iriried applied
L sciences

Article
Machine Learning-Based Code Auto-Completion
Implementation for Firmware Developers

Junghyun Kim 1@, Kyuman Lee >*{ and Sanghyun Choi 3

1 School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;

andy.kim@gatech.edu

Department of Robot and Smart System Engineering, Kyungpook National University, Daegu 41566, Korea
Memory S/W Development Team, Samsung Electronics, Hwasung 18448, Korea; sh518.choi@samsung.com
* Correspondence: klee400@knu.ac.kr

Received: 29 October 2020; Accepted: 19 November 2020; Published: 28 November 2020 ::‘P;)edc:t?sr

Abstract: With the advent of artificial intelligence, the research paradigm in natural language
processing has been transitioned from statistical methods to machine learning-based approaches.
One application is to develop a deep learning-based language model that helps software engineers
write code faster. Although there have already been many attempts to develop code auto-completion
functionality from different research groups, a need to establish an in-house code has been identified
for the following reasons: (1) a security-sensitive company (e.g., Samsung Electronics) may not
want to utilize commercial tools given that there is a risk of leaked source codes and (2) commercial
tools may not be applicable to the specific domain (e.g., SSD firmware development) especially if
one needs to predict unique code patterns and style. This research proposes a hybrid approach
that harnesses the synergy between machine learning techniques and advanced design methods
aiming to develop a code auto-completion framework that helps firmware developers write code in a
more efficient manner. The sensitivity analysis results show that the deterministic design results in
reducing prediction accuracy as it generates output in some unexpected ways, while the probabilistic
design provides a list of reasonable next code elements in which one could select it manually to
increase prediction accuracy.

Keywords: machine learning; code auto-completion; GPT-2 model; advanced design methods

1. Introduction

1.1. Research Motivation

Firmware software developers at a company are typically responsible for developing a software
program that operates a product. A company always seeks to provide a streamlined work process
for firmware software developers to increase productivity as the process leads to saving money
for the company. One potential barrier for increasing productivity is to spend considerable time
writing code that is particularly due to a repetitive task. Another potential problem is that firmware
software developers may be generating similar codes simultaneously as they are separately involved in
developing different hardware products. Figure 1 notionally illustrates the issue where we noticed that
two firmware software developers separately worked on each code that was eventually similar to each
other. This situation could prevent them from working efficiently if they would need to handle a large
volume of source codes, resulting in decreasing productivity. Thus, a need to develop a framework
that helps firmware software developers work efficiently has been identified in this research.

Appl. Sci. 2020, 10, 8520; doi:10.3390/app10238520 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-8762-6991
https://orcid.org/0000-0003-0755-9635
http://dx.doi.org/10.3390/app10238520
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/23/8520?type=check_update&version=2

Appl. Sci. 2020, 10, 8520 20f15

Firmware Product 2
S/W Engineer 2

Firmware Product 1
S/W Engineer 1

Code 2 Similar Code = Productivity |

Figure 1. Notional sketch of necessity for developing a code auto-completion framework.
1.2. Background

With the advent of machine learning (ML) techniques, the research paradigm in various
engineering areas has been recently transitioned from theory-based to data-driven approaches [1].
There have already been many studies asserting that ML techniques outperform traditional statistical
methods. A language model is no exception to this paradigm shift. Many research groups have been
committed to developing a language model using ML techniques. For example, Google developed
the bidirectional encoder representations from transformers (BERT) [2] that mainly use transformer
encoder blocks. OpenAl released the generative pre-trained transformer (GPT) models [3,4] such as
the GPT-2 models.

The GPT models are transformer-based language models trained on a massive text dataset from
the websites. Depending on the size of neural network weight parameters, the GPT-2 models are
classified into small (i.e., 117 M), medium (i.e., 345 M), and large (i.e., 762 M) pre-trained models,
as shown in Figure 2. Here, 117 M means that there are 117 million parameters of the neural network
model. The obvious upside of the GPT models is that the pre-trained models can be easily tailored
to various domain-specific language modeling tasks, given that the models are fine-tuned with
domain-specific training datasets. For this reason, the GPT models have been widely used for a variety
of domain-specific tasks such as speech recognition and language translation.

R

GPT-2 GPT-2 Large

GPT-2 Medium
Small \)
117M Parameters 345M Parameters 762M Parameters

Figure 2. GPT-2 models (reproduced from [5]).

In fact, the GPT models have stunned the world by demonstrating the impressive capability that
may exceed the current language models. One example is the Allen AI GPT-2 Explorer [6] as shown in
Figure 3 , where it uses the GPT-2 345M model to predict the most likely next word alongside their
probability score. In this example, it appears that the model generates a list of candidates for the new
few words (e.g., Electronics Co., Ltd.) once some initial text (e.g., I am currently working at Samsung)
is provided.

Appl. Sci. 2020, 10, 8520 30f15

Sentence: Predictions:
Electronics Co., Ltd.
I'm currently working at Samsung Life, which isan ...
and have alot of ...
U3700, which...

1% ,and I'mvery ...

Figure 3. AllenNLP language modeling demonstration example.

