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Abstract: The accurate modeling and forecasting of the power output of photovoltaic (PV)
systems are critical to efficiently managing their integration in smart grids, delivery, and storage.
This paper intends to provide efficient short-term forecasting of solar power production using
Variational AutoEncoder (VAE) model. Adopting the VAE-driven deep learning model is expected
to improve forecasting accuracy because of its suitable performance in time-series modeling and
flexible nonlinear approximation. Both single- and multi-step-ahead forecasts are investigated
in this work. Data from two grid-connected plants (a 243 kW parking lot canopy array in the
US and a 9 MW PV system in Algeria) are employed to show the investigated deep learning
models’ performance. Specifically, the forecasting outputs of the proposed VAE-based forecasting
method have been compared with seven deep learning methods, namely recurrent neural network,
Long short-term memory (LSTM), Bidirectional LSTM, Convolutional LSTM network, Gated recurrent
units, stacked autoencoder, and restricted Boltzmann machine, and two commonly used machine
learning methods, namely logistic regression and support vector regression. The results of this
investigation demonstrate the satisfying performance of deep learning techniques to forecast solar
power and point out that the VAE consistently performed better than the other methods. Also,
results confirmed the superior performance of deep learning models compared to the two considered
baseline machine learning models.
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1. Introduction

The accurate modeling and forecasting of solar power output in photovoltaic (PV) systems are
certainly essential to improve their management and enable their integration in smart grids [1,2].
Namely, the output power of a PV system is highly correlated with the solar irradiation and the
weather conditions that explain the intermittent nature of PV system power generation. Particularly,
the characteristic of fluctuation and intermittent of the temperature and solar irradiance could impact
solar power production [3]. In practice, a decrease of larger than 20% of power output can be recorded
in PV plants [4]. Hence, the connected PV systems to the public power grid can impact the stability
and the expected operation of the power plant [5]. Given reliable real-time solar power forecasting,
the integration of PV systems into the power grid can be assured. Also, power forecasting becomes an
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indispensable component of smart grids to efficiently manage power grid generation, storage, delivery,
and energy market [6,7].

Long-and short-term forecasting methods are valuable tools for efficient power grid
operations [8,9]. The success of integrating PV systems in smart grids depends largely on the accuracy
of the implemented forecasting methods. Numerous models have been developed to enhance the
accuracy of solar power forecasting, including autoregressive integrated moving average (ARIMA),
and Holt-Winters methods. In Reference [10], a short term PV power forecasting based on the
Holt-Winters algorithm (also called triple exponential smoothing method) has been introduced. This
model is simple to construct and convenient to use. In Reference [11], different time series models
including Moving average models, exponential smoothing, double exponential smoothing (DES),
and triple exponential smoothing (TES) have been applied for short-term solar power forecasting.
In Reference [12], a coupled strategy integrating discrete wavelet transform (DWT), random vector
functional link neural network hybrid model (RVFL), and SARIMA has been proposed to a short-term
forecast of solar PV power. This study showed that the use of the DWT negatively affects the accuracy
of solar PV power forecasting under a clear sky. While the quality of the forecast model is improved
when using DWT in cloudy and rainy sky weather. In addition, the coupled model showed superior
forecasting performance in comparison to individuals models (i.e., SARIMA or RVFL). However,
switching between two forecast models is not an easy task, particularly for real-time forecasting.
In Reference [13], a hybrid model merging seasonal decomposition and least-square support vector
regression was developed for forecasting monthly solar power output. Improved results have been
obtained with this hybrid model compared to those obtained with ARIMA, SARIMA, and generalized
regression neural network.

