over the horizontal axis, vertical axis and a combination of both are applied to the full patch producing
patches 1, 5, 9 and 13. Next, for each of the outputs from that step, the same flip transformations are
applied only to the inner region (row of transformations at the bottom of the figure).
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Figure 5. Proposed dual-flip 16× data augmentation technique based on the DWS framework. The red
orientation marks (dots) are shown to indicate the orientation of the data relative to the original image.

3. Results

This section contains information about the experimental conditions, datasets used in the
experiments and parameter selection. Lastly, the classification results obtained are presented.

3.1. Experimental Conditions

All the experiments were run using the classification scheme and network architecture described in
Figure 6. The figure shows, on the left, a patch extracted from the HSI. The black boundaries represent
the superpixel edges. The extraction process is explained in Section 2.1. The data augmentation
technique of choice was then applied to the patch. The data augmentation techniques based on DWS
are explained in Section 2.3. The patches resulting from this data augmentation process were then fed
to the CNN.
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C
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maps
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Feature
maps
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2D-Max-pooling
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Data 
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Figure 6. Classification scheme and CNN architecture.
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The network consists of two blocks of 2D-convolutional layers coupled with 2D-max-pooling
layers, and two dense layers. With the aim of reducing overfitting, two dropout layers were added to
the network, both of them using an aggressive dropout ratio of 0.5. Table 1 details the parameters for
each layer. ELU activations were used for all layers due to the advantages this function has over others
such as the ReLU family. Namely, ELU provides more robust training and faster learning rates [25].
All trainings were run for 112 epochs using a NADAM [26] optimizer with learning_rate = 0.0001,
β1 = 0.9, β2 = 0.999, ε = 1× 10−7.

Table 1. Neural network architecture.

# Type Output Shape Activation Filter Size Stride Padding

1 2D-Convolutional 25× 25× 128 ELU 1× 1 1× 1 None
2 2D-MaxPooling 12× 12× 128 - 2× 2 2× 2 None
3 2D-Convolutional 10× 10× 256 ELU 3× 3 1× 1 None
4 2D-MaxPooling 5× 5× 256 - 2× 2 2× 2 None
5 Dropout 5× 5× 256 - - - -
6 Flatten 1× 6400 - - - -
7 Dense 1× 256 ELU - - -
8 Dropout 1× 256 - - - -
9 Dense 1× C Softmax - - -

In the experiments, data augmentation was performed online for the first epoch and then cached
for the rest of the training. The techniques considered are a set of commonly used data augmentation
techniques from the literature and the four proposals introduced as part of this work. In the first group
we have: rotate, the standard 90 degree rotation applied four times; flip, the standard flip over both
axes of the image; PVS(+/−) or pixel-value shift augmentation, where pixel values of the input image
are shifted relative to the average band [12]; and random occlusion, which removes rectangular regions
of the patch on up to 50% of the input patches in a batch [13]. The new proposals to be studied include
inner-rotate, inner-flip, dual-rotate and dual-flip, as described in Section 2.3. The results are compared
in terms of classification accuracy after the application of the different data augmentation techniques.

All the tests were run on a 6-core Intel i5 8400 CPU at 2.80 GHz and 48 GB of RAM, and an
NVIDIA GeForce GTX 1060 with 6 GB. All experiments were run under Ubuntu Linux 16.04 64-bits,
Docker 19.03.5, Python 3.6.7, Tensorflow 2.0.0 and CUDA toolkit 10.0. All the training instances were
performed on Tensorflow with GPU support enabled, using single-precision arithmetic.

3.2. Datasets

This section describes the characteristics, including the compositions of the disjoint training and
testing sets, of the six scenes used to evaluate the performance of the proposed data augmentation
techniques. Three widely available hyperspectral scenes [27] from the literature (standard dataset,
from now onwards) and four large multispectral images from river basins belonging to the the Galicia
dataset [28] were considered. All the images of the Galicia dataset were captured at an altitude of 120
m by a UAV mounting a MicaSense RedEdge multispectral camera [29]. Its spatial resolution is 0.082
m/pixel and it covers a spectral range from 475 to 840 nm. Figures 7 and 8 display the false color
composite and reference data for the scenes of the standard and Galicia datasets, respectively.