Given the aforementioned observations, it can be hypothesized if the pre-trained GPT-2 models
are fine-tuned with SSD firmware source codes, the fine-tuned model predicts the most likely next code
element. To that end, this research aims to develop a framework that deploys the GPT-2 models to help
SSD firmware developers write code in a more efficient manner. The remainder of this paper consists
of the following: Literature Review, Proposed Methodology, Results and Discussion, and Conclusion.

2. Literature Review

In relation to the research objective, there have already been many attempts to develop similar
capabilities. This section is aimed at reviewing the advances and limitations of the previous efforts
about code auto-completion functionality, which helps identify research gaps that need to be bridged.

2.1. Related Work

Code auto-completion functionality has been considered as one of the most essential functions for
software engineers. The Integrated Development Environment (IDE) has provided a set of effective
features that include code auto-completion capability [7]. The code auto-completion feature in the
IDEs basically suggests next probable code elements; however, there are some potential issues that
have been identified [8]: (1) the feature requires an exhaustive set of rules, (2) predictions do not
consider the category of code, (3) predictions do not consider context such as class definition, and (4)
recommendations are often lexicographical and alphabetical, which may not be very useful.

Many research groups have adopted statistical methods to resolve the potential issues of the
IDEs. For example, Sebastian Proksch et al. [9] replaced an existing code auto-completion engine by an
approach using Bayesian networks named pattern-based Bayesian network (PBN). Raychev et al. [10]
proposed the state-of-the-art probabilistic model for code auto-completion functionality, which is
mainly equipped with the n-gram model that computes the probability of the next code elements given
previous n elements. The statistical approach, however, examines only a limited number of elements
in the source codes when completing the code; thus, the effectiveness of this approach may not scale
well to large programs [11].

With the advent of deep learning, many research groups have been committed to developing deep
learning-based code auto-completion functionality. The most common technique is to use a recurrent
neural network (RNN). In fact, Karampatsis et al. [12] showed that the RNN-based language models
would be much better than the traditional statistical methods. Moreover, Martin White et al. [13]
illustrated how to use the RNN-based language model to facilitate the code auto-completion task.
It seemed that RNN-based language models gained the most popularity at the time; however, it was
identified that the models were limited by the so-called hidden state bottleneck: all the information
about the current sequence is compressed into a fixed-size vector. This limitation made it hard for the
RNN-based models to handle long-range dependencies [14].

A transformer-based language model has been introduced to overcome a major drawback of an
RNN-based language model by relying on the attention mechanism. For example, Alexey Svyatkovskiy
introduced IntelliCode Compose [15], which is capable of predicting sequences of code tokens of
arbitrary types. It leveraged the state-of-the-art generative transformer model trained on 1.2 billion
lines of source codes. In addition to the IntelliCode Compose, a variety of transformer-based language
models have recently achieved excellent work [2—4,16] for various natural language processing

Appl. Sci. 2020, 10, 8520 40f15

(NLP) tasks such as language modeling. There are numerous practical applications that deploy
a transformer-based language model for code auto-completion functionality. TabNine [17] published
a blog post mentioning the use of GPT-2 model in their code auto-completion feature. However,
they never revealed technical details about the modeling process. Kite-Pro [18], which also employs
the transformer-based language model, reports on average 18 percent more efficiency by using the
code auto-completion feature. Table 1 summarizes four different approaches with the advantages and
limitations of the previous efforts about code-completion functionality.

Table 1. Comparative table of the related works.

Approach

Example Method

Advantage

Limitation

Integrated Development

Eclipse’s content assist

It provides a list of
type-compatible names

It is generally organized
alphabetically, which is

Environment (IDE) feature for the next tokens .
. . not very effective
immediately

It solves a drawback of
Statistical Language IDE’s ineffectiveness by It is difficult to be scaled
n-gram . .
Models optimizing/ranking to large programs
the list

Machine learning-based
Language Models

Recurrent Neural
Network (RNN)

It is typically better than
statistical language
models in predictions

It is not effective to
capture long-term
dependencies

Transformer-based

Generative Pre-trained

It overcomes the issue
related to long-term

It is computationally

dependencies by expensive for those who

L del. Transf PT . . .

anguage Models ransformer (GPT) introducing attention use a personal computer
mechanisms

2.2. Research Gap

Although many research groups have deployed a transformer-based language model for code
auto-completion functionality, it is important to note that they have trained the model, with open
source codes mostly coming from GitHub. For example, the Deep TabNine [17] is trained on around
2 million files from GitHub. This indicates that the software may not be applicable if one needs to
predict very unique code patterns and style. Therefore, a need to establish a domain-specific language
model has been identified based on the following reasons: (1) firmware codes implement very specific
sets of features for the hardware and (2) firmware codes typically comply with unique coding styles
and patterns optimized for embedded environments.

In fact, some companies (e.g., TabNine) advertise that they offer a GPU-based cloud service that
enables users to create a custom model by fine-tuning the model with their input data. However,
a security-sensitive company such as Samsung Electronics may not want to utilize the commercial
tools given that there is a risk of leaked source codes. In addition to the security issue, a company
has to pay for the license fee because the tools are not free to use the service. Thus, a need to develop
in-house codes for code auto-completion functionality is identified.