In recent years, shallow machine learning (ML) as non-parametric models, which are more
flexible, have been widely exploited in improving solar PV forecasting. These models possess desirable
characteristics and can model the complicated relationship between process variables and do not need
an explicit model formulation to be specified, as is generally required. In Reference [14], a hybrid
approach combining support vector regression (SVR) and improved adaptive genetic algorithm
(IAGA) is developed for an hourly electricity demand forecasting. It has been shown that this
hybrid approach outperformed the traditional feed-forward neural networks, the extreme learning
machine (ELM) model, and the SVR model. In Reference [15], an approach for forecasting PV and
wind-generated power using the higher-order multivariate Markov Chain. This approach considers
the time-adaptive stochastic correlation between the wind and PV output power to achieve the 15-min
ahead forecasting. The observation interval of the last measured samples are included to follow the
pattern of PV/wind power fluctuations. In Reference [16], a univariate method is developed for
multiple steps ahead of solar power forecasting by integrating a data re-sampling approach with
machine learning procedures. Specifically, machine learning algorithms including Neural Networks
(NNs), Support Vector Regression (SVR), Random Forest (RF), and Multiple Linear Regression (MLR)
are applied to re-sampled time-series for computing multiple steps ahead predictions. However,
this approach is designed only for univariate time series data. In Reference [17], a forecasting strategy
combining the gradient boosting trees algorithm with feature engineering techniques is proposed
to uncover information from a grid of numerical weather predictions (NWP) using both solar and
wind data. Results indicate that appropriate features extraction from the raw NWP could improve
the forecasting. In Reference [18], a modified ensemble approach based on an adaptive residual
compensation (ARC) algorithm is introduced for solar power forecasting. In Reference [19], an analog
method for day-ahead regional photovoltaic power forecasting is introduced based on meteorological
data, and solar time and earth declination angle. This method exhibited better day-ahead regional
power forecasting compared to the persistence model, System advisor model, and SVM model.

Over the last few years, deep learning has emerged as a promising research area both in
academia and industry [20–24]. The deep learning technology has realized advancement in different
areas, such as computer vision [25], natural language processing [26], speech recognition [27],
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renewable energy forecasting [4,28], anomaly detection [29–31], and reinforcement learning [32].
Owing to its data-driven approaches, deep learning has brought a paradigm shift in the way relevant
information in time series data are extracted and analyzed. By concatenating multiple layers into
the neural network structures, deep learning-driven methods enable flexible and efficient modeling
of implicit interactions between process variables and automatic extraction of relevant information
from a voluminous dataset with limited human instruction. Various deep techniques have been
employed in the literature for improving solar power forecasting. For instance, in Reference [33],
Recurrent Neural Networks (RNNs) is adopted for PV power forecasting. However, simple RNN
is not suited to learn long-term evolution due to the vanishing gradient and exploding gradient.
To bypass this limitation, several variants of RNN have been developed including Long Short-Term
Memory Networks (LSTM) and gated recurrent unit (GRU) networks. Essentially, compared to a
simple RNN model, LSTM and GRU models possess the superior capacity in modeling time-dependent
data within a longer time span. In Reference [4], the LSTM model, which is a powerful tool in modeling
time-dependent data, is applied to forecast solar power time series data. In Reference [34], a GRU
network, which is an extended version of the LSTM model, has been applied to forecast short-term
PV power. In Reference [35], at first, an LSTM recurrent neural network (LSTM-RNN) is applied for
independent day-ahead PV power forecasting. Then, the forecasting results have been refined using
a modification approach that takes into consideration the correlation of diverse PV power patterns.
Results showed that the forecasting quality is improved by considering time correlation modification.
In Reference [36], by using the LSTM model, a forecasting framework is introduced for residential load
forecasting to address volatility problems, such as variability of resident’s activities and individual
residential loads. Results show that the forecasting accuracy could be enhanced by incorporating
appliance measurements in the training data. In Reference [37], a hybrid forecasting approach is
introduced by combining a convolutional neural network (CNN) and a salp swarm algorithm (SSA) for
PV power output forecasting. After classifying the PV power data and associated weather information
in five weather classes: rainy, heavy cloudy, cloudy, light cloudy, and sunny, the CNN is applied to
predict the next day’s weather type. To this end, five CNN models are constructed and SSA is applied
to optimize each model. However, using several CNN models makes this hybrid approach not suitable
for real-time forecasting. In Reference [38], a method combining deep convolutional neural network
and wavelet transform technique is proposed for deterministic PV power forecasting. Then, the PV
power uncertainty is quantified using quantile regression. Results demonstrated the deterministic
model possesses reasonable forecasting stability and robustness. Of course, deep learning models
possess the capacity to efficiently learn nonlinear features and pertinent information in time-series
data that should be exploited in a wide range of applications.

