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Abstract: This paper aims to derive an analytical modelling of the downlink exposure in 5G massive
Multiple Input Multiple Output (MIMO) antenna networks using stochastic geometry. The Poisson
point process (PPP) is assumed for base station (BS) distribution. The power received at the transmitter
is modeled as a shot-noise process with a modified power law. The distributions of 5G massive
MIMO antenna gain and channel gain were obtained by fitting simulation results from the NYUSIM
channel simulator. The fitted distributions, e.g., exponential and gamma distribution for antenna
and channel gain respectively, were then implemented into an analytical framework. In this paper,
we obtained the closed-form expression of the moment-generating function (MGF) for the total
exposure in the network. The framework is then validated by numerical simulations. The sensitivity
analysis is carried out to investigate the impact of key parameters, e.g., BS density, path loss exponent,
and transmission probability. We then proved and quantified the significant impact the transmission
probability on global exposure, which indicates the importance of considering the network usage in
5G exposure estimations.

Keywords: stochastic geometry; massive MIMO; electromagnetic field exposure; 5G

1. Introduction

The explosive growth in communication devices in the last decade pushed the industry towards
exploiting the existing communication spectrum. The recent mass-deployment of Internet of Things
(IoT) devices paired with increasing demand for quality in the streaming and entertainment industries
made satisfying these requirements using the same spectrum particularly challenging. To ensure
that the huge spectrum capacity required to maintain a stable communication system is met, the
industry started shifting with the design of 5G networks to millimeter-wave (mmWave) frequency
bands. For indoor communication, mmWave bands are already in use, e.g., IEEE 802.11ad [1].
However, mmWave channels are fundamentally different from Ultra High Frequency channels used
for existing cellular communication protocols, they have higher propagation loss in air, and low
penetration for construction materials and foliage [2]. The high path loss in mmWave frequencies
makes it necessary to implement methods to increase the received power at the mobile terminal (MT) in
order to maintain an acceptable signal-to-noise ratio (SNR) to decode the signal. One way of increasing
the SNR is by increasing the gain at the base station (BS). Therefore, beamforming became one of the
essential technologies for 5G mmWave communication. The usage of a large number of radiating
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elements at the antennas will allow them to emit signals in fast-varying, high-gain beams focused on
the desired MT, while simultaneously decreasing the interference to other MTs.

Exposure compliance assessments are performed by manufacturers and operators to ensure
that emitting devices are compliant with safety regulations concerning human exposure to
electromagnetic fields. Safety regulations concerning human exposure to EM fields have been
specified by International Commission on Non-Ionizing Radiation Protection (ICNIRP) [3] and IEEE [4].
Multiple studies have been made over the years to characterize the exposure in current and legacy
communication systems which are based on assuming the maximum theoretical power emitted for the
antenna. However, these characterizations struggle to stay accurate for 5G and future technologies due
to the fundamental differences between the systems. In [5,6], it has been shown that the actual power
contributing to the electromagnetic field exposure is much lower than the theoretical maximum. This is
due to the uncertainty in the values of the emitted and received power from a massive MIMO antenna
deploying beamforming. The spatio-temporal variation of the antenna pattern, and its dependency
on the MT distribution and channel characteristics make the transition to statistical methods for the
exposure estimation a necessity if accurate estimations are desired. Statistical analysis of cellular
networks’ exposure has been a case study for the last couple of years, using simulations to model
the behavior of the channel and the transmission e.g., in [7], but accurate analytical analysis is yet to
be conducted.

1.1. Current Approaches in Exposure Estiamation

The assessment of the exposure is often realized either by in-situ measurements [8] or system-level
simulations [6]. For 5G specifically, in-situ measurements are generally unconvincing in studying the
exposure of a 5G system due to the variability of the transmission beams. The beam serving a specific
area or MT changes in a period much smaller than the sweep time of most commercially available
measuring equipment which means that during the time the equipment is measuring the whole band,
the beam would have already changed. Moreover, the high dependence of the received power on
the channel and the MT distribution make the analysis of the measurements especially challenging.
Thus, it is why recent studies suggest the extrapolation of the received power from a single constant
beam, ignoring the system usage and variability. The difficulty of generalizing measurements to
study the exposure make theoretical studies and simulations more attractive. These studies allow
freedom in assuming the network to emulate different scenarios. While system simulations are
straightforward in design, they are very time and resource heavy, and they do not give direct insight
on the different system parameters, therefore analytical analysis becomes more attractive to consider.
Analytical estimations of the exposure have been previously considered, e.g., [5] although with a
simplified antenna beamforming and system design.