As we seek to develop a domain-specific (i.e., solid state drive (SSD) firmware development)
language model by using the GPT-2 model, it naturally leads us to consider how to determine diversity
parameters (i.e., Top_k, Top_p, and Boltzmann temperature) of the model. Given that there has not
been any analysis done on the optimal diversity parameter values especially on the SSD firmware
development domain, the following research question can be constructed: “How can we determine
the GPT-2 diversity parameter values properly for the SSD firmware development domain”?

To answer the question, in this paper, we propose a hybrid approach that harnesses the synergy
between ML techniques and advanced design methods (e.g., design of experiment, surrogate modeling,
and Monte Carlo simulation) [19] to enhance the level of understanding of the relationship between

Appl. Sci. 2020, 10, 8520 50f15

the GPT-2 model diversity parameters and code auto-completion functionality in the SSD firmware
development domain. Figure 4 notionally illustrates the process of the hybrid approach used for
this research.

Step 1. Specify lower/upper limits for design variables Step 4. Run Monte-Carlo simulations
Design Variable Lower Limit Upper Limit Variable 1
Variable 2 40 100 Variable 2 Surrogate model —»

Uniform Distribution Output Distribution
Lower Upper

Step 2. Execute Design of Experiment (DoE) Step 3. Create machine learning-based surrogate model

e {7
\
XX
=Ry

® CCD |:>

@® LHS

Response

Figure 4. Notional sketch of the process of the hybrid approach used for this research.
3. Proposed Methodology

3.1. Overview of the Methodology

This research aims to not only develop a framework that deploys GPT-2 117M model to help
firmware developers write code in a more efficient manner, but also unravel the hidden relationships
between the GPT-2 model diversity parameters and code auto-completion capability. Figure 5 depicts
an overview of the proposed methodology.

Text Pre-Processing GPT-2 Model ‘:>

(Firmware C++ code) Fine-Tuning Design of Experiment

3

<: Monte-Carlo MLP-based Surrogate

Sensitivity Analysis . ; i
ensitivity Anafysis Simulation Modeling

Figure 5. Overview of the proposed methodology.

The framework is a Python-based program that consists of several modules with its primary
data sources. There are three different modules: (1) the first module is designed to automate data
pre-processing, such as removing all unnecessary C++ code comments, (2) the second module
performs fine-tuning for the GPT-2 model with optimized hyper-parameters (i.e., batch size and
learning rate), and (3) the third module employs advanced design methods for diversity parameter
sensitivity analysis.

Appl. Sci. 2020, 10, 8520 60f15

3.2. Text Pre-Processing

To customize the original GPT-2 117M model to the SSD firmware development domain, it is
imperative to prepare input data properly for the fine-tuning process, because the process may require
understanding input data in its own way. Since the source codes include unnecessary information
(e.g., C++ code comments) that may deteriorate training data quality, we develop a Python code that
automatically removes all unnecessary code through the pattern analysis. Once the Python code
completes the removal process, it also removes white spaces as well as empty lines. It then combines
all the source codes into one single text file with the delimiter in order to allow the model to learn the

formatting of the training data.

3.3. GPT-2 Model Fine-Tuning

The GPT-2 model is a transformer-based language model trained with a massive 40GB text
data that mainly includes web pages [18]. Users can fine-tune the GPT-2 model with new input
data. During the fine-tuning process, users can either increase or decrease two hyper-parameters,
namely batch size and learning rate, to optimize the model’s predictive capability. We employ
the grid search method as shown in Figure 6 and test all candidate cases on the NVIDIA DGX-1
machine (i.e., Volta 32GB version) to isolate the hyper-parameters. The effective model is finally
determined by minimizing the log-loss value. The choice of hyper-parameters is tabulated in Table 2.
Figure 7 shows the plot of the loss curve describing that the loss value is actually converged with the

chosen hyper-parameters.

Table 2. Grid search results for the hyper-parameters.

Hyper-Parameter Final Choice

Learning rate 0.0001
Batch size Stochastic
LearningRate ——» LearningRate ———»

Best!

Batch Size
Batch Size

Figure 6. Notional sketch of the grid search method for isolating hyper-parameters.

S

Log loss
S = N W A W NN O

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of epochs

Figure 7. Plot of the loss history of the tailored GPT-2 model with isolated parameters.

Appl. Sci. 2020, 10, 8520 7 of 15

3.4. Design of Experiment

The design of experiment (DoE) is a procedure that selects samples in the design space to maximize
the amount of information with a limited set of experiments. To generate a non-linear surrogate
model that represents the design space of the GPT-2 model’s diversity parameters, we employ two
representative DoE methods: (1) the Latin hypercube sampling (LHS) method is used to capture inner
points of the design space and (2) the full factorial design with three factors is utilized to capture corner
points of the design space. Figure 8 shows how samples are distributed in the design space of the
GPT-2 model’s diversity parameters.

Top_p (scaled)

0.0

TS 04
m"Efa[u,e 06
Scalg,
g 08

o Design points

Figure 8. Design space of the GPT-2 model’s diversity parameters.