This study offers a threefold contribution. Firstly, to the best of our knowledge, this the first study
introducing a variational autoencoder (VAE) and Restricted Boltzmann Machine (RBM) methods to
forecast PV power. Secondly, this study provides a comparison of forecasting outputs of eight deep
learning models, including simple RNN, LSTM, ConvLSTM, Bidirectional LSTM (BiLSTM), GRUs,
stacked autoencoders, VAE, and RBM, which takes into account temporal dependencies inherently and
nonlinear characteristics. The eight deep learning methods and two commonly used machine learning
methods, namely logistic regression (LR) and support vector regression (SVR), were applied to forecast
PV power time-series data. Finally, for the guidance of short- and long-term operational strategies for
PV systems, both single- and multi-step-ahead forecasting are examined and compared in this paper.
Data sets from two grid-connected plants are adopted to assess the outputs of the deep learning-driven
forecasting methods. Section 2 introduces the eight used deep learning methods. Section 3 describes
the deep learning-based PV power forecasting strategy. Section 4 assesses the forecasting methods
and compares their performance using two actual datasets. Finally, Section 5 concludes this study and
sheds light on potential future research lines.
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2. Methodologies

Deep learning techniques, which possess good capabilities in automatically learning pertinent
features embed in data, are examined in this study to forecast PV power output. Table 1, summarizes the
pros and cons of the seven considered benchmark deep learning architectures: RNN [39], LSTM [40],
GRU [41], Bi-LSTM [42], ConvLSTM [43], SAE [44], RBM [45,46], and VAE [20,47].

Table 1. The considered benchmark deep learning methods.

Model Description Key Points

• RNNs are able to include historical
information in the forecasting process via
their recurrent structure and memory units
• Simple RNN do not have gates [39].
• The RNNs are entirely trained in a
supervised way.

+ Modeling time dependencies
- Simple RNNs fail to catch the
long-term evolution due to the
vanishing gradient and exploding
gradient [33].

• LSTM consists of three gates
regulating the information flow called
input, forge, and output gates [40].
• Gate mechanism is used to store and
memorize historical data features.
• GRU use two gates, while LSTM is
based on three gates.

+ LSTM showed good
performance for learning long-term
dependencies more easily than the
conventional RNN
- Its training is relatively longer
than that of other RNN algorithms
- The architecture of typical
LSTM is very complex

• The major demarcation of GRU from
LSTM is that only one unit is used to control
both the forgetting factor and the decision
to update the state unit [41].
• GRU contains only two gates,
the update, and the reset gates.
• The GRU has been widely used in
time-series, data sequence (e.g., speech and
text processing), temporal features
extraction, prediction, and forecasting.

+ The attractive features of the
GRU model are the shorter training
time compared to the LSTM and
the fewer parameters that the GRU
model possesses compared to the
LSTM [41].
- GRU models have problems
such as slow convergence rate and
low learning efficiency, resulting in
too long training time and even
under-fitting.

• Compared to the LSTM model that
passes the input data through the network
in one direction from past to future
(forward), the BiLSTM processes the input
also in the backward direction from the
future to the past [42].
• This architecture improves the
learning of complex temporal dependencies
through double processing.

+ Modeling time dependencies
+ Improved accuracy in state
reconstruction is achieved by
BiLSTM that merges the desirable
features of both bidirectional RNN
and LSTM [42].
- Complex architecture

• The ConvLSTM is a special variant
of the traditional LSTM, in which the
fully-connected layer operators are replaced
with convolutional operators [43].
• LSTM with recurrent connection to
deal with data sequences.
• The convolutional layer can deal with
2D inputs like a sequence of images.