An area in analytical modeling that was widely used in the domain of cellular networks is
stochastic geometry. The assumption that the BSs are distributed following a point process gives this
approach a relatively accurate basis and provides the mathematical tools necessary for the modeling
of the system. Obtaining the closed-form expression will also give a direct way to study different
parameters affecting the exposure, hence we chose it as the basis of our study. In this study, we also
use the active antenna model developed by 3GPP [9,10], which assumes a uniform rectangular array
antenna, for communication in bands above 6 GHz. As for the channel model, we use the NYUSIM
statistical mmWave channel simulator [11], which is backed by extensive measurements in the mmWave
band, and was shown to be better suited for above 6 GHz frequencies [12]. Multiple large-scale
channel measurements have been conducted in the mmWave band over the last few years [13–16],
and multiple studies compared the different channel models used by the different standardization
bodies as in [12,17].
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1.2. Our Approach and Contributions

The mathematical approach to analyzing cellular systems is often considered as a promising
solution [18]. However, for cellular networks, analytical tractability has been proven by relying on the
methodology of stochastic geometry while modeling the BSs using point processes. Stochastic geometry
has been widely applied in the field of communication theory, and it has proven that it is a powerful
approach in conducting performance analysis and solving optimization problems. Examples of the
usage of stochastic geometry in modeling cellular networks can be found in [19–24]. In this study,
we model the locations of the base stations in the network as identically and independently distributed
following a homogeneous Poisson point process (PPP).

In this paper, we fitted the channel gain and the antenna gain into statistical distributions based
on channel simulations from NYUSIM and the 3GPP antenna array model. We determined the
closed-form expression of the MGF for the exposure in the network, which is equivalent to the total
power received at a certain MT location, with which we compute its cumulative distribution function
(CDF). We analyzed the behavior of the 90th percentile of the exposure for different network parameters.
We showed the comparison between this model and a simplified, less accurate, model with simple
antenna and channel models in [25]. We performed a sensitivity analysis on the exposure expression to
show the impact of each parameter on the global exposure. We also proved that ignoring the network
usage when analyzing exposure will lead to large inaccuracies. The list of the symbols used in the
paper is presented in Table 1 and the list of all abbreviation used can be found in in Appendix B at the
end of the article.

Table 1. List of symbols used in antenna pattern and model derivation.

Symbol Description

Pt
rx Total Power Received at the center of the cell

PBSi
rx Power received from the ith BS at the center of the cell

Ptx Transmitted power from all the BSs
Hi, Gi Channel and antenna gain from the ith BS to the MT

Li Path loss experienced by the transmitted signal from the ith BS to the MT
θ, φ Zenith and azimuth angles in the local coordinate system centered at the origin of the array

AE, AE,V , AE,H(θ,φ) Radiation pattern and its vertical and horizontal components respectively
θ3dB, φ3dB Vertical and horizontal beamwidths of the antennas in degrees

min[x1, x2 . . .] Numerically smallest number of xk
Am Antenna’s front-to-back ratio

SLAV , SLAH Vertical and horizontal sidelobe attenuation levels
AA(θ,φ) Array pattern of the antenna

vm,n Phase shift due to the [m, n] antenna element placement
wm,n Weighting factor due to the [m, n] antenna element

NH, NV Number of horizontal and vertical antenna elements
θetilt, φescan Zenith and azimuth electrical down-tilt steering angle

dv, dH Vertical and horizontal antenna element spacing
Γ(b) Gamma function Γ(b) =

∫
∞

0 xb−1e−xdx, R(b) > 0
ΨBS,λBS The Poisson point process and its density describing the BS distribution in the cell
Ek[.] Expectation with respect to the random variable k
λactive

MT Density of the active MTs in the cell
α Emission probability of the BSs

MT0 Mobile terminal at the center of the cell
ri the distance between BSi and MT0
η Path loss exponent assumed constant in the whole cell

ϕX, ΦX Moment generating function and characteristic function of the random variable X
FX(x) CDF of the random variable X
Γ(a, x) Upper incomplete gamma function
γ(a, x) Lower incomplete gamma function

K Iid random variable describing the channel and antenna gains
2F2(a1, a2, b1, b2, z) Generalized hypergeometric function
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2. System Model

The aim of this study is to determine the closed-form equation of the electromagnetic field
exposure in a 5G massive MIMO cell emitting in the mmWave band. The base stations are modeled
as points of a stationary and isotropic Poisson point process ΨBS with density λBS. The locations of
said points are denoted by x ∈ ΨBS ⊆ R2. The MTs are distributed uniformly and independently in a
bounded region of R2 and thus, in addition to the assumption on the BS distribution, we can generalize
the distribution of the exposure over the whole cell area and the framework can be developed for a
typical MT denoted by MT0 located at the origin without losing generality. To investigate the effect of
the network load on the exposure, we assume that the BSs emit with probability α, i.e., at a certain
time-frame the number of active MTs is less than the number of base stations λactive

