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Abstract: Video super-resolution is a challenging task. One possible solution, called the sliding
window method, tries to divide the generation of high-resolution video sequences into independent
subtasks. Another popular method, named the recurrent algorithm, utilizes the generated high-resolution
images of previous frames to generate the high-resolution image. However, both methods have some
unavoidable disadvantages. The former method usually leads to bad temporal consistency and has
higher computational cost, while the latter method cannot always make full use of information
contained by optical flow or any other calculated features. Thus, more investigations need to be done
to explore the balance between these two methods. In this work, a bidirectional frame recurrent video
super-resolution method is proposed. To be specific, reverse training is proposed that also utilizes a
generated high-resolution frame to help estimate the high-resolution version of the former frame.
The bidirectional recurrent method guarantees temporal consistency and also makes full use of the
adjacent information due to the bidirectional training operation, while the computational cost is
acceptable. Experimental results demonstrate that the bidirectional super-resolution framework gives
remarkable performance and it solves time-related problems.
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1. Introduction

Video super-resolution, which solves the problem of reconstructing high-resolution images
from low-resolution images, is a classic problem in image processing. It is widely used in security,
entertainment, video transmission, and other fields [1–3]. As compared with single image super-resolution,
video super-resolution can use more information to output better high-resolution images, such as
the feature information of adjacent frames. However, the reconstruction of video super-resolution
images is generally difficult because of various issues, such as occlusion, adjacent frame information
utilization, and computational cost.

With the rise of deep learning, video super-resolution has received significant attention from the
research community over the past few years. The sliding window method and recurrent method are
two of the latest state-of-the-art methods based on deep learning. Specifically, the sliding window
video super-resolution (SWVSR) method solves this problem by combining a batch of low-resolution
images to reconstruct a single high-resolution frame and divides the video super-resolution task into
multiple independent super-resolution subtasks [4]. Each input frame is processed several times,
which wastes calculations. In addition, the generation process is an independent subtask, which may
reduce time consistency, resulting in flickering and artifacts. Unlike the SWVSR method, the recurrent
video super-resolution (RVSR) method generates the current high-resolution image from the previous
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high-resolution image, the previous low-resolution image, and the current low-resolution image [5,6].
Each input frame is processed once. The RVSR method is able to process video sequences of any length
and enables the details of the video to be implicitly transmitted in longer video sequences. Insufficient
use of information caused by the RVSR method leads to a correlation between image quality and time
(as shown in Figure 1).

In short, video super-resolution methods still have the following problems: (a) The super-resolution
network that uses the sliding window method has a high computational cost. Each frame of the image
needs to be calculated 2N + 1 times (window size 2N + 1). (b) Direct access to the output of the previous
frame helps the network generate a temporally consistent estimate for the next frame or previous
frame. In the recurrent network, insufficient use of information leads to the correlation between image
quality and time.
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Figure 1. The recurrent video super-resolution (RVSR) method has a problem which is the correlation
between time (frame number) and Peak Signal to Noise Ratio (PSNR) which is used to evaluate
image quality.

In our work, we propose an end-to-end trainable bidirectional frame recurrent video
super-resolution (BFRVSR) framework to address the above issues. We adopt forward training
and reverse training to solve the problem of insufficient utilization of information and preserve
temporal consistency, as shown in Figure 2. The BFRVSR has several benefits, which achieves a balance
between RVSR and SWVSR. Each input frame needs to be processed no more than twice, while each
output frame makes full use of the information contained by optical flow or any other calculated
features. In addition, passing the previous high-resolution estimate directly to the other step helps the
model to recreate fine details and produce temporally consistent videos. The work of the BFRVSR
method is available at https://github.com/IlikethisID/BFRVSR.
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Our contributions are mainly reflected in the following: (a) Propose a bidirectional frame recurrent
video super-resolution method, in which no pretraining step is required. (b) Address the correlation
between image quality and time and preserve temporal consistency.

2. Related Work

With the rise of deep learning, computer vision, including image super-resolution and video
security [7–9], have received significant attention from the research community over the past few years.

Image super-resolution (ISR) is a classic ill-posed problem. To be specific, in most cases, there are
several possible output images corresponding to one given input image, thus, the problem can be
seen as a task of selecting the most appropriate one from all the possible outputs. The methods are
divided into interpolation methods such as nearest, bilinear, bicubic, and dictionary learning [10,11];
example-based methods [12–16]; and self-similarity approaches [17–20]. We refer the reader to three
review documents [21–23] for extensive overviews of prior work up to recent years.