More specifically, the Salinas Valley, Pavia University and Pavia Centre scenes from the standard
dataset along with the River Oitavén, Creek Ermidas, Eiras Dam and River Mestas scenes from the
Galicia dataset were selected for the experiments. The detailed descriptions of the scenes are as follows:

1. Salinas valley (Salinas): Mixed vegetation scene in California. It was obtained by the NASA
AVIRIS sensor with a spatial resolution of 3.7 m/pixel, covering a spectral range from 400 to
2500 nm. The image is 512× 217 pixels and has 220 spectral bands. The reference information
contains sixteen classes. The scene is located at 36°39′33.8′′ N 121°39′58.7′′ W.
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2. Pavia University (PaviaU): Urban scene acquired by the ROSIS-03 sensor over the city of Pavia,
Italy. Its spatial resolution is 2.6 m/pixel and covers a spectral range from 430 to 860 nm. The image
is 610× 340 pixels and has 103 spectral bands. The ground truth contains nine classes. The scene
is located at 45°12′09.2′′ N 9°08′08.6′′ E.

3. Pavia Centre (PaviaC): Urban scene acquired by the ROSIS-03 sensor over the city of Pavia, Italy.
Its spatial resolution is 2.6 m/pixel and covers a spectral range from 430 to 860 nm. The image is
1096× 715 pixels and has 103 spectral bands. The ground truth contains nine classes. The scene is
located at 45°11′12.7′′ N 9°08′48.7′′ E.

4. River Oitavén (Oitaven): Multispectral vegetation scene of the Oitaven river from Pontevedra,
Spain. The image is 6689× 6722 pixels and has 5 bands. The scene is located at 42°22′15.3′′ N
8°25′47.4′′ W.

5. Creek Ermidas (Ermidas): Multispectral vegetation scene showing the point where Creek Ermidas
and River Oitavén meet, from Pontevedra, Spain. The image is 11,924 × 18,972 pixels and has
5 bands. The scene is located at 42°22′51.9′′ N 8°24′53.5′′ W.

6. Eiras Dam (Eiras): Multispectral vegetation scene showing the reservoir that supplies running
water to the town of Vigo from Pontevedra, Spain. The image is 5176 × 18,224 pixels and has
5 bands. The scene is located at 42°20′46.5′′ N 8°30′10.5′′ W.

7. River Mestas (Mestas): Multispectral vegetation scene showing the River Mestas from Pontevedra,
Spain. The image is 4915× 9040 pixels and has 5 bands. The scene is located at 43°38′29.8′′ N
7°58′42.2′′ W.

200 m 200 m 500 m

(a) (b) (c)

Figure 7. False color composite and reference data for the selected images from the stardard dataset:
(a) Salinas, (b) PaviaU and (c) PaviaC.
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100 m 200 m

(a) (b)

200 m 100 m

(c) (d)

Figure 8. False color composite and ground truth for images from the Galicia dataset: (a) Oitaven,
(b) Eiras, (c) Ermidas and (d) Mestas.

Tables 2 and 3 show the number of samples for each class for all the scenes in all the scenarios
considered in this comparison. The scenes from both datasets were used as follows: 60% for training
samples, 20% for testing samples and 20% for validation samples for superpixel-based classification.
Table 2 also displays the number of samples for pixel-based classification; 20% of the samples were
used, again, as the validation set for this scenario. The number of samples was chosen to prevent an
excessively high baseline accuracy when no data augmentation technique was used.
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Table 2. Salinas, PaviaU and PaviaC scenes. Color codes for the classes and number of samples in the
training and testing sets used for both superpixel and pixel-based classification.

(a)

Salinas

Spp Pixels

# Classes Train Test Train Test
1. Brocoli_gw_1 13 1 11 1575
2. Brocoli_gw_2 20 9 15 2971
3. Fallow 26 13 11 1573
4. Fallow_r_p 17 9 9 1120
5. Fallow_smooth 37 16 15 2117
6. Stubble 57 14 22 3137
7. Celery 26 6 14 2867
8. Grapes_unt 116 41 58 8952
9. Soil_v_d 74 20 26 4915
10. Corn_s_g_w 58 12 24 2615
11. Lettuce_4wk 15 10 8 842
12. Lettuce_5wk 28 11 15 1528
13. Lettuce_6wk 15 7 6 726
14. Lettuce_7wk 21 3 6 848
15. Vinyard_unt 77 26 38 5781
16. Vinyard_v_t 16 2 10 1426

(b)

PaviaU PaviaC

Spp Pixels Spp Pixels

# Classes Train Test Train Test Classes Train Test Train Test
1. Asphalt 87 29 35 5207 Water 833 302 340 52,377
2. Meadows 217 70 93 14,842 Trees 166 54 43 6020
3. Gravel 23 7 9 1673 Asphalt 44 15 19 2457
4. Trees 61 17 17 2464 S-B Bricks 36 8 13 2149
5. Metal 21 4 8 1079 Bitumen 89 20 39 5263
6. Bare soil 42 19 26 4004 Tiles 188 55 48 7328
7. Bitumen 16 4 4 1065 Shadows 58 22 34 5821
8. Bricks 56 16 29 2888 Meadows 516 171 218 34,057
9. Shadows 21 6 3 754 Bare Soil 86 25 14 2280

Table 3. Oitaven, Ermidas, Eiras and Mestas scenes. Color codes for the classes and number of samples
in the training and testing sets used for superpixel-based classification. The ”-” symbol denotes the
absence of samples for the specified class.