MT ≤ λBS, which means
that the BSs will have an effective density of λe f f = α λBS. Since line-of-sight (LOS) paths are the
highest contributors to the exposure, we assume that all the paths between the BS and the MT are
LOS paths. The BSs will emit with a constant power denoted by Ptx. We assume a 5G massive MIMO
network where the BSs are composed of antenna arrays with identical structure, and thus identical
radiation patterns. The BS is assumed as single user MIMO, and it emits towards one MT in a single
time slot. We assume no downlink power control exist in the network, which seems to be the case for
5G networks [26], so every MT is being allocated the whole power resource for each transmission slot.
We implement the channel model NYUSIM, developed by New York University Wireless Group [11]
which divides the channel power into clusters and paths between the BS and the MT. The received
power PBSi

rx at each MT is dependent on the transmitted power, the propagation distance, the channel
gain, and the antenna gain. The global exposure Pt

rx can then be defined as Pt
rx =

∑
BSi∈ΨBS

PBSi
rx and it

can be rewritten as
Pt

rx =
∑

BSi∈ΨBS

PtxHiGiLi, (1)

where Hi, Gi, and Li are the link’s channel gain, antenna gain, and path loss, for the link between the
MT to the ith BS, respectively. To better analyze the distribution of total received power Pt

rx, we focus
on studying the CDF of total received power, which is defined as

FPt
rx
(x) = Pr

{
Pt

rx ≤ x
}
, x ∈ [0,+∞) (2)

In the following subsections, we describe the system model, including the antenna array gain,
the channel gain, and derive the expression to compute the CDF of the exposure of the assumed network.

2.1. Path Loss Model

In the current paper, a two-state path loss model is considered. It is modeled as a shot noise
process with a modified power law [27]. We divide path loss into two regions, with r < R0 and r ≥ R0.
The explicit expression for path loss Li (ri) for the link between UE and ith BS is denoted as

Li(ri) =

{
Ki, | ri < R0

Kir
−η
i , | ri ≥ R0

(3)

where ri is the distance between BSi and MT0, and η is the path loss exponent assumed constant in the
network.

K is an independently distributed random variable drawn from a common distribution and
independent of r. It accounts for the transmitted power, the channel gain and the antenna gain for the
ith link, defined as Ki = PrxHiGi. The details of Hi and Gi are presented in the following subsections.

Remark 1. In the present paper, we adopt this two-state path loss model, which has already included the simpler
case by setting K(r < R0) = 0 used in the authors’ previous work [25]. In the region where r < R0,
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we approximate the path loss with a constant which can be interpreted as a rough average of the attenuation in
the near-field region while for r > R0, the power law decay model is used.

2.2. Antenna Model

We implement the 3GPP active antenna model used to model the channels above 6 GHz [9].
The model can be used on frequencies up to 100 GHz. We have implemented the 3D model (2D
steering) with steering in both elevation and azimuth since both scanning directions will be exploited
in mmWave antennas [28]. The total antenna radiation pattern is the combination of the radiating
element’s radiation pattern and the array factor. The modeling of the antenna array is explained in the
following subsections.

2.2.1. Element Pattern

By denoting θ and φ as the zenith and azimuth angles in the local coordinate system centered
at the center of the antenna array, respectively, and defined as 0◦ < θ < 180◦ and −180◦ < φ < 180◦,
we can express the radiation pattern AE of an antenna element as

AE(θ,φ) = −min[AE,V(θ) + AE,H(φ), Am] (4)

where AE,V and AE,H are the vertical and horizontal radiation patterns of the array element, expressed as

AE,V(θ) = −min

12
(
θ− 90◦

θ3dB

)2

, SLAV

 (5)

AE,H(φ) = −min

12
(
φ

φ3dB

)2

, Am

 (6)

where, θ and φ are the zenith and azimuth angles respectively in the local coordinate system centered at
the center of the antenna array and defined as 0◦ < θ < 180◦ and −180◦ < φ < 180◦. θ3dB = φ3dB = 65◦

are the 3 dB vertical and horizontal beamwidths of the antenna, SLAV = SLAH = 30 dB are the
vertical and horizontal sidelobe attenuation levels, respectively, and Am = 30 dB is the antenna’s
front-to-back ratio.