3.5. Surrogate Modeling

The multi-layer perceptron (MLP), which is one of the most representative non-linear regression
methods, is deployed as a surrogate model with respect to the GPT-2 model’s diversity parameters.
The MLP model used for this research entails the following fully-connected layers: (1) an input layer
to receive diversity parameter values, (2) an output layer that makes a prediction in terms of the score
function illustrated in Table 3, and (3) two hidden layers that are the true computational engine for the
regression. Figure 9 shows a diagram of the MLP model structure used for this research.

Prediction Score

Figure 9. Diagram of the MLP model structure.

Appl. Sci. 2020, 10, 8520 8of15

Table 3. Score metric for the MLP-based surrogate modeling.

Case Score
An option with the highest probability matches the actual code 100
There is an option among the possible candidates, which matches to the actual code 50
There is no available option that matches the actual code 1

To evaluate the accuracy of the MLP-based surrogate model, the model representation error (MRE)
is calculated with respect to additional random DoE cases. As a result, R-square, which describes
how well the model predictions adhere to reality, is equal to 0.98 and root mean square error (RMSE),
which describes how to spread out the residuals, is approximately 3.12.

3.6. Monte Carlo Simulation

We utilize the Monte Carlo simulation (MCS) technique to see the trend of resulting outcomes
generated from the MLP-based surrogate model. Uniform distribution with min/max values is used
for the GPT-2 model’s diversity parameters. The MCS is then performed with 1,000,000 sample points
generated by the uniform distribution of the GPT-2 model’s diversity parameters, which are eventually
incorporated into the MLP-based surrogate model to yield statistical distributions. Figure 10 notionally
depicts the MCS process flow diagram especially used in this research (i.e., input and output mapping).

INPUT

Temperature

Uniform Distribution \

Top_k OUTPUT

Top_p

A A
Lower Upper j

Figure 10. Notional sketch of the MCS process flow diagram.

SURROGATE MODEL ——>
al Ia

Output Distribution

4. Results and Discussion

4.1. Sensitivity Analysis

Sensitivity analysis with respect to the GPT-2 diversity parameters is performed to enhance the
level of understanding of the relationship between prediction accuracy and the diversity parameters.
The GPT-2 model has three different diversity parameters implemented in the sampling process.

The Boltzmann temperature is one of the GPT-2 model diversity parameters that control
randomness in the sampling process. Figure 11 shows the MCS results with respect to the
Boltzmann temperature. Lower and upper bounds are specified with 0.1 and 0.9, respectively.
A black dot represents one experiment case generated by the MLP-based surrogate model with
three different input variables randomly sampled from the uniform distributions with respect to
the GPT-2 model’s diversity parameters. As can be seen from Figure 11, it seems that decreasing
Boltzmann temperature (i.e., x-axis) keeps the model to generate a high prediction score (i.e., y-axis),
while increasing Boltzmann temperature causes the model to tend to frequently have a low prediction
score. Based on these observations, one may claim that the model with lower Boltzmann temperature
value, named deterministic design in this paper, would be the best option to predict the most likely

Appl. Sci. 2020, 10, 8520 90f15

next code element as the deterministic design strives to minimize the degree of surprise in model
output. However, it is too early to draw such a conclusion, because the model with a higher Boltzmann
temperature value, named probabilistic design in this paper, would provide a list of reasonable next
code elements in which one could select it manually to increase prediction accuracy. Details will be
discussed in the section of model evaluation.

Prediction Score

0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9
Boltzmann Temperature

Figure 11. MCS results for diversity parameter 1 (i.e., Boltzmann temperature).

The Top_k is another GPT-2 model diversity parameter that controls the number of sampling
words to be considered. For example, the most likely word is only considered if the Top_k is equal
to onem thus resulting in deterministic design. The deterministic design can successfully eliminate
rather weird candidates; however, one may claim that better results would be achieved if the algorithm
considers sampling words more than one. Figure 12 shows the MCS results with respect to the Top_k
parameter. Lower and upper bounds are specified with 40 and 100, respectively. As can be seen,
it appears that the Top_k parameter value does not have a significant impact on the prediction score,
indicating that the Top_k parameter may not entirely contribute to the model output diversity.

Prediction Score

40 50 60 70 80 920 100
Top_k

Figure 12. MCS results for diversity parameter 2 (i.e., Top_k).

Appl. Sci. 2020, 10, 8520 10 of 15

The Top_p, one of the GPT-2 model diversity parameters, considers sampling words from the
largest possible set of words whose cumulative probability exceeds a user-defined number. Instead of
sampling only from the most likely K words, the Top_p parameter provides an option that dynamically
controls the size of the set of sampling words to be considered. For example, if the Top_p is equal to
0.9, the algorithm computes cumulative probability distribution (CDF) and cuts off the words as soon
as the CDF exceeds 90 percents. Figure 13 shows the MCS results with respect to the Top_p parameter.
Lower and upper bounds are specified with 0.1 and 0.9, respectively. As the Top_p parameter value
increases, it results in more randomness in terms of the prediction score. On the other hand, as the
Top_p parameter value decreases, it leads to less randomness with regard to the prediction score.
This implies that the model with lower Top_p parameter value, which is approximately 0.25 in this
case, becomes deterministic and repetitive; while, the model with a higher Top_p parameter value
becomes a probabilistic design that may relatively improve code suggestion quality compared to a
deterministic design. Details about the difference between deterministic and probabilistic design will
be discussed in the section of model evaluation.