Oitaven Ermidas

Total Total

# Classes Spp. Pixels Train Test Classes Spp. Pixels Train Test
1. Water 611 309,248 367 120 Water 322 163,930 183 70
2. Oak 3710 1,374,889 2227 739 Oak 1992 804,040 1201 390
3. Tiles 192 78,785 112 48 Tiles 224 138,678 137 33
4. Meadows 4464 2,440,331 2709 863 Meadows 5901 3,423,506 3550 1142
5. Asphalt 91 43,861 52 14 Asphalt 1632 737,409 976 331
6. Bare Soil 434 113,329 256 92 Bare Soil 388 123,416 253 83
7. Rock 336 79,152 192 72 Rock 859 174,088 522 172
8. Concrete 358 128,022 206 79 Concrete 64 32,866 45 8
9. Endemic veg. 968 458,565 592 197 Endemic veg. - - - -
10. Eucaliptus 4260 863,698 2553 838 Eucaliptus 4534 1,135,997 2704 926
11. Pines 717 193,884 430 151 Pines 700 184,547 41 3 149
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Table 3. Cont.

Eiras Mestas

Total Total

# Classes Spp. Pixels Train Test Classes Spp. Pixels Train Test
1. Water 1379 734,617 823 278 Water - - - -
2. Oak 5559 2,067,380 3332 1066 Oak - - - -
3. Tiles 17 8232 12 2 Tiles - - - -
4. Meadows 2457 773,964 1476 485 Meadows 8903 4,489,189 5373 1780
5. Asphalt 145 85,209 86 32 Asphalt - - - -
6. Bare Soil 401 96,935 247 86 Bare Soil 2708 1,051,275 1653 487
7. Rock 1383 144,800 830 286 Rock - - - -
8. Concrete 85 27,061 56 16 Concrete - - - -
9. Endemic veg. - - - - Endemic veg. 214 80,858 138 40
10. Eucaliptus 31 8451 23 5 Eucaliptus 9329 449,5047 5540 1887
11. Pines 309 95,132 187 70 Pines - - - -

Scenes 1 to 3 were segmented using SLIC with a superpixel size of 50 and a compactness parameter
of 20, whereas datasets 4, 5, 6 and 7 used a superpixel size of 800 and a compactness parameter of 40.
The compactness determines the balance of space and spectral proximity, with higher values favoring
space proximity and causing segments to take on a more square shape.

Two augmentation factors of 4× and 16× were considered, and are displayed in the tables next to
the name of each data augmentation technique. For every experiment, the following three accuracy
measures [30] are reported: overall accuracy (OA), representing the number of overall pixels correctly
predicted; average accuracy (AA), the mean of correctly classified pixels per class; and Kappa (κ),
which measures the agreement between pixel predictions across all classes, also taking into account
the occurrences attributed to chance [31]. The values shown are the results of 20 Monte Carlo runs for
each scenario. All the values were obtained under identical experimental conditions.

3.3. Superpixel-Based Classification

This section contains the experimental results of the proposal for superpixel-based classification,
as described in Section 2. A single scenario training the network with the 60% of the labeled superpixels
available has been considered. The classification performance was measured at the pixel level,
i.e., considering the same label for all the pixels in the same superpixel.

In order to select values for superpixel size and patch size, some tests were run using one image
considered as representative of each of the datasets. PaviaC was selected from the standard dataset
and Oitaven was chosen as the counterpart from the Galicia dataset. The results were obtained for two
scenarios, one where no augmentation was applied, and a second one where the DWS-based dual-flip
16× technique was used in order to improve accuracy. Values for superpixel sizes each represent an
average superpixel area used in the SLIC segmentation. Values for patch sizes each represent the size
of a side of the square patch used in the CNN classification process. Inner region sizes are 10 pixels
smaller than the corresponding outer regions. The relationship between inner and outer size was
chosen as a trade-off between the variability introduced by the transformations applied to the data
and the relevance of the inner region. Small changes in inner patch size would not significantly alter
the results obtained.

