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Abstract: This study aimed to evaluate the impact of surface-modified biomedical titanium (Ti) dental
implant on osseointegration. The surfaces were modified using an innovative dip-coating technique
(IDCT; sandblasted, large-grit, and acid-etched, then followed by coating with the modified pluronic
F127 biodegradable polymer). The surface morphology and hemocompatibility evaluations were
investigated by field-emission scanning electron microscopy, while the contact analysis was observed
by goniometer. The IDCT-modified Ti implant was also implanted in patients with missing teeth by
single-stage surgical procedure then observed immediately and again four months after placement
by cone-beam computerized tomography (CBCT) imaging. It was found that the IDCT-modified Ti
implant was rougher than the dental implant without surface modification. Contact angle analysis
showed the IDCT-modified Ti implant was lower than the dental implant without surface modification.
The hemocompatibility evaluations showed greater red blood cell aggregation and fibrin filament
formation on the IDCT-modified Ti implant. The radiographic and CBCT image displayed new
bone formation at four months after the IDCT-modified Ti implant placement. Therefore, this study
suggests that the IDCT-modified Ti dental implant has great potential to accelerate osseointegration.
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1. Introduction

The use of dental implants for the rehabilitation of missing teeth is increasingly popular because it
resembles natural teeth both in terms of function and aesthetics [1–6]. The success of dental implants is
indicated by its survival rate as a consequence of the osseointegration, which is based on various factors
originating from the patient, clinician, implant placement area, and characteristics of the implant [1,4].
The success of a dental implant after placement can also be determined by the stability of the implant,
minimal signs and symptoms, new bone formation, and healthy tissue around the implant [7].

Dental implants used to rehabilitate missing teeth are derived from titanium (Ti), which
has advantageous properties such as resistance to corrosion, high strength, and excellent
biocompatibility [5,8–11]. However, the properties of Ti have not met the criteria for clinical use.
Therefore, various surface modifications were performed on Ti, such as plasma spray coating,
ion implantation, laser, sputtering, acid etching, sandblasting, sandblasting and acid etching, and dip
coating, to improve the quality of its biological, chemical, and mechanical properties [12–14]. Surface
modification aims to provide an implant surface that can be accepted by the surrounding tissue (a
good bone–implant interaction) to create osseointegration leading to the successful placement of dental
implants [6,10,15–19].

Sandblasted, large-grit, and acid-etched (SLA) technique is a surface modification that has shown
successful long-term clinical outcomes [11,20]. However, dental implant failures still persist with failure
rates varying from 1% to 19% due to inadequate osseointegration and the occurrence of implantitis after
implant placement [21,22]. Thus, various efforts were performed to minimize the risk of implant failure,
such as performing the appropriate surgical technique, providing enough bone quality and quantity,
minimizing the inflammation or infection after surgery, modifying the surface modification, and
improving of patient nutrition by providing several dietary supplements that affect bone metabolism,
all of which lead to osseointegration [19,23]. However, the current study is focused on modifying
the surface modification of Ti dental implants. In this study, the dental implants that have received
SLA surface modification are followed by coating with pluronic F127 (PF127). Pluronic is an active
polymer that has good biocompatibility, low cost, easy preparation, biodegradability, and is nontoxic,
making it widely used in biomedical applications [24–26]. Therefore, this study aimed to evaluate the
impact of the surface properties of the surface-modified Ti dental implants on osseointegration through
surface morphology, contact angle analysis, hemocompatibility evaluation, and clinical evaluations.
It is believed that the surface-modified Ti dental implant is able to create rapid osseointegration with
good biocompatibility, and will lead to the clinical success of dental implants in terms of rehabilitation
of missing teeth.

2. Materials and Methods

2.1. Materials

Dental implant used in this study is grade 4 pure Ti material. The dental implant was
surface-modified by means of an innovative dip-coating technique (IDCT), as shown in Figure 1.
The Ti implant was grit-blasted with aluminum oxide (Al2O3) particles followed by acid-etching
in hydrochloric acid and sulfuric acid solutions, then washed. Subsequently, the Ti implant was
coated with the modified-PF127 biodegradable polymer (MPBP) through the IDCT process. The
MPBP was prepared using the N-hydroxysuccinimide end-labeled F127 block copolymer (Sigma
0.033 mmol, Taipei, Taiwan), triethylamine (Sigma 0.218 mmol, Taipei, Taiwan), and 2.6 mL N,
N-dimethylformamide (DMF; Sigma, Taipei, Taiwan). Afterward, the mixed solution was stirred with
a magnetic stirring bar at 25 ◦C for 16 h under nitrogen atmosphere. The reacted mixture solution
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was then freeze-dried to remove the DMF. Afterward, chilled methanol was added in the reacted
mixture solution without DMF to form the precipitate solution. Finally, the precipitate solution was
filtered and dried under a high vacuum pressure to form the MPBP. This process was performed
by immersing the Ti implant into the MPBP solution at 4 ◦C for 15 min and drying in an oven at
30 ◦C for 5 h. The machined Ti implant was used as a control for comparison in surface characteristic
observation and hemocompatibility assay, while the SLA-treated Ti implant was used as a control for
contact angle analysis.
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Figure 1. A schematic diagram showing the experimental setup used for surface modification of
titanium (Ti) dental implant. (sandblasted, large-grit, and acid-etched (SLA) and modified-PF127
biodegradable polymer (MPBP))