2.2.2. Array Pattern

Implementing a large number of antenna elements in the array will allow high-gain transmission
of power towards the served MT by concentrating the field intensity in the direction of transmission [29].
The interference of the transmitted electromagnetic fields will form points of high intensity in certain
directions, while producing low intensity transmissions towards unwanted directions. The array
pattern is determined according to the physical implementation of the antenna elements and the
electrical steering of the main beam. The array’s radiation pattern AA is determined using the element
radiation pattern AE in Equation (6), and assuming a uniformly spaced rectangular array (URA) in the
horizontal and vertical dimensions with identical element radiation pattern as in

AA(θ,φ) = AE(θ,φ) + 10 log10

1 + ρ


∣∣∣∣∣∣∣

NH∑
m=1

NV∑
n=1

wm,nvm,n

∣∣∣∣∣∣∣
2

− 1


, (7)

where vm,n is the phase shift due to the antenna element placement, wm,n is the weighting factor which
provides the electrical down-tilt and attenuation of the antenna’s sidelobes, and NH and NV are the
number of horizontal and vertical antenna elements respectively. As it is shown in Equation (9), w is
dependent on the antenna steering angles, the electrical down-tilt steering angle θetilt and the electrical
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horizontal steering angle ϕescan, and since we assume that the main beam of the antenna is centered
towards the receiving MT, the antenna array will have a different radiation pattern towards each MT
depending on their location. The 2D slice of the antenna pattern on the azimuth plane for a 16 × 16
array can be presented as in Figure 1.

vm,n = exp
(
2πi

(
(n− 1)

dV

λ
cos(θ) + (m− 1)

dH

λ
sin(θ) sin(φ)

))
(8)

wm,n =
1

√
NHNV

exp
(
2πi

(
(n− 1)

dV

λ
sin(θetilt) − (m− 1)

dH

λ
cos(θetilt) sin(φescan)

))
m = 1, 2, . . .NH

n = 1, 2, . . .NV

(9)

Figure 1. 2D slice of the 3D antenna pattern realization of the 3GPP active antenna array model with
256 antenna elements directed perpendicularly to the antenna array over the steering angles in the
azimuth and elevation.

2.3. Channel Model

In our model, we separate the two gains obtained from the channel simulation into channel gain
obtained directly from the NYU channel simulation, and antenna gain obtained by determining the
antenna radiation pattern for every scanning angle after each channel simulation. Using the NYUSIM
channel simulator, we determine, in each simulation, the LOS link characteristics between the serving
antenna and the receiving MT. From that link, we can determine the channel gain, and the angles of
departure (AoD) from the BS towards the MT. The AoDs are then used to determine the array gain
using the 3GPP active array model [9], modeled in Section 2.1.2. The antenna gain for each subpath
can be determined from this model, according to its AoD, as shown in the realization in Figure 1.
We assume that the antennas are deployed in an urban microcell (UMI) scenario. The channel model
is presented in Figure 2. The parameters used for the channel simulation are presented in Table 2.
Running a large number of simulations, we empirically fitted the distributions of the gain components
into statistical models. We chose the distributions for the channel and antenna gain by determining the
best fit out of the common distributions using MATLAB. The distributions’ parameters summarized in
Table 3 were determined accordingly.
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Figure 2. Illustration of our mmWave model (left) and the channel model (right). The channel model
follows the NYU Wireless Group mmWave channel model [11].

Table 2. NYUSIM simulation parameters used for the channel simulations.

Parameter Value

Frequency 28 GHz
Scenario UMI
Tx Power 0 dBm

Array type URA
Number of elements 256

Antenna spacing 0.5 λ
Half-Power Beamwidth 10◦

Link Type LOS
RF Bandwidth 800 MHz

User Terminal Height 1.5 m
Base Station Height 35 m

Table 3. Parameters of the fitted distributions. a for the exponential distribution and b, c for the
gamma distribution.

Parameter Value Description

a 0.57 Gamma distribution shape parameter
b 1.45 Gamma distribution scale parameter
c 966.5 Exponential distribution exponent

2.3.1. Array Gain

Using the AoDs from the simulated paths in NYUSIM we have determined, for each path, the array
gain g towards each specific MT. The distributions of the array gain G using the 3GPP active antenna
array model, presented in Figure 3, has been fit into an exponential distribution with probability
density function (PDF) fG defined as

fG(g) = ae−ag. (10)

2.3.2. Channel Gain

Channel gain h is the gain produced by the exploitation of the channel between the Tx and Rx
such as the diversity gain, multipath, hardening, etc. [11]. We fitted the channel gain H into a gamma
distribution, as shown in Figure 4, with PDF fH given in Equation (11). The parameters for the fit gain
distributions are summarized in Table 3.

fH(h) =
1

Γ(b)cb
hb−1e−h/c (11)
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Figure 3. Plot of the fit of the antenna array gain into an exponential distribution for a rectangular
uniform antenna array with Ntx = 256 antenna elements.