Figures 9 and 10 show the overall classification accuracy for the PaviaC and Oitaven images,
respectively, as the superpixel area (left) and the patch size (right) vary. In general, we can observe
an inverse correlation between superpixel sizes and accuracy of the CNN model. The accuracy
without applying data augmentation is correlated with patch size, and bigger patches produce better
results for the Oitaven image. The observed effect is smaller in the case of PaviaC. In this last case,
the oscillations in the graph are caused by the dispersion of the values across experiments. Finally,
results show a very limited increase in accuracy as the size of the patches grows when using the
dual-flip augmentation technique.
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Figure 9. PaviaC. Evolution of overall accuracy (OA) values with varying superpixel size (left) and
varying patch size (right). The tests used a base patch size of 25× 25 and a base superpixel size of 50.
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Figure 10. Oitaven. Evolution of OA values varying the superpixel size (left) and the patch size (right).
The tests used a base patch size of 25× 25 and a base superpixel size of 800.

The patch size selected for the experiments was 25 × 25 pixels, with an inner region size of
15× 15. The complexity of the proposed CNN is low, and as such, increases in patch size have a small
impact during training, allowing us to work with larger amounts of data at this stage. In contrast
to this, the amount of samples, most especially when augmentation is applied, has a large impact
on the speed of the training stage. Due to this, and in order to keep computation times at moderate
values, 50 and 800 were selected as the superpixel sizes for the scenes of the standard and Galicia
datasets, respectively.

Figures 11–14 show the evolution of the training metrics across all the training epochs. It can be
seen how the additional data generated by the augmentation methods cause the training process to
converge earlier. As a result, significantly steeper curves in both loss and accuracy can be observed.

Table 4 shows the classification results for Salinas, PaviaU and PaviaC. These images were used
for comparison purposes due to their prevalence in land-cover classification papers. Nevertheless,
scenes of a size this small see limited benefits from a superpixel level classification, as they are
low-resolution and contain very small and irregular structures. Dual-rotate 16× obtained the highest
OA for Salinas, which contains bigger and more regular structures. The best results for PaviaU
and PaviaC scenes were obtained by the flip 4× and rotate 4× techniques.
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Figure 11. PaviaC. Evolution of loss (left) and accuracy (right) with no augmentation technique.
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Figure 12. PaviaC. Evolution of loss (left) and accuracy (right) with dual-flip 16× data augmentation.
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Figure 13. Oitaven. Evolution of loss (left) and accuracy (right) with no augmentation technique.
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Figure 14. Oitaven. Evolution of loss (left) and accuracy (right) with Dual-Flip 16× data augmentation.

Table 4. Superpixel-based classification performance (in percent) for Salinas, PaviaU and PaviaC scenes
using the training and testing sets detailed in Table 2. The best result for each scene is displayed in bold.

(a)

Salinas

Technique OA AA κ

None 93.86 ± 1.33 95.71 93.16
Rotate 4× 94.02 ± 2.30 95.53 93.33
Inner-Rotate 4× * 95.18 ± 0.89 95.71 94.63
Dual-Rotate 4× * 86.24 ± 3.23 89.83 84.64
Dual-Rotate 16× * 97.04 ± 0.35 97.45 96.71
Flip 4× 95.02 ± 1.05 94.34 94.46
Inner-Flip 4× * 95.66 ± 0.63 95.95 95.17
Dual-Flip 4× * 87.30 ± 2.00 91.05 85.80
Dual-Flip 16× * 96.55 ± 0.44 96.36 96.15
PVS(+/−) 4× [12] 95.22 ± 0.46 96.30 94.67
PVS(+/−) 16× [12] 95.97 ± 0.37 95.96 95.51
Random Occlusion 4× [13] 95.22 ± 0.50 95.24 94.68
Random Occlusion 16× [13] 95.85 ± 0.42 96.59 95.38

(b)