2.2. Surface Characteristic Observation

Surface morphology and characteristics of the Ti implant with and without surface modification
were observed using a JSM-6500F field-emission scanning electron microscope (FE-SEM; JEOL Ltd.,
Tokyo, Japan) under an accelerating voltage of 25 kV. Before investigation, a platinum thin film with a
thickness of 30 nm was sputter-coated on the surface of implants to enhance electrical conductivity.

2.3. Contact Angle Analysis

The angle of point contact of a line tangent to the liquid and the surface of the Ti implant (contact
angle) was analyzed by the sessile drop method. A 0.05 mL droplet (deionized water) was dropped
onto the Ti implant surface, the distance of dropping was kept constant at 10 mm, and the profile of the
droplet observed by GBX digidrop goniometer (Drôme, France).

2.4. Hemocompatibility Assay

The Ti implants were initially sterilized with ethylene oxide for 24 h. Thereafter, the implant
was placed in centrifuge tubes, dripped with 100 µL blood, and clotted at 25 ◦C for 20 min. The
uncoagulated blood from Ti implant surfaces was cleaned by immersing it in deionized water at 25 ◦C
for 10 min. Finally, the investigated implants were fixed in 2% glutaraldehyde solution, washed, rinsed,
sputter coated with 30 nm of platinum, and analyzed using FE-SEM.

2.5. Clinical Evaluations

The protocols for clinical evaluations were approved by the Taipei Medical University–Joint
Institutional Review Board under the project identification code of TMU-JIRB 201301009. The
good clinical practice was followed together with ISO 14155 prescriptions during the clinical study.
A single-stage surgical procedure was conducted under local anesthesia, followed by the incision of
crestal mucoperiosteal. A full-thickness mucoperiostal flap was reflected (Figure 2a), the IDCT-modified
Ti implant (n = 15, different size implants) placed into the socket (Figure 2b), the flap replaced, and
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the surgical area sutured (Figure 2c). The CBCT image was taken immediately and then four months
after placement.
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3. Results

3.1. Topographic Features of the IDCT-Modified Ti Implant

Figure 3 shows superficial FE-SEM micrographs of the investigated implants. Obviously, the Ti
implant without modification revealed regular machining grooves surface (Figure 3a). After conducting
the IDCT process, a more rough, uniform, and small micropitted surface morphology generated by
SLA treatment was observed on the Ti implant surface, as revealed in Figure 3b. The MPBP coating did
not change the topographic features of the SLA-treated Ti implant during the IDCT process because
the MPBP is a polymeric material.
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3.2. Wettability of the IDCT-Modified Ti Implant

Figure 4 presents contact angle images taken from the Ti implant with SLA and IDCT modifications.
The contact angle values were measured as 70◦ on Ti implant with typical SLA modification (Figure 4a),
while the contact angle of Ti implant with IDCT surface modification was 0◦ (Figure 4b). This finding
indicated that the IDCT-modified Ti implant possessed a super hydrophilic surface.
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3.3. Hemocompatibility of the IDCT-Modified Ti Implant

Figure 5 displays the FE-SEM micrographs of red blood cell (RBC) morphology upon Ti implant
with and without surface modification. Obviously, less RBC aggregation was seen on Ti implants
without surface modification (Figure 5a), while the IDCT-modified Ti implants showed an implant
surface rich in RBC aggregation and fibrin filament formation (Figure 5b).
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3.4. Clinical Evaluations of the IDCT-Modified Ti Implant

The CBCT image taken from the IDCT-modified Ti implant after immediate placement is shown
in Figure 6a. The CBCT image revealed a radiolucency in the buccal dental implant site (as indicated
by the black arrow), indicating that the site is unsupported by intact bone. After four months of
post-placement, the CBCT image showed a more radiopaque image of the buccal dental implant site
(Figure 6b, black arrow), which previously appeared more radiolucent, indicating new bone formation
in this area. Moreover, the clinical condition after four months also indicated that good tissue healing
around the IDCT-modified Ti implant was evident, as illustrated in Figure 6c.
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Similar findings were also observed in other patients with the IDCT-modified Ti implant treatment.
The follow-up after four months showed a radiologically and clinically health condition reflected by
no further bone loss found around the dental implant (Figures 7 and 8).
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4. Discussion