Figure 4. Channel gain fit into a gamma distribution for MTs uniformly distributed on a 2D plane and
having a single element antenna array.

3. Exposure Estimation

In this section, we derive the analytical framework based on the system model of the 5G network
given in Section 2.

Since the distribution of Pt
rx is unknown, we adopt the Gil-Pelaez inversion theorem [30] to

compute the CDF defined in Equation (2), which is based on characteristic function of random variable
Pt

rx. The CDF Pt
rx is given by

FPt
rx
(x) =

1
2
−

1
π

∫
∞

0

1
t

Im
[
e− jtxΦPt

rx
(t)

]
dt (12)

where ΦPt
rx
(t) represents the characteristic function of Pt

rx, which can be derived from
moment-generating function as ΦPt

rx
(t) = ϕPt

rx
( jt).

The moment generating function (MGF) of a random variable, defined as ϕX(x) := E
[
etX

]
, ∀ t ∈ R,

is an alternative representation of the random variable other than its probability distribution. It can

be used to determine the distribution’s moments as E[Xn] =
dnϕX(x)

dxn

∣∣∣∣
0
, ∀ n ∈ R . Since the expected

value of the distribution is determined by derivation of the MGF in comparison to integrating the
probability density, using the MGF becomes more attractive for complicated random variables thanks
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to the simpler operation. Following the path loss model defined in Equation (3), the total power at
the MT0 can then be represented by: Pt

rx(t) =
∑

i∈ΠBi f (Ki, ri). Where Bi is a set of random variables
such that P(Bi = 1) = 1 − P(Bi = 0) = α. Since we divided the space into two regions, the total
power received in the whole region can be written as Pt

rx = Pin
rx + Pout

rx where Pin
rx is the total power

received from transmitters within distance R0 from the MT, and Pout
rx is the total received power from

transmitters at distances greater than R0. To account for transmission gain, we assume that Ki is drawn
from the distribution having the PDF: fK(k) = fG(g). fH(h). Where, G and H are the antenna gain
and the channel gain distributions, respectively. As mentioned in 2.2, we fit the antenna gain into an
exponential distribution with PDF fG(g) = ae−ag, and the channel gain into a gamma distribution with
PDF fH(h) = 1

Γ(k)θk hk−1e−h/c. The MGF of this model is presented in Theorem 1.

Theorem 1. The MGF of the exposure in the network modeled in Section 2, given the array gain and channel
gain in (10) and (11) is formulated as:

ϕ(s) = exp(πλαΘ), (13)

where

Θ = 1−
(

a
P̃

)b
e

a
P̃ Γ

(
1− b, a

P̃

)
−π 2

η

(
P̃
a

) 2
η csc

(
π 2
η

)
Γ
(
b+ 2

η

)
Γ(b)

+(−1)b πb
Γ(b)

(
−

c
a

) 2
η csc(πb)γ

(
b + 2

η ,− a
P̃

)
+

η
2Γ(b)

[
−

(
c
x

) 1
2

(
(−1)b 2

η

(
−

x
a

) 2
ηπ csc(πb)γ

(
1 + b + 2

η ,− a
P̃

)
−

(
xc
aP̃

) 2
η

Ω(b + 1, )) + Ω(b)


(14)

Ω(x) =
(a

c

) 2
η

Γ(x) 2F2

({
1, 2/η

}
,
{
1− x, 1 + 2/η

}
,

a
s c Ptx

)
(15)

and where, P̃ = scPtx, Γ(a, x) =
∫
∞

x ta−1e−tdt is the upper incomplete gamma function, γ(a, x) =
∫ x

0 ta−1e−tdt
is the lower incomplete gamma function [31], 2F2 is the generalized hypergeometric function defined as

pFq =
∑
∞

k=0

∏p
j=1(a j)kzk∏q
j=1(b j)kk!

, and Γ(x) =
∫
∞

0 tx−1e−tdt is the standard gamma function.

Proof See Appendix A.
Just by observing the exposure definition in Equation (1), we notice some of the effects the

parameters will have on the total exposure. However, we are also interested in estimating the
importance of each parameter on the total exposure and analyzing the way these parameters affect the
total exposure. In the next section, we first verify our model with a Monte-Carlo simulation, then we
investigate the variation of the 90th percentile of the exposure, we perform a sensitivity analysis to
quantify the importance of each parameter on the total exposure, and then we compare the model we
developed in this article with the old model developed in [25].

4. Numerical Results

In this section, we validate the model against numerical simulations, and we present
some numerical results of the variation of the 90th percentile of the exposure against different
network parameters.