PaviaU PaviaC

Technique OA AA κ OA AA κ

None 89.88 ± 0.88 87.06 86.50 96.76 ± 0.70 90.00 95.40
Rotate 4× 93.02 ± 0.63 89.10 90.71 97.70 ± 0.18 93.17 96.74
Inner-Rotate 4× * 91.46 ± 1.05 88.28 88.67 97.33 ± 0.20 92.07 96.22
Dual-Rotate 4× * 88.90 ± 1.27 81.14 85.20 95.84 ± 0.84 87.57 94.11
Dual-Rotate 16× * 91.99 ± 0.56 88.02 89.39 97.49 ± 0.20 93.11 96.44
Flip 4× 93.69 ± 1.02 90.81 91.62 97.60 ± 0.23 92.80 96.60
Inner-Flip 4× * 92.33 ± 0.49 87.86 89.80 97.12 ± 0.24 91.21 95.92
Dual-Flip 4× * 88.50 ± 1.26 81.89 84.52 96.15 ± 0.54 88.39 94.54
Dual-Flip 16× * 91.00 ± 0.63 84.26 88.00 97.58 ± 0.18 92.96 96.57
PVS(+/−) 4× [12] 89.82 ± 0.44 84.63 86.42 97.11 ± 0.20 91.08 95.90
PVS(+/−) 16× [12] 90.68 ± 0.74 86.41 87.57 97.36 ± 0.16 91.50 96.25
Random Occlusion 4× [13] 89.45 ± 0.58 84.61 85.96 97.07 ± 0.24 90.11 95.85
Random Occlusion 16× [13] 91.08 ± 0.48 87.94 88.12 97.15 ± 0.19 91.12 95.95

* Denotes the techniques proposed in this work.

Table 5 shows the classification results for the large multispectral scenes of the Galicia dataset,
namely, Oitaven, Ermidas, Eiras and Mestas. It can be seen that the proposed classification scheme
obtained high accuracy across all datasets, even when no data augmentation was applied during
training. Among the techniques tested, approaches based on the DWS framework introduced in this
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work achieved the best results: dual-rotate 16× and dual-flip 16× reached 96.20% and 96.19% OA for
Oitaven, respectively. The results for Ermidas, Eiras and Mestas share many similarities, with dual-flip
16× and dual-rotate 16× leading in terms of OA. When a lower data augmentation factor is considered
(4×), inner-flip 4× and inner-rotate 4× can be seen systematically obtaining higher OA values than
other methods. It can be seen that techniques based on flips tend to perform better than those based
on rotations when applied under similar constraints. Figure 15 shows the resulting classification maps
for the images of the dataset.

(a) (b)

(c) (d)

Figure 15. Classification maps for images from the Galicia dataset using superpixel-based classification
with dual-flip 16× augmentation: (a) Oitaven, (b) Eiras, (c) Ermidas and (d) Mestas. Color codes are
the same as those introduced in Table 3.

Table 5. Superpixel-based classification performance (in percent) for Oitaven, Ermidas, Eiras
and Mestas scenes using the training and testing sets detailed in Table 3. The best result for each scene
is displayed in bold.

Oitaven Ermidas

Technique OA AA κ OA AA κ

None 94.23 ± 0.44 90.46 92.37 97.20 ± 0.38 92.92 96.00
Rotate 4× 95.18 ± 0.46 92.40 93.62 97.83 ± 0.27 94.81 96.91
Inner-Rotate 4× * 95.39 ± 0.55 92.22 93.90 98.08 ± 0.29 95.61 97.25
Dual-Rotate 4× * 94.96 ± 0.33 91.45 93.33 97.70 ± 0.16 94.11 96.71
Dual-Rotate 16× * 96.20 ± 0.14 93.76 94.97 98.32 ± 0.11 96.36 97.61
Flip 4× 95.21 ± 0.39 92.78 93.67 98.01 ± 0.26 95.49 97.16
Inner-Flip 4× * 95.56 ± 0.20 93.08 94.13 98.12 ± 0.22 95.86 97.31
Dual-Flip 4× * 95.17 ± 0.30 91.78 93.62 97.91 ± 0.26 95.58 97.02
Dual-Flip 16× * 96.19 ± 0.13 93.16 94.97 98.56 ± 0.15 97.00 97.95
PVSA(+/−) 4× [12] 95.32 ± 0.25 91.26 93.81 97.82 ± 0.29 95.06 96.88
PVSA(+/−) 16× [12] 95.75 ± 0.15 92.66 94.39 98.05 ± 0.18 95.35 97.22
Random Occlusion 4× [13] 93.81 ± 0.49 89.18 91.81 97.19 ± 0.30 93.67 95.99
Random Occlusion 16× [13] 95.68 ± 0.22 92.07 94.28 98.08 ± 0.24 96.08 97.26
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Table 5. Cont.