The success of dental implant placement related to their biocompatibility and hemocompatibility.
Acceptable biocompatibility and hemocompatibility can be obtained by performing various surface
modifications of dental implants. The surface modification results in a roughness of the implant surface,
which will affect its survival rate even if it has been placed in a deficient jawbone. The roughness and
porosity of the dental implant will become a scaffold for bone growth, which will increase its fixation
in the jaw [9,27–30]. The pores of surface-modified dental implants can be a place for cell and tissue
growth and allow the diffusion of various nutrients. The SLA surface modification provides an ideal
porosity for cell adhesions [11]. The SLA surface modification that provides macro- and microporosity
will increase the contact angle and hydrophilicity of the dental implant surface, allowing migration of
osteoblasts and tissue into the implant, leading to improved integration between the implant and the
surrounding tissue [8,11,17,31–33]. The survival rate of dental implants with SLA surface modification
can reach 99% with a mean follow-up period of 18 months [27]. The main advantage of surface
modification with modified PF127 is that it resembles an extracellular matrix of various tissues that
will facilitate cell adhesion and proliferation [24].

Contact angles that arise from the combination of surface tension of the liquid and surface energy
of solid implant material are associated with hydrophilicity or wetting behavior, which will increase
the interaction of dental implants with biological fluids, cells, and tissues [8,9,34,35]. The lower contact
angle indicates better wettability on the dental implant surface [34]. Various surface modifications are
performed to roughen the surface of the dental implants that can affect its wettability. Several studies
have shown the dental implants that obtain SLA surface modification have a hydrophilic surface with
a contact angle that varies from 40◦ to 70◦ [32]. However, this study revealed that the contact angle
of the IDCT-modified Ti implant was 0◦, which indicates all the liquid completely spread over the
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modified surface [32]. The increase in wettability on the IDCT-modified Ti implant surface is due to
the surface coating with biodegradable polymer PF127, which with its hydrophilic properties has the
ability to absorb various biological fluids [36,37].

The RBC aggregation was also influenced by wettability behavior on the surface of the Ti
implant [18,38,39]. In biomedical Ti dental implants, the surface hydrophilicity increases, allowing the
absorption of various plasma proteins such as fibrinogen, which is necessary for the healing process
and the formation of new bone around the implant [18,38–40].

The porosity of the implant surface can also serve to reduce the stiffness of the implant material.
At a minimum, Young’s modulus of the implant material resembles bone to prevent bone resorption
around the implant [28]. Nevertheless, it has been reported that the rougher the surface of the
dental implant, the greater the potential for bacterial adhesion to the surface of the dental implant
through biofilm formation [5,41]. Immediately after implant placement, some proteins will bind to
the surface of the implant to create an optimal area for cell attachment, both favorable and harmful
cells (bacteria). The large number of bacterial colonies formed will cause various conditions that are
unfavorable for implants, such as inflammation, implantitis, and inhibition of osseointegration, which
lead to implant failure [5,41,42]. Therefore, the use of modified biodegradable polymer PF127 in the
surface modification of dental implants in this study has several advantages, apart from resembling
an extracellular matrix, its amphiphilic properties, which act as surfactants exhibiting antibacterial
action. The modified PF127 consists of triblock poly (ethylene oxide) (PEO)−poly (propylene oxide)
(PPO)−poly (ethylene oxide) (PEO) [36,43–45]. The hydrophilic PEO will bind to the hydrophilic
membrane via hydrogen bonds, while hydrophobic PPO will penetrate the lipid bilayer structure,
causing the disruption of membrane permeability and biosynthesis of the bacterial cell wall [45,46].
Moreover, PF127 is biodegradable; new bone growth and angiogenesis will be created as a consequence
of its degradation [26,47–49].

The success of dental implants is marked by the presence of new bone formation and healthy
tissue around dental implants. Del Fabro et al. [7] reported that of a total of 135 dental implants that
reported failure, 60.9% occurred in the first six months after implant placement. In our study, there
were no signs and symptoms complained of by the patients, and the clinical condition showed healthy
gingival tissue around the implant at follow-up four months after implant placement. Moreover, both
radiographic and CBCT images showed the presence of new bone formation around the implant. Thus,
the IDCT-modified Ti dental implants might be beneficial for osseointegration that led to successful
dental implants. However, a further study is needed for clinical application, with a larger sample size
and a varied follow-up period to strengthen the evidence of the rapid osseointegration resulting from
dental implants.

5. Conclusions

The surface morphology observation indicated that the IDCT-modified Ti implant is rougher than
Ti implant without surface modification. The contact angle analysis of the IDCT-modified Ti implant
exhibited excellent wettability performance. In hemocompatibility evaluations, the IDCT-modified
Ti implant revealed greater RBC aggregation, which is important for the healing process and the
formation of new bone around the implant. The CBCT, radiographic, and clinical evaluations prove
the new bone formation around the IDCT-modified Ti implant after implantation of four months.
Accordingly, these findings demonstrate the IDCT-modified Ti implant had great potential to promote
bone regeneration for dental applications.
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