+ The ConvLSTM can process
2D input through convolutional
transformations to learn the spatial
features and then feed the LSTM
module.
+ It has been used in modeling
time dependencies, feature extraction,
and spatiotemporal modeling
- Complex architecture
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Table 1. Cont.

Model Description Key Points

• Autoencoders are neural networks
that aim to create a compact representation
of a given input x like images or any type of
data [44].
• The network learns how to compress
the input features by keeping the most
important information by minimizing
the reconstruction error between the
compressed input and the original input
x [44].
• Autoencoders are usually stacked to
build a deep-stacked autoencoder.

+ Powerful compression
capabilities
+ The SAEs are trained in an
unsupervised way
+ They are applied for features
extraction, data generation,
dimensionality reduction,
classification, prediction, and
forecasting.
- Suffers from the error vanishing
and the overfitting

• RBMs are stochastic and generative
neural networks [45] consisting of visible
units and hidden units. There are no
connections between visible-to-visible and
hidden-to-hidden; however, visible and
hidden units are fully connected.
• Usually, RBMs are trained based on the
contrastive divergence learning method.
• Contrastive divergence uses Gibbs
sampling to compute the intractable
negative phase.

+ Simple architecture with two
layers
+ Generative model,
+ Strong data distribution
approximation.
+ Can be stacked to build a deep
learning model like DBN or DBM.
- Slow training due to
Contrastive Divergence approach.

Variational Autoencoders Model

VAEs are an essential class of generative-based techniques that are efficient to automatically
extract information from data in an unsupervised manner [20,47]. One desirable characteristic of VAEs
is their ability for reducing the input dimensionality enabling them to compress large dimensional
data into a compressed representation. Moreover, they are very effective for approximating complex
data distributions using stochastic gradient descent [47]. There are two major advantages of VAEs
compared the conventional autoencoders, one is they are efficient to solve the overfitting problem in
the conventional autoencoders by using a regulation mechanism in the training phase, and the second
advantage is that they have proved effective when handling various kinds of complex data in different
applications, including handwritten digits, and urban networks modeling [48]. Here, VAE is adopted
for solar PV production forecasting. Figure 1 shows a schematic diagram of the construction of a VAE.

Figure 1. Basic schematic illustration of a variational autoencoder (VAE).

Basically, the VAE, as a variant of autoencoders, contains two neural networks an encoder and
a decoder, where the encoder mission is to encode a given observed set, X into a latent space Z
as distribution, q (z|x). The latent (termed hidden) space dimension is decreased in comparison
to the dimension of the observed set. Indeed, the encoder is built to compress the observed set
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toward this reduced dimensional space efficiently. Then, a sample is generated via, z ∼ q(z|x),using
the learned probability distribution. On the other hand, the key purpose of the decoder, p (x|z),
consists in generating the observation x based on the input z. It should be emphasized that the
reconstruction of data using the decoder results in some deviation of reconstruction, which is calculated
and backpropagated through the network. This error is minimized in the training phase of the VAE
model by the minimization of the deviation between the observed set and the encoded-decoded set.

To summarize, the VAE encoder is gotten via an approximate posterior qθ (z|x), and the decoder
is obtained by a likelihood pφ (x|z), where θ and φ refers respectively to the parameters of encoder
and decoder. Here a neural network is constructed for learning θ and φ. Essentially, the VAE encoder’s
role is learning latent variable z based on gathered sensor data, and the decoder employs the learned
latent variable z for recovering the input data. The deviation between the reconstructed data and the
input data should be close to zero as possible. Notably, the learned latent variable z from the encoder
is used for feature extraction based on the input data. Usually, the dimension of the output of the
encoder is smaller than that of the original data, which leads to the dimensionality reduction of input
data. Note that the encoder is trained by training the entire VAE comprising encoder and decoder.