Eiras Mestas

Technique OA AA κ OA AA κ

None 95.92 ± 0.53 88.22 93.85 91.05 ± 0.21 85.23 84.85
Rotate 4× 96.82 ± 0.32 90.99 95.21 90.76 ± 0.41 84.24 84.32
Inner-Rotate 4× * 96.82 ± 0.35 88.19 95.21 91.32 ± 0.18 86.07 85.30
Dual-Rotate 4× * 96.36 ± 0.19 85.63 94.51 91.06 ± 0.13 84.37 84.86
Dual-Rotate 16× * 97.08 ± 0.25 88.37 95.60 91.67 ± 0.10 87.65 85.93
Flip 4× 96.92 ± 0.24 89.47 95.36 90.75 ± 0.34 83.62 84.30
Inner-Flip 4× * 96.96 ± 0.17 89.65 95.42 91.27 ± 0.24 86.91 85.24
Dual-Flip 4× * 96.79 ± 0.22 87.15 95.16 91.15 ± 0.21 85.69 85.02
Dual-Flip 16× * 97.13 ± 0.20 88.81 95.67 91.70 ± 0.09 87.51 85.97
PVSA(+/−) 4× [12] 96.35 ± 0.26 85.70 94.49 91.31 ± 0.24 86.89 85.30
PVSA(+/−) 16× [12] 96.36 ± 0.26 86.27 94.49 91.35 ± 0.14 85.32 85.34
Random Occlusion 4× [13] 95.79 ± 0.28 85.13 93.64 90.72 ± 0.19 82.66 84.27
Random Occlusion 16× [13] 96.83 ± 0.20 86.15 95.21 91.47 ± 0.11 86.24 85.54

* denotes the techniques proposed in this work.

In order to summarize the results, Table 6 displays the performance differences between the baseline
performance and each of the augmentation techniques. The results for the standard dataset show
dual-rotate 16× was the best performing method overall, followed by flip 4×. For the Galicia dataset,
dual-flip 16× and dual-rotate 16× obtained the highest increase in OA, with 1.51% and 1.42%, respectively.

Table 6. Superpixel-based overall accuracy delta (in percent) per augmentation technique over baseline
performance for all the scenes from the standard and Galicia datasets. The best average result for each
dataset is displayed in bold. RO denotes random occlusion.

Rotate Inner-Rotate Dual-Rotate Flip Inner-Flip Dual-Flip PVSA(+/−) RO

Scene 4× 4× 4× 16× 4× 4× 4× 16× 4× 16× 4× 16×

Salinas 0.16 1.32 −7.63 3.18 1.16 1.8 −6.56 2.69 1.36 2.11 1.36 1.99
PaviaU 3.13 1.57 −0.98 2.11 3.8 2.45 −1.38 1.11 −0.07 0.8 −0.44 1.19
PaviaC 0.93 0.57 −0.92 0.72 0.84 0.36 −0.62 0.82 0.35 0.59 0.31 0.38

Average 1.41 1.16 −3.18 2.01 1.93 1.54 −2.85 1.54 0.55 1.17 0.41 1.19

Oitaven 0.95 1.16 0.72 1.97 0.98 1.33 0.94 1.96 1.09 1.52 −0.42 1.45
Ermidas 0.63 0.88 0.5 1.12 0.81 0.92 0.71 1.37 0.62 0.85 −0.01 0.88
Eiras 0.9 0.9 0.44 1.16 1 1.04 0.88 1.21 0.43 0.44 −0.13 0.91
Mestas −0.29 0.27 0.01 0.62 −0.3 0.22 0.1 0.65 0.26 0.3 −0.33 0.42

Average 0.83 0.98 0.55 1.42 0.93 1.09 0.84 1.51 0.71 0.94 −0.19 1.08

3.4. Pixel-Based Classification

This section contains the experimental results of the proposal for pixel-based classification.
This scenario was considered in order to show the performances of the proposed augmentation
techniques with a traditional pixel-based classification scheme. The scheme applied was the same one
described in Section 2, albeit without the superpixel segmentation step. The patches are centered on
pixels using a sliding window approach. Tests were run for the Salinas, PaviaU and PaviaC scenes.

Table 7 displays the execution times of all the augmentation techniques reviewed in this study
for the PaviaC scene. Based on the data obtained, we can observe that the total execution times are
significantly higher in the case of pixel-based classification. Training times have a very strong linear
correlation with the augmentation factor, and thus, with the number of samples being processed.
Prediction times are only dependent on the dimensions of the image, and there is little variation across
the different executions. It is worth noting that pixel-based classification is not practical for large
images due to the large execution time required. The large number of pixels that need to be predicted,
three orders of magnitude higher than the number of training samples, causes prediction times to be
significantly higher than training times.
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Table 7. Execution times (in seconds) for the classification of the PaviaC scene and for each
augmentation technique. Prediction time refers to the computation for the whole image.