The recent progress in deep learning, especially in convolutional neural networks, has shaken up
the field of ISR. Single image super-resolution (SISR) and video super-resolution are two categories
based on ISR.

SISR uses a single low-resolution image to estimate a high-resolution image. Dong et al. [24]
introduced deep learning into the field of super-resolution. They imitated the classic super-resolution
solution method and proposed three steps, i.e., feature extraction, feature fusion, and feature
reconstruction, to complete the SISR. Then, K. Zhang et al. [25] reached state-of-the-art results
with deep CNN networks. A large number of excellent results have emerged [26–30]. In addition,
the loss function also determines the result of image super-resolution, thus, some parallel efforts have
studied the loss function [31–33].

Video super-resolution combines information from multiple low-resolution (LR) frames to
reconstruct a single high-resolution frame. The sliding window method and recurrent method are two
of the latest state-of-the-art methods.

The sliding window method divides the video super-resolution task into multiple independent
subtasks, and each subtask generates a single high-resolution output frame from multiple
low-resolution input frames [4,34–36]. The input is adjacent 2N + 1 frames of low-resolution
images like

{
ILR
t−N, ILR

t−N+1 . . . , ILR
t , . . . ILR

t+N−1, ILR
t+N

}
. Then, an alignment module is used to align{

ILR
t−N, ILR

t−N+1 . . . I
LR
t+N−1, ILR

t+N

}
with the ILR

t . Finally, IHR
t is estimated through the aligned 2N + 1

low-resolution frames. Drulea and Nedevschi et al. [29] used the optical flow method to align ILR
t−1 and

ILR
t+1 with ILR

t and used them to estimate IHR
t .

The recurrent method generates a high-resolution image from the previous high-resolution
image, the previous low-resolution image, and the low-resolution image. Huang et al. [37] used
a bidirectional recurrent architecture but did not use any explicit motion compensation in their
model. Recurrent structures are also used for other tasks, such as blurring [38] and stylization [39,40]
of videos. Kim et al. [38] and Chen et al. [39] passed the feature representation to the next step,
and Gupta et al. [40] passed the previous output frame to the next step, generating time-consistent
stylizations in parallel work video. Sajjadi et al. [6] proposed a recursive algorithm for video
super-resolution. The FRVSR [6] network estimates the optical flow FLR

t→t−1 of ILR
t−1 and ILR

t , and uses
IHR
t−1. And FLR

t→t−1 to generate ĨHR
t , and finally, sends ĨHR

t and ILR
t to the network for reconstruction to

obtain IHR
t . However, insufficient use of information caused by FRVSR leads to the correlation between

image quality and time.

3. Methods

The framework of BFRVSR is shown in Figure 2. All network modules can be replaced. For example,
the optical flow module can use existing methods that have been pretrained instead of training and
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building the network from scratch. You can also consider using a deformable convolution module [41]
to replace the optical flow module.

After presenting an overview of the BFRVSR framework in Section 3.1, we define the loss functions
used for training in Section 3.2.

3.1. Bidirectional Frame Recurrent Video Super-Resolution (BFRVSR)

The proposed model is shown in Figure 3. Trainable modules include the optical flow estimation
network, i.e., FlowNet and the super-resolution network, i.e., SuperNet. The input of our model is the
low-resolution image of the current frame ILR

t , the low-resolution image of the previous frame ILR
t−1,

and the high-resolution image estimation of the previous frame IHR
t−1. The output of our model is the

high-resolution image estimation of the previous frame IHR
t .
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3.1.1. Flow Estimation

The network structure of FlowNet is shown in the Figure 4. First, the network uses the optical
flow estimation module to estimate the low-resolution image of the previous frame ILR

t−1 and the
low-resolution image of the current frame ILR

t to obtain a low-resolution motion vector diagram FLR
t→t−1.

Our method of FlowNet is similar to the method in FRVSR [6].

FLR
t→t−1 = FlowNet

(
ILR
t−1 ⊕ ILR

t

)
∈ [−1, 1]H×W×2 (1)

FLR
t→t−1 shows the position information from the current image to the previous frame.
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3.1.2. Upscaling Flow

In this step, we process the low-resolution optical flow map that has been obtained, and we
use bilinear interpolation with scaling factor s for upsampling to obtain the high-resolution optical
flow map.

FHR
t→t−1 = Upsample

(
FLR

t→t−1

)
∈ [−1, 1]sH×sW×2 (2)

3.1.3. Warping HR Image

Use the obtained high-resolution optical flow diagram and the high-resolution image of the
previous frame to estimate the high-resolution image of the current frame.