In Figure 5, we validate the CDF from withϕ(s) given by Theorem 1, with Monte-Carlo simulations
of the same scenario, to verify the model we developed while the parameters used in the validation are
presented in Table 4.
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Figure 5. Verification of the analytical expression of the exposure versus a Monte-Carlo simulation.

Table 4. Simulation Parameters used for the verification of the analytical equation with Monte-Carlo
simulations 1.

Parameter Value

λ 2× 10−5

α 0.5
η 4

Ptx 1 mW
1 It should be noted that the parameters in Table 4 are not obtained from realistic 5G mmWave networks.
However, obtaining parameters and optimizing analytical models from realistic 5G mmWave networks are of the
authors’ interests.

The expression derived above has an indeterminate expectation, but from the determined CDF
we can easily determine the 90th percentile of the exposure, which is a percentile that is often used to
express the exposure in a network. We determine the 90th percentile as function of the base station
density for different values of the path loss exponent η, the results are presented in Figure 6. We also
determined the variation of the 90th percentile of the exposure as a function of the system utilization α
in Figure 7. The parameters used to simulate the results of Figures 6 and 7 are presented in Table 5.

Figure 6. 90th percentile of the exposure as function of BS Density for different values of the path
loss exponent.
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Figure 7. 90th percentile of the exposure as function of system utilization for different values of the
BS density.

Table 5. Parameters used in the analysis simulations for Figures 6 and 7.

Parameter Value

b 1.45
c 966.5
a 0.57
λ 2× 10−5

α 0.5
η 3

We also perform a comparison between the newly created model and the model in our previous
work [25] versus the exposure simulation derived directly from the NYUSIM data in Figure 8.
This comparison shows that the old model overestimates the exposure especially at the lower percentiles.
This overestimation can be attributed to the fact that the old model assumes uniform array pattern,
which is equivalent of having an isotropic antenna gain at the transmitter, and gain values towards
the MT. It is also apparent, in the model derived in this study compared to the simulations, the small
error between the simulation and our model which can be attributed to the error in fitting finite gain
data into infinite distributions alongside the errors from the imperfect fitting. The former error can be
calculated depending on the maximum gain the antenna can produce as in Equation (16) where fX(x)
is the probability density function of the fitted distribution, and Gmax is the maximum gain the antenna
array can produce.

er f it =

∫
∞

Gmax

fX(x)dx (16)

Since massive MIMO will be implemented in really diverse scenarios, it is important to investigate
the effect of each variable on the exposure. For this, we perform a variance-based sensitivity analysis
on the calculated model which estimates the effect of the variance of the inputs on the variance of
the output as form of indices called Sobol indices [32]. Sensitivity analysis is often performed to
determine the importance of the input variables on the output of the model. nth degree Sobol indices
S1,2...n determine the fraction of the output variance attributed to the set of inputs of degree n. We are
interested here in determining the total sobol indices which can be defined as in Equation (17). The total
Sobol indices determine the variance of the output due to the variance of an input, in addition to the
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interactions between the specified input variable and the other input variables. It is an alternative to
computing the higher-order sobol indices for every variable.

STi =
EX∼i

(
VarXi(Y|X∼i)

)
Var(Y)

(17)

Figure 8. Comparison between the current model developed in this paper, its verification using
Monte-Carlo simulations assuming the gain distributions from Section 2.2, and the old model from [25],
versus a Monte-Carlo simulation of the exposure using the gain simulated by NYUSIM.

Since obtaining the exposure from the CDF requires solving an inverse function, it takes a long time
to determine the sobol indices and it may introduce inaccuracies at extreme input values. To avoid this,
we use polynomial chaos expantion (PCE) using Latin Hypercube samples to estimate a metamodel to
represent the 90th percentile of the exposure in the cell. PCE approximates the relation between the
model’s output to its inputs by expanding it in an orthogonal polynomial basis [32]. The metamodel
can be denoted as

Y(ζ) =
∑
β∈Nd

aβΨβ(ζ), (18)

where Ψβ are miltivariate polynomials defined as the product of univariate polynomials of degrees
(β1, . . . , βd) and aβ are the polynomial’s coefficients. The fit model has a leave-one-out error of 0.14%.
Using this metamodel we estimate the Sobol indices for each one of the variables and we obtain the
results in Table 6. We can see that the sum of the total Sobol indices is greater than one, showing the
interactions between the input variables in determining the percentile.

Table 6. Total Sobol indices of the inputs contributing to the 90th percentile of the exposure in
the network.

Input Variable Total Sobol Indices

α 0.447
η 0.932
λ 0.365
P 0.254

5. Discussion

In this section, we discuss the results of the numerical outcomes of our model. We discuss the
effect of some of the network parameters considered throughout this study on the exposure, and we
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discuss the result of the sensitivity analysis considering the importance of each parameter on the
global exposure.