Superpixel-Based Pixel-Based

Method Training Prediction Total Training Prediction Total

None 76.48 5.09 81.57 31.26 2453.79 2485.05
Rotate 4× 339.76 6.01 345.77 137.19 2645.13 2782.32
Inner-Rotate 4× * 325.28 5.88 331.16 130.44 2611.15 2741.59
Dual-Rotate 4× * 328.10 6.54 334.64 135.38 2550.93 2686.31
Dual-Rotate 16× * 1305.47 6.16 1311.63 508.97 2770.77 3279.74
Flip 4× 325.65 5.30 330.95 129.62 2525.46 2655.08
Inner-Flip 4× * 327.90 5.35 333.25 132.81 2541.49 2674.30
Dual-Flip 4× * 318.98 6.01 324.99 132.51 2528.27 2660.78
Dual-Flip 16× * 1320.23 7.47 1327.70 505.77 2739.75 3245.52
PVSA(+/−) 4× [12] 329.50 7.62 337.12 133.04 2767.88 2900.92
PVSA(+/−) 16× [12] 1306.37 7.53 1313.90 509.75 2770.44 3280.19
Random Occlusion 4× [13] 325.10 7.98 333.08 127.09 2724.73 2851.82
Random Occlusion 16× [13] 1297.85 7.58 1305.43 510.65 2752.50 3263.15

* Denotes the techniques proposed in this work.

Table 8 summarizes the pixel-based classification results for the Salinas, PaviaU and PaviaC
images. It can be seen that dual-flip 16× obtained the highest OA for the Salinas scene; inner-flip
4× yielded the highest OA for PaviaU; and flip 4× was the best performing technique for PaviaC.
Methods based on flip operations consistently outperformed rotations in this scenario.

Table 8. Pixel-based classification performance (in percent) for Salinas, PaviaU and PaviaC scenes using
the training and testing sets detailed in Table 2. The best result for each scene is displayed in bold.

(a)

Salinas

Technique OA AA κ

None 82.76 ± 2.42 86.15 80.74
Rotate 4× 87.74 ± 1.21 89.07 86.39
Inner-Rotate 4× * 87.96 ± 0.35 89.75 86.60
Dual-Rotate 4× * 87.12 ± 0.70 89.58 85.65
Dual-Rotate 16× * 91.02 ± 0.71 93.38 90.00
Flip 4× 88.84 ± 0.91 91.14 87.58
Inner-Flip 4× * 87.92 ± 1.39 89.39 86.55
Dual-Flip 4× * 87.73 ± 1.77 90.01 86.35
Dual-Flip 16× * 93.40 ± 0.17 94.80 92.65
PVS(+/−) 4× [12] 86.57 ± 0.56 86.91 85.04
PVS(+/−) 16× [12] 91.15 ± 0.25 91.62 90.12
Random Occlusion 4× [13] 85.24 ± 0.64 86.95 83.54
Random Occlusion 16× [13] 92.21 ± 0.34 94.67 91.56

(b)

PaviaU PaviaC

Technique OA AA κ OA AA κ

None 84.30 ± 0.62 71.69 78.91 96.82 ± 0.18 88.78 95.50
Rotate 4× 88.02 ± 1.45 77.60 83.88 97.32 ± 0.35 91.52 96.21
Inner-Rotate 4× * 85.24 ± 0.73 76.25 80.23 97.11 ± 0.13 90.01 95.89
Dual-Rotate 4× * 85.59 ± 0.54 77.86 80.92 96.85 ± 0.45 89.78 95.53
Dual-Rotate 16× * 86.91 ± 0.28 77.54 82.58 97.63 ± 0.07 92.71 96.63
Flip 4× 85.51 ± 5.22 78.56 81.10 98.23 ± 0.02 94.59 97.50
Inner-Flip 4× * 88.17 ± 1.89 82.33 84.33 97.43 ± 0.10 90.77 96.36
Dual-Flip 4× * 87.02 ± 0.90 78.18 82.86 97.32 ± 0.35 91.36 96.20
Dual-Flip 16× * 86.51 ± 0.86 78.02 82.14 97.27 ± 0.05 91.33 96.13
PVS(+/−) 4× [12] 85.51 ± 0.89 77.91 80.70 97.13 ± 0.07 91.03 95.93
PVS(+/−) 16× [12] 85.26 ± 0.56 76.21 80.33 96.54 ± 0.21 87.78 95.09
Random Occlusion 4× [13] 82.94 ± 0.45 70.84 77.03 96.74 ± 0.17 89.74 95.38
Random Occlusion 16× [13] 84.22 ± 0.61 68.47 78.78 96.27 ± 0.21 87.94 94.70

* Denotes the techniques proposed in this work.
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4. Discussion