It is worth pointing out that the loss function has an essential effect on feature extraction for
training VAE. Assume that Xt = [x11, x2t, . . . , xNt] is the input data points of VAE at time point t,
and X

′
t is the reconstructed data using the VAE model. Furthermore, it is assumed maximizing the

marginal likelihood learning of parameters, expressed as [49]:

logpφ(x
′
) = DKL

[
qθ(z|x)

∥∥pφ(x)] + L(θ, φ; x), (1)

where DKL[.] denotes the Kulback-Leibler divergence, and L refers to the likelihood of the parameters
of encoder and decoder (i.e., θ and φ). Hence, the loss can be expressed as

L(θ, φ) = Ez∼qθ(z|x)
(
logp(x

′ |z)
)︸ ︷︷ ︸

Reconstruction term

−DKL
(
qθ(z|x)||pφ(z)

)︸ ︷︷ ︸
Regularization term

. (2)

The VAE’s loss function is composed of two parts: the reconstruction loss and a regularizer.
Reconstruction loss tries to get an efficient encoding-decoding procedure. In contrast, a regularizer part
permits the regularization of the latent space construction to approximate the distributions out of the
encoder as near as feasible to a prefixed distribution (e.g., Normal distribution). Figure 2 schematically
summarizes the procedure for computing the loss function.

The term (2) permits reinforcing the decoder capacity to learn data reconstruction. Higher values
of the reconstruction loss mean that the performed reconstruction is not suitable , while lower values
mean that the model is converging. The regularizer is reported using the Kulback-Leibler (KL)
divergence separating the distribution of the encoder function (qθ(z|x)) and of the latent variable
prior (z, |pφ(z)). Indeed, KL is employed to compute the distance that separates two given probability
distributions. The gradient descent method is used to minimize the loss function with respect to the
encoder’s parameters and decoder in the training phase. Overall, we minimize the loss function to
ensure getting a regular latent space,z, and adequate sampling of new observation using z ∼ pφ(z) [50].
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Figure 2. Reconstruction loss and Kulback-Leibler (KL) divergence to train VAE.

Let assume that pφ(z) = N (z; 0, I), we can write qθ(z|x) in the following form:

logqθ(z|x) = logN (z; µ, σ2 I). (3)

The mean and standard deviation of the approximate posterior are denoted by (µ, σ), respectively.
Note here that a layer is dedicated to both of them. Moreover, the latent space z is constructed using
a deterministic function g parameterized by φ and an auxiliary noise variable ε ∼ p(ε) or more
specifically ε ∼ N (0, I).

z = gφ(x, ε) = µ + σ� ε. (4)

The reconstruction error term can be expressed in the following form:

L(θ, φ, x) =
1
2 ∑

i

(
1 + log((σi)

2)− (µi)
2 − (σi)

2)+ 1
L

L

∑
l=1

log(pφ(x|z(l))), (5)

where the � denotes the element-wise product.
Overall, the encoder and decoder’s parameters are obtained by minimizing the loss function,

L(θ, φ), using the training observations. The VAE is trained using the procedure tabulated Algorithm 1.
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Algorithm 1: VAE training algorithm.

Input: : Training dataset X = {x1, . . . , xk}
Output: : {θ, φ}
θ : Encoder parameters;
φ : Decoder parameters;
M : number of mini-batch (drawn from full dataset) ;
{θ, φ} ←− Initialize model parameters randomly ;
repeat

Xm ←− RandomMinibatch(X, M);
Draw L samples from ε ∼ N (0, 1) ;
z = gφ(Xm, ε) ;

G = ∑
j

KL
(

qj

(
z|x(j)

)
||p (z)

)
+

1
L ∑L

l=1 log(p(x(l)|z(i,l)));

{θ, φ} ←− OptimizerUpdate(G, θ, φ);
until parameters convergence : {θ, φ};