Prediction Score

0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
Top_p

Figure 13. MCS results for diversity parameter 3 (i.e., Top_p).

4.2. Model Evaluation

The simplest way to evaluate the fine-tuned GPT-2 model is to allow the model to ramble on
its own, which is called generating unconditional samples, but we are determined to use the option,
called generating interactive conditional samples, for a model evaluation purpose, as it is easy to
steer customized samples. The interactive conditional sample refers to generating samples based on a
user-defined input code. For example, it generates the most likely next code element once the user
provides an initial code. After users select the code element, the element is then added to the sequence
of the input code. Then, a new sequence becomes the input for the next step. This process is repeated
until it fills the rest of the sequence. In this paper, we use open-source SSD firmware codes, namely
SimpleSSD [20], to evaluate the framework developed by this research, because Samsung Electronics
SSD firmware source codes are strictly confidential. Figure 14 shows one sample code element [21]
tested by the framework.

case POLICY_LEAST RECENTLY_USED:
evictFunction= [this](unit32 tsetldx, unit64 t & tick)->unit32 t {
unit32 twayldx =0;
unit64 tmin = std::numeric_limits<unit64_t>::max();

Figure 14. Sample code element to be tested.

Appl. Sci. 2020, 10, 8520 11 0f 15

Based on the sensitivity analysis results, we specify the parameter values tabulated in Table 4
for the deterministic design. It should be noted that we specify 40 for the Top_k parameter
(i.e., rule of thumb) [22], as the parameter does not affect randomness in the sampling process.
Regarding the probabilistic design, we specify the maximum value (i.e., upper limit) for the GPT-2
diversity parameters except for the Top_k parameter.

Table 4. Diversity parameter values for deterministic design.

Diversity Parameter Value
Boltzmann temperature ~ 0.22
Top_k 40
Top_p 0.25

Figure 15 shows the results of predictions by the deterministic and probabilistic design for the
sample code element from Figure 14. Incorrect code elements are underlined by solid straight lines.
This result indicates that the probabilistic design is better than the deterministic design with respect to
similarity, especially for the sample code element. Here, it must be noted that the probabilistic design
is 100% correct as the users could select the correct code element after the framework suggest a list of
the most likely next code elements. Furthermore, it is worth mentioning that the deterministic design
is capable of predicting the correct next code elements in most cases; however, it sometimes produces
the model output in some unexpected ways.

Sample code elements

Predictions by Deterministic design

Predictions by Probabilistic design

case POLICY_LEAST _RECENTLY_USED:
evictFunction = [this](uint32_t setldx,
uint64_t & tick) -> uint32_t {
uint32_t wayldx = 0;
uint64_t min =

case POLICY_LEAST RECENTLY_USED:

evictFunction = [this](uint64_t now, void
*context) {
uint32_t wayldx = 0;
uint64_t min =
std:numeric_limits<unit64_t>::max();

case POLICY_LEAST_RECENTLY_USED:
evictFunction = [this](uint32_t setldx,
uint64_t & tick) -> uint32_t {
uint32_t wayldx = 0;
uint64_t min =
std:numeric_limits<unit64_t>::max();

std:numeric_limits<unit64_t>::max();

NOTE:

v’ The probabilistic design is 100% correct given that users manually select the correct option from a list of the next code elements
v’ Incorrect code elements are underlined by solid straight lines

Figure 15. Sample code element predictions by deterministic and probabilistic design.

Figure 16 shows how deterministic and probabilistic design predicts the next code element
differently based on the same user-defined input. As can be seen, the deterministic design generated
the only one output that would be the most likely (i.e., 100% probability) next code element in the
prediction process. Unfortunately, this prediction was incorrect for this particular case even though the
deterministic design was typically able to predict correctly in most cases. In other words, the reason
why the deterministic design would not be able to predict the code element correctly for this case was
that it would automatically select the option with the highest prediction probability. On the other
hand, given the same input code element, the probabilistic design generated a list of the most likely
next code elements with a certain probability. This approach enabled the users to select the option
manually from the list that included the correct code element based on previous input. For example,
although the option with the highest probability (e.g., [this](unit_64t) was incorrect for this particular
case, the probabilistic design was able to increase prediction accuracy by allowing the users to select
an option (e.g., [this](unit_32t) manually. Thus, there was no discrepancy with the probabilistic design
given that the user could manually select the candidate from the list of options (e.g., choosing an
option with 20% probability instead of an option with 80% probability).

Appl. Sci. 2020, 10, 8520

evictFunction=

OUTPUT

12 0f 15

INPUT

[this](uint_64t (Probability: 100%)

evictFunction = [this](uint_64t

OUTPUT

now, void* context) { (Probability: 70%)

setldx, unit64
, uint64_t &)

(Probability: 20%)
(Probability: 10%)

[this](uint_64t (Probability: 80%)
[this](uint_32t (Probability: 20%)

OUTPUT

evictFunction = [this](uint 32t

INPUT

Figure 16. Deterministic design vs. Probabilistic design.