ĨHR
t = Warp

(
IHR
t−1, FHR

t→t−1

)
(3)

We implemented warping as a differentiable function using bilinear interpolation similar to
Jaderberg et al. [42].

3.1.4. Mapping to Low Resolution (LR) Space

We map high-dimensional spatial information to low-dimensional depth information using the
space-to-depth transformation.

Hdepth
t = DM

(̃
IHR
t

)
(4)

Our method of mapping to low-dimensional space is similar to the method in FRVSR [6]. The mapping
to LR space operation process is shown in the Figure 5.
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3.1.5. Super-Resolution

In this step, the low-dimensional depth map of the high-resolution image of the current frame
Hdepth

t and the low-resolution image of the current frame ILR
t are sent to the SuperNet to obtain the final

high-resolution frame. The network structure of SuperNet is shown in the Figure 6.

IHR
t = SuperNet

(
Hdepth

t ⊕ ILR
t

)
(5)
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In summary, the overall process of the network is as follows:

IHR
t = SuperNet(DM(Warp(IHR

t−1, Upsample
(
FlowNet

(
ILR
t−1 ⊕ ILR

t

))
)⊕ILR

t

)
) (6)

3.2. Loss Functions

In our network architecture, the optical flow estimation module and the super-resolution module
are trainable, therefore, in the training process, two loss functions are used to optimize the results.

The first loss function is the error between the high-resolution image generated by the
super-resolution module and the real image label Ilable

t as follows:

L1 =
∣∣∣∣∣∣IHR

t − Ilabel
t

∣∣∣|22 (7)

Because the dataset does not have the ground truth of optical flow, we use a method similar to the
FRVSR [6] to calculate the spatial mean square error on the curved LR input frame to optimize the
optical flow estimation module as the second loss function as follows:

L2 =
∣∣∣∣∣∣∣∣Warp

(
ILR
t−1, FLR

t→t−1

)
− ILR

t

∣∣∣∣|22 (8)

The loss function of training final backpropagation is Ltotal = L1 + L2.

4. Experiment

4.1. Training Datasets and Details

4.1.1. Training Datasets

Vimeo-90k [43] is our training and testing dataset. We abbreviate the Vimeo-90k test dataset
as Vimeo-Test and the Vimeo-90k train dataset as Vimeo-Train. The Vimeo-90k dataset contains
91,701 7-frame continuous image sequences, and is divided into Vimeo-Train and Vimeo-Test.
In Vimeo-Train, we randomly cropped the original 448 × 256 image to the 256 × 256 real label
image. In order to generate LR images, we performed Gaussian blur and downsampling processing on
the real label image and used a Gaussian blur with standard deviation σ = 2.0.

4.1.2. Training Details

Our network is end-to-end trainable, and there are no modules that need to be pretrained.
The Xavier method is used for initialization. We train 600 epochs, and the batch size is 4; the optimizer
uses Adam optimizer; and the initial learning rate is 10−4, which is reduced by 0.1 times every
100 epochs. In a batch, each sample is 7 consecutive images. We conduct video super-resolution
experiments at 4× factor.

In order to obtain the first high-resolution image IHR
1 , two methods can be used. In the first method,

we set IHR
0 to a completely black image. This can force the network to learn detailed information

from low-resolution images. In the second method, we upsample ILR
1 to IHR

1 through the bicubic

interpolation method and estimate IHR
2 from

{
ILR
2 , ILR

1 , IHR
1

}
. In order to compare with the RVSR method,

we used the first method for experimentation.

4.2. Baselines

For a fair evaluation of the proposed framework on equal ground, we compare our model with
the following three baselines that use the same optical flow and super-resolution networks:

SISR Only a single low-resolution image is used to estimate a high-resolution image without
relying on timing information. The input is ILR

t and the output is IHR
t .
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VSR Through
{
IHR
t−1 , ILR

t−1 , ILR
t

}
, without the optical flow network estimation, relying on the

learning space deformation ability of the convolution operation itself to obtain IHR
t .

RVSR Through
{
IHR
t−1 , ILR

t−1 , ILR
t

}
, with the optical flow network estimation, and then sent to

SuperNet to obtain IHR
t . The operation process is the same as the forward propagation in the

BFRVSR network.
We ensure that the network model is consistent during the evaluation. The key parameters of the

training parameters are the same. The initialization uses Xavier initialization, and the accelerator uses
Adam optimizer. The initial learning rate is 10 × 10−4, which is reduced to 0.1 times every 100 rounds.
All networks are trained with the same training set, and the coefficient of Gaussian blur is 2.0.