From the results presented in Figure 5, we can show the accuracy of the developed model in
estimating the total exposure in the cell. The result shows a good overlap between the analytical
framework and the numerical validation. Here, the blue solid line is obtained by considering the
fitted distribution of the channel and antenna gain, e.g., Equations (10) and (11). The purpose
of Figure 5 is to verify the correctness of the analytical framework. It should be noted that the
execution time in obtaining results from the analytical framework is much quicker than the numerical
simulations. The sensitivity analysis shows the big effect the path loss exponent has in comparison to
the other variables. In terms of exposure, this effect is desirable especially knowing that the path loss
exponent is relatively high in mmWave channels leading to lower power in the cell. Although, since
cellular networks are usually designed to maintain a sufficient SNR, it would give clearer insight
analyzing the exposure in relation with the SNR. On the other hand, our study sheds the light on a
usually ignored, but increasingly discussed, aspect of cellular network design and analysis which is
the total electromagnetic wave power present in the cell area.

As previously mentioned in Section 1.1, the 5G NR architecture make it difficult to accurately
measure the exposure because of its beam behavior. In terms of in-situ measurements of the exposure,
they are being conducted without consideration of the variability in the system utilization in order
to have constant beam behavior. This assumption will ignore the effect the system usage will have
on the actual exposure in the cell. As we can see from our analysis, the transmission probability,
which is directly related to the system utilization, it is the second-most important variable affecting the
exposure since it accounts for 0.44 of the total exposure’s variance, and simply measuring at constant
full transmission may lead to major overestimation of the exposure.

6. Conclusions

In this study, we have determined a closed-form analytical representation of the downlink
exposure of a 5G massive MIMO network distributed following a PPP with realistic transmission gain
and channel representation using statistical distributions instead of approximated value. We have
analyzed the distribution of the exposure for different implementation scenarios and we have shown
the impact that the network characteristics have on the exposure in the cell. This approach allows
the accurate study of the massive MIMO network without the need for costly simulations. We have
also shown the significance of using a realistic antenna model as compared to a simple one. We also
studied the significance of the key parameters in the network, and we showed the importance the
network usage has on the total exposure and the importance of considering it when conducting
exposure analysis.

This approach can be extended in future work to analyze different deployment scenarios of
massive MIMO (e.g., cell-free, IoT . . . etc.). It can also benefit from realistic data representing the
transmission gain after the deployment of the 5G massive MIMO antennas into the 5G network.
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Appendix A

Proof. The total exposure assuming the emission as shot noise process f (K, r) = Kr−η for A < r < B,
and poison distribution of transmitters, can be written as Pt

rx(r) = Ptx
∑

BSi∈ΨBS
Kir
−η
i continuing from
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Equation (1) for Ki = HiGi. We let Ki be drawn from a discreet set {Ki} so that the shot noise process
can be written as sum of independent shot noise processes Pi

rx(r) = Ptx
∑

j f
(
Ki, r− r j

)
. The MGF of

Pi
rx can be determined by solving Equation (A1). As per the result in [27], we can obtain the form in

Equation (A3) for a continuous set of Ki, and using the probability generating functional (PFGL) of a
poisson point process. Simplification by integrating by parts gives the form in equation

ϕ(s) = E
[
e−sPi

rx(r)
]

(A1)

= EK

exp

−sPtx

∑
BSi∈ΨBS

∑
j

Ki
(
r− r j

)−η
 (A2)

PGFL
= exp

{
−µ

∫ B

A
EK[1− exp(−sPtxKr−η)] dr

}
(A3)

The MGF of the exposure then can be represented by the product of the two independent MGFs
ϕ(s) = ϕin(s)ϕout(s), whereϕin can be obtained by substituting A = 0, and B = R0 = 1 in Equation (13).
Likewise, for A = 1 and B = ∞, ϕout can be expressed by

ϕout(s) = exp
(
πλα

[
EK

[
1− e−sPtxK

]
− s2/η EK

[
(PtxK)2/η

]
Γ(1− 2/η) + s2/η EK

[
(PtxK)2/ηΓ(1− 2/η, sPtxK)

]])
(A4)

The expression ofϕout, Equation (A4) can be rewritten into Equation (A5), replacing the expectations
with their integral forms. Each component can then be determined as presented below to obtain the
closed-form expression

ϕout(s) = exp
(
πλα

[
1−

∫
∞

0
e−skPtx fK(k)dk− Γ(1− 2/η)(sPTX)