3. Deep Learning-Based PV Power Forecasting

The input data consists of PV power output that variates between 0 and the rated output power.
Thus, when handling some large-value data with the RNN model, a gradient explosion can be occurred
and negatively affects the performance of the RNN. Furthermore, the learning effectiveness of RNN
will be reduced. To remedy this issue, the input data is normalized via min-max normalization within
the interval [0, 1], and then used for constructing the deep learning models. The normalization of the
original measurements, y is defined as:

ỹ =
(y− ymin)

(ymax − ymin)
, (6)

where ymin and ymax refer to the minimum and maximum of the raw PV power data, respectively.
After getting forecasting outputs, we applied a reverse operation to ensure that the forecasted data
match to the original PV power time-series data.

y = ỹ ∗ (ymax − ymin) + ymin. (7)

As discussed above, the generated PV power shows a high level of variability and volatility
because of its high correlation with the weather conditions. Hence, for mitigating the influence of
uncertainty on the accuracy of the PV power forecasting this work presents a deep-learning framework
to forecast PV power output time-series. Essentially, deep learning models are an efficient tool to
learn relevant features and process nonlinearity from complex datasets. In this study, a set of eight
deep learning models have been investigated and compared for one-step and multiple steps ahead
forecasting of solar PV power. The overall structure of the proposed forecasting procedures is depicted
in Figure 3. As shown in Figure 3, solar PV power forecasting is accomplished in two phases: training
and testing. The original PV power data is split into a training sub-data and a testing sub-data.
At first, the raw data is normalized to build deep learning models. Adam optimizer is used to select
the values of parameters of each model by minimizing the loss function based on training data.
Once the models are constructed, they are exploited for PV power output forecasting. The quality of
models are quantified using several statistical indexes including the Coefficient of determination (R2),
explained variance (EV), mean absolute error (MAE), Root Mean Square Error (RMSE), and normalized
RMSE (NRMSE).
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Figure 3. Schematic presentation of deep learning-based photovoltaic (PV) power forecasting.

Essentially, the deep learning-driven forecasting methods learn the temporal correlation hidden
on the PV power output data and expected to uncover and captures the sequential features in the PV
power time series. The main objective of this study is to investigate the capability of learning models
namely RNN, LSTM, BiLSTM, ConvLSTM, GRU, RBM, SAE, and VAE for one-step and multiple-steps
ahead solar PV power forecasting.

3.1. Training Procedure

The eight models investigated in this study can be categorized into two classes: autoencoders
and recurrent neural networks. The autoencoders represented include RBM, VAE, and SAEs while
the RNN-based models contain RNN, LSTM, GRU, BiLSTM, and ConvLSTM. The dataset used for
training and testing are normalized first, and more data preprocessing is needed for the autoencoder
models. For instance, data reshaping is needed to transform the univariate PV power time-series data
to a two-dimension matrix to be used as input for the autoencoders including the SAE, VAE, and RBM.
The main difference between the two classes in the training phase is the learning way, the RNNs are
entirely supervised trained while the auto-encoders are first pre-trained in an unsupervised manner
and then the training is completed based on supervised learning. Specifically, RNNs models are
trained in a supervised way by using a subset of training as input sequence (X = x1, . . . , xk) and an
output variable Y = xk+1. The sequence length l, called the lag, is a crucial parameter used in the data
preparation phase. The mapping sequence to the next value is constructed using a window sliding
algorithm. The value of l is determined using the Grid Search approach [51]. Here, the value of l is
chosen 6, which is the lowest value that maximizes the overall performance of the proposed approach.

RNN—based models are trained to learn the mapping function from the input to the output.
After that, these trained models are used to forecast new data that complete the sequence. On
the other hand, the greedy layer-wise unsupervised plus fine-tuning were applied to RBM, VAE,
and SAES. It should be noted that PV power output forecasting based on autoencoder is accomplished
as a dimensionality reduction. That is these models do not have the possibility to discover time
dependencies or model time series data. Hinton [44] shows that a greedy layerwise unsupervised
learning for each layer followed by a fine-tuning improves the features extraction and learning
process of the neural networks dedicated to prediction problems or for dimensionality reduction like
autoencoders. The VAE-driven forecasting procedure including the pretreatment step is illustrated
in Figure 4.
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Figure 4. VAE-driven procedure.