This example shows the impact of the GPT-2 model diversity parameters on the model output

prediction accuracy. In addition to this particular example, Figures 17-19 support the argument that
the deterministic design sometimes generates the model output in some unexpected ways, while there
is no discrepancy with the probabilistic design, given that the user could manually select an option

from a list of candidates.

Sample code (fl.cc) elements

Predictions by Deterministic design

Predictions by Probabilistic design

switch (conf.readInt(CONFIG_FTL,
FTL_MAPPING_MODE)) {
case PAGE_MAPPING:
pFTL = new PageMapping(conf,
param, pPAL, pDRAM);

switch (conf.readFloat(CONFIG_FTL,
FTL_OVERPROVISION RATIO));
case PAGE_MAPPING:
pFTL -> initialize();

switch (conf.readInt(CONFIG_FTL,
FTL_MAPPING_MODE)) {
case PAGE_MAPPING:
pFTL = new PageMapping(conf,
param, pPAL, pDRAM);

void FTL::read(Request &req, unit64_t
&tick) {
debugprint(LOG_FTL, “READ | LPN
%" PRIu64, req.lpn);
pFTL->read(req, tick);
tick += applyLatency(CPU::FTL,
CPU::READ);

void FTL::trim(Request &req, unit64_t
&tick) {
debugprint(LOG_FTL, “READ | LPN
%" PRIu64, req.Ipn);
pFTL->initialize();
tick += applyLatency(CPU::FTL,
CPU::READ);

void FTL::read(Request &req, unit64_t
&tick) {
debugprint(LOG_FTL, “READ | LPN
%" PRIu64, req.lpn);
pFTL->read(req, tick);
tick += applyLatency(CPU::FTL,
CPU::READ);

void FTL::resetStatValues() {
pFTL->resetStatValues();
pPAL->resetStatValues();

void FTL::resetStatValues() {
pFTL->resetStatValues();
pPAL->resetStatValues();

void FTL::resetStatValues() {
pFTL->resetStatValues();
pPAL->resetStatValues();

NOTE:

v’ The probabilistic design is 100% correct given that users manually select the correct option from a list of the next code elements
v’ Incorrect code elements are underlined by solid straight lines

Figure 17. Sample code (ftl.cc) element predictions by deterministic and probabilistic design.

The main gist of these case studies is as follows: First, the deterministic design is recommended

for those who would like to reduce latency time for the model output prediction, but users should
recognize that the prediction accuracy may not be guaranteed. Second, the probabilistic design is
recommended for those who want to guarantee the model prediction accuracy; however, users may
have to address potential issues related to high computational costs about inference. Regarding
the potential issues, we recognize the trend that transformer-based language models are going to
get bigger (e.g., GPT-3 model), so they may require a lot of computing power and memory to run
them, which potentially leads to challenging to run on a personal computer with reasonable latency
time. In this case, it is imperative to implement the code auto-completion engine developed by this

Appl. Sci. 2020, 10, 8520

13 0f 15

research into a cloud computing resource. The good news is that Samsung Electronics already has
an environment internally that includes many cloud computing systems. With the internal system:s,
the company does not have to account for security concerns. However, one potential issue is that the
cloud systems may experience a bottleneck because of an increase in traffic from user requests. This
paper does not address the potential limitation about how to operate the framework developed by
this research with the cloud computing systems, but focus on proving the concept of the machine
learning-based code auto-completion functionality.

Sample code (hil.cc) elements

Predictions by Deterministic design

Predictions by Probabilistic design

void HIL::read(Request &req) {
DMAFunction doRead = [this](uint64_t
beginAt, void *context) {
auto pReq = (Request *)context;
uint64_t tick = beginAt;

void HIL::read(Request &req) {
DMAFunction doFlush =[this](uint64_t
tick, void *context) {
auto pReq = (Request *)context;
uint64_t tick = beginAt;

void HIL::read(Request &req) {
DMAFunction doRead = [this](uint64_t
beginAt, void *context) {
auto pReq = (Request *)context;
uint64_t tick = beginAt;

void HIL::getLPNInfo(uint64_t
&totalLogicalPages, uint32_t
&logicalPageSize) {

pICL->getLPNInfo(totalLogicalPages,
logicalPageSize);

void HIL::getUsedPageCount(uint64 t

IcaBegin, uint64 t, IcaEnd) {
pICL->getLPNInfo(totalLogicalPages,

logicalPageSize);

void HIL::getLPNInfo(uint64_t
&totalLogicalPages, uint32_t
&logicalPageSize) {

pICL->getLPNInfo(totalLogicalPages,
logicalPageSize);

void HIL::updateCompletion() {
if (completionQueue.size() > 0) {
if (lastScheduled !=
completionQueue.top().finishedAt) {
lastScheduled =
completionQueue.top().finishedAt;

void HIL::updateCompletion() {
if (completionQueue.size() > 0) {
if (lastScheduled !=
completionQueue.top().finishedAt) {
lastScheduled =
completionQueue.top().finishedAt;

void HIL::updateCompletion() {
if (completionQueue.size() > 0) {
if (lastScheduled !=
completionQueue.top().finishedAt) {
lastScheduled =
completionQueue.top().finishedAt;

NOTE:

v’ The probabilistic design is 100% correct given that users manually select the correct option from a list of the next code elements
v’ Incorrect code elements are underlined by solid straight lines

Figure 18. Sample code (hil.cc) element predictions by deterministic and probabilistic design.