The literature on multispectral and hyperspectral image augmentation contains a multitude of
different data augmentation techniques, most of which are used in combination with pixel-based
classification. There is a notable lack of proposals approaching data augmentation in combination with
superpixel-based classification schemes. Examples of the use of geometric transforms in pixel-based
classification schemes can be seen in [13,32,33]. Attempts to synthesize new samples drawing data
from a multivariate normal distribution initialized with the standard deviations of the bands in an
HSI can be found in [34]. Reference [15] approaches the generation of synthetic samples to be later
used in the training of deep networks through the use of GANs, as does [14]. These generative models
are very costly to train and require fine-tuned adjustments of the hyperparameters on a per scene
basis. The data augmentation framework proposed in this work leverages the composition of simple
transformations that require no parameter tuning in order to achieve robust increases in classification
accuracy when used in a superpixel-based classification scheme. This makes the derived methods a
convenient replacement for the traditional rotation and flip (mirroring) operations.

Reference [35] already introduced the idea of the division of an input patch into several regions
in order to better exploit the spatial information. The paper focuses on the selection and extraction
of a number of predefined regions surrounding a pixel of interest that are later fed to several CNNs.
More examples of the use of the spatial correlation between pixels in a scene can be found in [10],
where the authors define pixel-pair features. During the training phase, sample pairs are fed to a
CNN architecture that, once trained, is using during the testing phase to compute the labels of the
surrounding samples of the pixel being tested and obtain the final label performing a majority vote of
the outputs. A similar approach is taken in [11] with pixel-block pairs (PBPs), where the author further
builds upon that idea by adding explicit spatial information to the new PBP features. These proposals
try to achieve a goal that is similar, in essence, to what DWS does by using the central pixel of each
superpixel in order to extract a patch. By selecting the central pixel, the probability of obtaining data
from a region with high homogeneity is maximized, yielding an increase in classification accuracy.

To the best of our knowledge, no systematic comparison of data augmentation techniques
focused on superpixel-based classification has been published as of yet in the field of remote sensing.
The existing papers focus on pixel-based classification and the datasets usually comprise small,
low-resolution scenes. An additional factor that increases the difficulty when trying to compare
the results from different proposals arises from the use of different models or network architectures
to obtain them, making the comparison of the quality between different techniques a challenging
endeavor. In this work we provide a view of the current data augmentation landscape, by showing a
comparison to prove the effectiveness of the proposed DWS approach.

The experimental results for all the datasets show that techniques based on the DWS proposal
outperform the other techniques from the literature considered in this comparison for the classification
of large, high-resolution images. It is important to note that using DWS, training is performed using a
single observation per superpixel, reducing the amount of data that has to be evaluated by over two
orders of magnitude compared to pixel-based schemes. In most of the previous tests, augmentation
techniques making use of the DWS framework showed less dispersion in the results across runs for all
scenes, with noticeably smaller standard deviations than traditional techniques. Based on the evidence
observed, dual-rotate 16×, with an increase in OA of 1.51% should be the preferred augmentation
technique when processing small, low-resolution scenes, and dual-flip 16×, with an increase in OA of
2.01%, should be the best method for large, high-resolution scenes.

As part of future work, we plan to study the viability of further improving the data augmentation
techniques for images containing irregular structures when performing superpixel-based classification.
The possibility of adding some parametrization to the augmentation techniques based on the
characteristics of the patches extracted from the superpixels is being considered.
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5. Conclusions

In this work, the DWS data augmentation framework for superpixel-based DL classification
of large hyperspectral scenes is presented. DWS relies on patch extraction using a superpixel
segmentation obtained by the application of the SLIC algorithm in order to reduce the complexity of
the classification process. The extracted patches undergo patch subdivision, creating two regions over
which transformations are independently applied. Four data augmentation techniques based on the
DWS framework using rotate and flip transformations are proposed: inner-rotate, dual-rotate, inner-flip
and dual-flip. These techniques can also be used for pixel-based classification with minimal changes.

A comprehensive comparison of the proposals to other data augmentation techniques from
the literature was carried out for both superpixel and pixel-based classification scenarios in terms
of classification accuracy and execution times. The results obtained show that the proposed DWS
approach successfully manages to reduce overfitting and increase the generalization capabilities of
the resulting models. Execution times are also reduced when compared to traditional pixel-based
classification schemes. Based on the results obtained, the DWS-based dual-rotate 16× is the preferred
augmentation technique when processing small, low-resolution scenes, and dual-flip 16× is the best
method for large, high-resolution scenes.
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The following abbreviations are used in this manuscript:

AA average accuracy
CNN convolutional neural networks
DL deep learning
DWS dual-window superpixel
FE feature extraction
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RO random occlusion
Spp. superpixels
UAV unmanned aerial vehicle
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