3.2. Measurements of Effectiveness

The deep learning-driven forecasting methods will be evaluated using the following metrics: R2,
RMSE, MAE, EV, and NRMSE.

R2 =
∑n

i=1[(yi, − ȳ) · (ŷi − ¯̂y)]2√
∑n

i=1(yi − ȳ)2 ·
√

∑n
i=1(ŷi − ¯̂y)2

, (8)

RMSE =

√
1
n

n

∑
t=1

(yt − ŷt)2, (9)

MAE =
∑n

t=1 |yt − ŷt|
n

, (10)

EV = 1− Var(ŷ− y)
Var(y)

, (11)

NRMSE =

(
1−

√
∑N

i=1(yi − ŷ)2

∑N
i=1(yi − y)2

)
.100%, (12)

where yt are the actual values, ŷt are the corresponding estimated values, y is the mean of measured
power data points, and n is the number of measurements. Instead of using RMSE that relies on the
range of the measured values, the benefit of using NRMSE as the statistical indicator is that it does not
rely on the range of the measured values. NRMSE metric indicates how well the forecasted model
response matches the measurement data. A value of 100% for NRMSE denotes perfect forecasting and
lower values characterize the poor forecasting performance. Lower RMSE and MAE values and EV
and R2 closer to 1 are an indicator of accurate forecasting.
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4. Results and Discussion

4.1. Data Description

In this study, solar PV power data from two PV systems are adopted to verify the performance of
the eight deep learning-driven forecasting methods.

• Data Set 1: The first historical solar-PV power dataset used are collected from a parking lot canopy
array monitored by the National Institute of Standard and Technology (NIST) [52]. The PV system
contains eight canopies tilted 5 degrees down from horizontal, four canopies tilt to the west,
and the other four canopies tilt to the east. The modules are installed with their longer dimension
running east-west. Each shed contains 129 modules laid out in a 3 (E −W) × 43 (N − S) grid.
This power system has a rated DC power output of 243 kW. The first dataset is collected from
January 2015 to December 2017 with a one-minute temporal resolution. The distribution of the
Parking Lot Canopy Array dataset collected from January 2015 to December 2015 are shown
in Figure 5a.

• Data Set 2: The second solar-PV power dataset is collected from a grid-connected plant in Algeria
with a peak power of 9 MWp from January 2018 to December 2018 with 15 min temporal resolution.
This PV plant consists of nine identical mini-PV plants of one mega each. Indeed, a set of 93 PV
array provides one MWp of DC power, two central inverters with 500 kVA each, allow to connect
the 93 PV array to one transformer of 1250 kVA. The hourly distribution of the first dataset are
shown in Figure 5b.

Figure 5. (a) distribution of solar PV power output from Parking Lot Canopy Array dataset.
(b) Hourly distribution of solar PV power output from January to December 2018.

Figure 6 depicts the boxplots of DC power output (Data Set 1 and Data Set 2) in Figure 5 to show
the distribution of DC power in the daytime. The maximum power is generated around mid-day.

Figure 6. Boxplots of PV power output during daytime hours: (a) Data Set 1 and (b) Data Set 2.
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4.2. Forecasting Results

Accurate short-term forecasting of PV power output gives pertinent information for maintaining
the desired power grid production delivery and storage [7,53]. This section assesses the eight models
(i.e., RNN, GRU, LSTM, BiLSTM, ConvLSTM, RBM, AE, and VAE) and compares their forecasting
performance using PV power output collected from two different PV systems. Towards this ends,
we first build each to capture the maximum variance in training data and then use them to forecast
the future trend of PV power output. The training data in Data Set 1 consists of one-minute power
data collected from 1 January 2017 to 29 June 2017. The training data in Data Set 2 is collected from
1 January 2018 to 19 October 2018. The hyper-parameters of the built deep learning methods based on
training datasets are tabulated in Table 2. For all models, we used the cross-entropy as loss function
and Rmsprop as an optimizer in training.