Sample code (fifo.cc) elements

Predictions by Deterministic design

Predictions by Probabilistic design

void FIFO::transferRead() {
auto iter = readQueue.waitQueue.begin();
bool smallerThanUnit = false;
uint64_t size = calcSize(iter->size,
smallerThanUnit);

void FIFO::insertRead() {
auto iter = readCompletion.begin();
bool unused;
uint64_t size = calcSize(iter->size,
smallerThanUnit);

void FIFO::transferRead() {
auto iter = readQueue.waitQueue.begin();
bool smallerThanUnit = false;
uint64_t size = calcSize(iter->size,
smallerThanUnit);

copy.last = true;

copy.addr = iter->addr + param.transferUnit;
copy.size = iter->size — param.transferUnit;
copy.buffer = iter->buffer ? iter->buffer +
param.transferUnit : nullptr;

copy.last = true;

copy.addr = iter->size — param.transferUnit;
copy.size = iter->size — param.transferUnit;
copy.buffer = iter->buffer ? iter->buffer +
param.transferUnit : nullptr;

copy.last = true;

copy.addr = iter->addr + param.transferUnit;
copy.size = iter->size — param.transferUnit;
copy.buffer = iter->buffer ? iter->buffer +
param.transferUnit : nullptr;

void
FIFO::insertReadDoneMerge(std::list<Read
Entry>::iterator comp) {
uint64_t now = getTick();
if (now >= comp->dmaEndAt + comp-
>latency) {
insertReadDoneNext();

void FIFO::insertReadDoneNext() {
uint64_t now = getTick();

if (now >= jter.insertEndAt + letency) {
insertReadDoneNext();

void
FIFO::insertReadDoneMerge(std::list<Read
Entry>::iterator comp) {
uint64_t now = getTick();
if (now >= comp->dmaEndAt + comp-
>latency) {
insertReadDoneNext();

NOTE:

v’ The probabilistic design is 100% correct given that users manually select the correct option from a list of the next code elements
v’ Incorrect code elements are underlined by solid straight lines

Figure 19. Sample code (fifo.cc) element predictions by deterministic and probabilistic design.

5. Conclusions

In this research, we established a machine learning-based code auto-completion framework,
especially for SSD firmware developers at Samsung Electronics. The hybrid approach that harnesses
the synergy between machine learning techniques and advanced design methods was presented

Appl. Sci. 2020, 10, 8520 140f 15

to enhance the level of the understanding of the relationship between the GPT-2 model diversity
parameters and prediction accuracy. The sensitivity analysis results showed that the probabilistic
design outperformed the deterministic design with respect to the prediction accuracy as we observed a
few cases of failure showing that the deterministic design generated output in some unexpected ways.
It was found that there must be a balance between model prediction accuracy and prediction latency
time given that users utilize the framework with either laptops or desktops. The accomplishment of
this research can be implemented in any firmware development environment at a company as needed.
In conclusion, it is expected that the framework developed by this research can save numerous hours
of productivity by eliminating tedious parts of writing code and helping SSD firmware developers
write code in a more efficient manner. Future research will extend the framework by implementing a
new functionality accounting for potential issues related to the order of suggestions given that users
may select accidentally the first entry (i.e., unwanted selections), which may not always be the correct
option, among the recommended code elements.

Author Contributions: Conceptualization, J.K. and S.C.; Methodology,] K.; Software,].K. and S.C.; Validation,
J.K.; Investigation,].K. and K.L.; Writing—original draft preparation,].K.; Writing—review and editing, K.L. and
S.C.; All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by Kyungpook National University Research Fund, 2020.

Acknowledgments: This paper is an extension of a PhD summer internship project that was done at Samsung
Electronics in 2020. We would like to thank Hankyu Lee for his feedback on this research. We would also like to
thank Jinbaek Song for his support on the NVIDIA DGX-1 setup process.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kim, J.; Briceno, S.; Justin, C.; Mavris, D. A Data-Driven Approach Using Machine Learning to
Enable Real-Time Flight Path Planning. In Proceedings of the AIAA Aviation 2020 Forum, USA,
10 November 2020; p. 2873. Available online: https://arc.aiaa.org/doi/abs/10.2514/6.2020-2873
(accessed on 12 November 2020).

2. Devlin, J.; Chang, M.W.; Lee, K_; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for
language understanding. arXiv 2018, arXiv:1810.04805.

3. Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Language models are unsupervised
multitask learners. OpenAl Blog 2019, 1, 9.

4. Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.;
Sastry, G.; Askell, A.; et al. Language models are few-shot learners. arXiv 2020, arXiv:2005.14165.

5. The illustrated GPT-2 (Visualizing Transformer Language Models. Available online: http://jalammar.
github.io/illustrated-gpt2/ (accessed on 12 November 2020).