2/η
∫
∞

0
k2/η fK(k)dk

+(sPtx)
2/η

∫
∞

0
k2/ηΓ(1− 2/η, skPtx) fK(k)dk

]) (A5)

To determine the PDF of K, fK(k), we first determine the CDF FK(k) of K as follows

FK(k)
def
= P(K < k) (A6)

= P(GH ≤ k) (A7)

= P(GH ≤ k, G ≥ 0) + P(GH ≤ k, G ≤ 0) (A8)

= P(H ≤ k/G, G ≥ 0) + P(H ≥ k/G, G ≤ 0) (A9)

=

∫
∞

0
fG(g)

∫ k/g

−∞

fH(h)dh dg +
∫ 0

−∞

fG(g)
∫
∞

k/g
fH(h)dh dg (A10)

The PDF fK(k) can then be obtained by differentiating the CDF with respect to k using the chain rule.
Where, Kb−1 is the modified Bessel function of the second kind, and Γ(b) is the gamma function.

fK(k) =
∫
∞

−∞

1∣∣∣g∣∣∣ fG(g) fH(k/g) dg (A11)

=

∫
∞

0
−

1∣∣∣g∣∣∣ 1
Γ(b)θb

gb−1e−g/θ ae−ak/gdg (A12)

=
2a(kθa)

b−1
2 Kb−1

(
2
√

ka
θ

)
Γ(b)θb

(A13)



Appl. Sci. 2020, 10, 8753 15 of 18

The 2/ηth moment of k can then be expressed by the close form equation by solving Equation (A14)
knowing that K = PTXG H. Since we assume that Ptx is constant, the integral can be solved to give
Equation (A15)

EK
[
K2/η

]
= P2/η

tx

∫
∞

0
k2/η fK(k)dk (A14)

=
(
Ptx

θ
a

)2/η Γ(1 + 2/η)Γ(b + 2/η)
Γ(b)

, f or2/η < 1 (A15)

MK(t) = EK
[
e−sK

]
is the moment generating function of K. The MGF can be determined by solving

Equation (A16) using the PDF expression from Equation (A13).

MK(t) = EK
[
e−sPtxK

]
=

∫
∞

0
e−skPTX fK(k)dk (A16)

(a)
=

1
Ptx

∫
∞

0

e−su

Γ(b)θb
2a

(uθa
Ptx

) b−1
2

Kb−1

(
2
√

ua
Ptxθ

)
du (A17)

=
ae

a
θsPtx

Ptxθs

∫
∞

1

1
tb

e
−a

θsPtx
tdt (A18)

(b)
=

ae
a

θsPtx

Ptxθs

∫ 1

0

w−2

w−b
e
−a

wθsPtx dw (A19)

=
ae

a
Ptxθs

Ptxθs

(Ptxθs
a

)1−b
Γ
(
1− b,

a
Ptxθs

)
(A20)

Step (a) follows from a change of variables as u = kPtx giving us the Equation (A17). To determine
the closed-form expression of the exponential integral in Equation (A18) we perform, in step (b),
another change of variables as w = t−1 and we obtain in Equation (A20) the incomplete upper gamma
function defined as Γ(a, x)

∫
∞

x ta−1e−tdt. The expectation EK
[
K2/ηΓ(1− 2/η, sK)

]
can be determined

using the law of the unconscious statistician [33] as in Equation (A21).

Ek
[
K2/ηΓ(1− 2/η, sK)

]
=

∫
∞

0
k2/ηΓ(1− 2/η, sk) fK(k)dk (A21)

= csc(πb)
[(

e
a
θs
)(
−

a
θs

)b+2/η
− nΓ(b + 2/η) + nΓ

(
b + 2/η,− a

θs

)
+a(−1)b

(
−

a
θs

)2/η
Γ(b− 1)2F2

[{
2, 2/η+ 1

}
,
{
2− b, 2 + 2/η

}
, a
θs

]] (A22)

where,2F2 is the generalized hypergeometric function defined as pFq
∑
∞

k=0

∏p
j=1(a j)kzk∏q
j=1(b j)kk!

. �

Appendix B

List of abbreviations and acronyms used throughout this document.
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Abbreviation Meaning

MIMO Multiple Input Multiple Output
SNR Signal to noise ratio
MISR Mean interference to signal ratio

BS Base station
mmWave Millimeter Wave
ICNIRP International Commission on Non-Ionizing Radiation Protection

PPP Poisson point process
CDF Cumulative distribution function
MT Mobile terminal

URA Uniformly spaced rectangular array
AoD Angle of departure
UMI Urban microcell
PDF Probability distribution function
MGF Moment generating function
PCE Polynomial chaos expansion

PFGL Probability generating functional
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