4.3. Analysis

We train baselines and BFRVSR to convergence under the same parameter conditions. We compare
and test the pretrained model on the Vimeo-Test. Table 1 shows the comparison image PSNR results of
baselines and BFRVSR. As compared with baselines, our proposed framework has the best effect in
continuous 7-frame video sequences, and it is 0.39 dB higher than the RVSR method. PSNR of BICUBIC
and SISR is only related to current low-resolution images, and no correlation between high-resolution
images. PSNR of VSR and RVSR has correlation between image quality and time. Because of motion
compensation by optical flow network, the RVSR performance is better than the VSR.

Table 1. The PSNR index of the image generated by the five methods of BFRVSR, RVSR, video
super-resolution (VSR), single image super-resolution (SISR), and BICUBIC are compared. As can be
seen in the table, BFRVSR is an upgrade of RVSR, which has the best effect, and also overcomes the
shortcomings of RVSR’s unidirectional gain.

Frame1 Frame2 Frame3 Frame4 Frame5 Frame6 Frame7 Average

BICUBIC 29.3057 27.3187 29.3173 29.3120 27.3087 27.3051 27.2900 27.3082
SISR 28.5332 28.5633 28.5240 28.5468 28.5523 28.5447 28.5593 28.5462
VSR 28.7632 29.4320 29.8012 29.8122 29.8310 29.9001 29.9212 29.6373

RVSR 29.0803 29.8807 30.1547 30.2898 30.3553 30.3980 30.3991 30.0797
BFRVSR (ours) 30.4772 30.4836 30.4833 30.4739 30.4670 30.4547 30.4145 30.4649

BFRVSR performs a forward estimation and a reverse estimation. The BRVSR is equivalent to
an RVSR network in forward estimation. It transmits global detail information by using IHR

t−1 and
performs timing alignment operations. However, there are some problems, that is, the details of
ILR

j cannot be obtained for ILR
i to optimize the image (i > j). Reverse estimation solves this problem.

Reverse estimation makes each frame implicitly use all the information to estimate the high-resolution
image of the frame. Use the

{
IHR
t , ILR

t−1, ILR
t

}
to generate IHR

t−1.
RVSR can be trained on video clips of any length. However, if the video clip is too long, RVSR has

a problem which is the correlation between image quality and time. In fact, RVSR also has the problem
on shorter video clips. BFRVSR solves this problem, as shown in Figure 7. BFRVSR has two processes,
i.e., forward estimation and reverse estimation. IHR

t−1 is used to transmit global information and perform
timing alignment operations. In the forward estimation, BFRVSR is equivalent to RVSR. The problem in

forward estimation is obvious. When the generated video sequence is
{

ILR
1 , . . . , IHR

i , . . . , ILR
j , . . . , IHR

N

}
,

the reference information generated by the forward estimation of IHR
t is

{
ILR
1 , . . . , IHR

t−1

}
, not global

information. Reverse estimation solves this problem. Reverse estimation makes each frame implicitly
use all global information to estimate the high-resolution image of the frame by using

{
IHR
t , ILR

t−1, ILR
t

}
to generate IHR

t−1. As shown in Figure 8, the result of reverse estimation is better than result of
forward estimation.
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Figure 7. We show the quality of each frame in the forward propagation of BFRVSR and the quality
of each frame in the reverse propagation. We found that global information is implicitly used in
backpropagation to generate high-resolution images.

The video super-resolution, based on the sliding window method processes each frame 2N + 1
times, the video super-resolution based on the recurrent method processes each frame once, and the
BFRVSR processes each frame, at most, two times.

On the RTX-2080Ti, the time for a single image Full HD frame for 4× super-resolution is 291 ms.
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5. Conclusions

We propose an end-to-end trainable bidirectional frame recurrent video super-resolution method.
Due to the operation of bidirectional training, with more information utilized to feed the model to deal
with the correlation between image quality and time, BFRVSR successfully solves the problem shown
in Figure 1. To be specific, it decouples the correlation between image quality and time. In addition,
the proposed method achieves better image quality, while the computational cost is lower than the
sliding window method.

6. Future Work

There is still room for improvement in the field of video super-resolution. If the problem of
occlusion and blur is considered, much more computational cost would be required. We can deal with
the problem by adding cross connections. In addition, a deformable convolution module, which has
been frequently investigated recently, shows enormous potential in the field of image classification,
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semantic segmentation, etc. Thus, it may achieve better results if we replace the optical flow module
with a deformable convolution module. Furthermore, it is believed that video super-resolution and
frame insertion have considerable similarities, thus, we may try to utilize BFRVSR to perform these
two tasks simultaneously.
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