6. AllenNLP Language Modeling. Available online: https://demo.allennlp.org/next-token-lm?text=
AllenNLP%20is (accessed on 12 November 2020).

7. Working with Content Assist. Available online: https:/ /www.eclipse.org/pdt/help/html/working_with_
code_assist.htm (accessed on 19 October 2020).

8. Das, S.; Shah, C. Contextual Code Completion Using Machine Learning; Technical Report; Stanford University:
Stanford, CA, USA, 2015.

9. Proksch, S.; Lerch, J.; Mezini, M. Intelligent code completion with Bayesian networks. ACM Trans. Softw.
Eng. Methodol. 2015, 25, 1-31.

10. Raychev, V.; Vechev, M.; Yahav, E. Code completion with statistical language models. In Proceedings of the
35th ACM SIGPLAN Conference on Programming Language Design and Implementation, Edinburgh, UK,
9-11 June 2014; pp. 419-428.

11. Neural Code Completion. Available online: https://openreview.net/pdf?id=rJbPBt9lg (accessed on
27 November 2020).

12. Karampatsis, R.M.; Babii, H.; Robbes, R.; Sutton, C.; Janes, A. Big Code!= Big Vocabulary: Open-Vocabulary
Models for Source Code. arXiv 2020, arXiv:2003.07914.

https://arc.aiaa.org/doi/abs/10.2514/6.2020-2873
http://jalammar.github.io/illustrated-gpt2/
http://jalammar.github.io/illustrated-gpt2/
https://demo.allennlp.org/next-token-lm?text=AllenNLP%20is
https://demo.allennlp.org/next-token-lm?text=AllenNLP%20is
https://www.eclipse.org/pdt/help/html/working_with_code_assist.htm
https://www.eclipse.org/pdt/help/html/working_with_code_assist.htm
https://openreview.net/pdf?id=rJbPBt9lg

Appl. Sci. 2020, 10, 8520 150f15

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

White, M.; Vendome, C.; Linares-Vasquez, M.; Poshyvanyk, D. Toward deep learning software repositories.
In Proceedings of the 2015 IEEE/ ACM 12th Working Conference on Mining Software Repositories, Florence,
Italy, 16-17 May 2015; pp. 334-345.

Li, J; Wang, Y.; Lyu, M.R,; King, I. Code completion with neural attention and pointer networks.
arXiv 2017, arXiv:1711.09573.

Svyatkovskiy, A.; Deng, SK.; Fu, S.; Sundaresan, N. IntelliCode Compose: Code Generation Using
Transformer. arXiv 2020, arXiv:2005.08025.

Dong, L.; Yang, N.; Wang, W.; Wei, F,; Liu, X.; Wang, Y.; Gao, J.; Zhou, M.; Hon, H.W. Unified language
model pre-training for natural language understanding and generation. arXiv 2019, arXiv:1905.03197.
Autocompletion with Deep Learning. Available online: https://www.tabnine.com/blog/deep/
(accessed on 19 October 2020).

Better Language Models and Their Implications. Available online: https://openai.com/blog/better-
language-models/ (accessed on 19 October 2020).

Kim, J.; Lim, D.; Monteiro, D.J.; Kirby, M.; Mavris, D. Multi-objective Optimization of Departure Procedures
at Gimpo International Airport. Int. |. Aeronaut. Space Sci. 2018, 19, 534-541. [CrossRef]

Jung, M.; Zhang, J.; Abulila, A.; Kwon, M.; Shahidi, N.; Shalf, J.; Kim, N.S.; Kandemir, M. Simplessd:
Modeling solid state drives for holistic system simulation. IEEE Comput. Archit. Lett. 2017, 17, 37-41.
[CrossRef]

SimpleSSD Version 2.0 GitHub. Available online: https://github.com/SimpleSSD/SimpleSSD (accessed on
19 October 2020).

Beginner’s Guide to Retrain GPT-2 (117M) to Generate Custom Text Content. Available online:
https:/ /medium.com/@ngwaifoong92 /beginners-guide-to-retrain-gpt-2-117m-to-generate-custom-
text-content-8bb5363d8b7f (accessed on 19 October 2020).

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

® (© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

https://www.tabnine.com/blog/deep/
https://openai.com/blog/better-language-models/
https://openai.com/blog/better-language-models/
http://dx.doi.org/10.1007/s42405-018-0027-1
http://dx.doi.org/10.1109/LCA.2017.2750658
https://github.com/SimpleSSD/SimpleSSD
https://medium.com/@ngwaifoong92/beginners-guide-to-retrain-gpt-2-117m-to-generate-custom-text-content-8bb5363d8b7f
https://medium.com/@ngwaifoong92/beginners-guide-to-retrain-gpt-2-117m-to-generate-custom-text-content-8bb5363d8b7f
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Research Motivation
	Background

	Literature Review
	Related Work
	Research Gap

	Proposed Methodology
	Overview of the Methodology
	Text Pre-Processing
	GPT-2 Model Fine-Tuning
	Design of Experiment
	Surrogate Modeling
	Monte Carlo Simulation

	Results and Discussion
	Sensitivity Analysis
	Model Evaluation

	Conclusions
	References