Table 2. Tuned parameters in the considered methods.

Methods Parameter Value

learning rate 0.0005
RBM Gibbs sampling (k) 5

Training epochs 500
Layers 01

SEAS Learning rate 0.0005
Training epochs 500
Layers 04

VAE Learning rate 0.0005
Training epochs 500
Layers 05

RNN Learning rate 0.0005
Training epochs 500

GRU Learning rate 0.0005
Training epochs 200

LSTM Learning rate 0.0005
Training epochs 200

BiLSTM Learning rate 0.0005
Training epochs 200

ConvLSTM Learning rate 0.0005
Training epochs 200

4.2.1. Forecasting Results Based on Data Set 1: Parking Lot Canopy Array Datasets

The principal feature of the PV power output is its intermittency. This unpredicted fluctuation
in solar PV power could lead to many challenges including power generation control and storage
management. Essentially, it is crucial to appropriately forecast PV power output to guarantee reliable
operation and economic integration in the power grid. In the first case study, the above-trained models
will be evaluated using the testing solar PV power output starting from 30 June to 6 July 2017 collected
from Parking lot canopy array. Forecasting outputs using the eight deep learning models using test
measurements are displayed in Figure 7. These results illustrate the goodness of deep learning models
for PV power forecasting.

Also, to show clearly the accordance of the measured and the forecast outputs from the
investigated deep learning models, the scatter plots are presented in Figure 8. Figure 8 shows that
the forecasted data from RBM and SAE models are moderately correlated with the actual PV power
output. The forecasting with ConvLSTM is relatively weakly correlated with the measured power data.
On the other hand, the forecasted power with RNN-based models and the VAE model are strongly
correlated with the measured PV power.
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Figure 7. Forecasting results from the eight models using the testing datasets: (a) Long Short-Term
Memory Networks (LSTM), (b) gated recurrent unit (GRU), (c) recurrent neural network (RNN), (d)
Bidirectional LSTM (BiLSTM), (e) Convolutional LSTM (ConvLSTM), (f) Restricted Boltzmann Machine
(RBM), (g) stacked autoencoder (SAE) and (h) VAE.

Figure 8. Scatter graphs of PV power forecasting and measurements using the eight models: (a) LSTM,
(b) GRU, (c) RNN, (d) BiLSTM, (e) ConvLSTM, (f) RBM, (g) SAE, and (h) VAE.

Now, to quantitatively evaluate the forecasting accuracy of the eight considered models based on
the testing data, five statistical indexes are computed and listed in Table 3. Also, we compared the eight
the forecasting results of the ten deep learning models with two baseline machine learning models:
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LR and SVR (Table 3). For this application, ConvLSTM performs poorly in terms of the forecasting
accuracy compared to the other models and cannot track well the variability of PV power and does
not describe the most variance in the data (i.e., EV = 0.832). Moderate forecasting performance are
obtained using RBM and SAE by explaining respectively 0.929 and 0.932 of the total variance in the
testing PV power data. The results of this investigation exhibit also that the VAE model provides
accurate forecast in comparison to the other models by achieving PV power forecast with lower RMSE,
MAE, and higher NRMSE (%) as well as the highest R2, EV values closer to 1 that means that most
of the variance in the data is captured by the VAE model. Specifically, the VAE model achieved the
highest R2 of 0.992 and the lower RMSE (6.891) and MAE (5.595). We highlight that this is the first
time that the VAE model is used for solar PV power output forecasting. This application showed that
the VAE method for PV power forecasting has superior performance. Also, it is noticed that RNN
and its extended variants LSTM, BiLSTM, and GRU achieve slightly comparable performance to the
VAE in terms of the statistical indexes (RMSE, RMSE, MAE, EV, and NRMSE). Table 3 indicates that
deep learning models exhibited improved forecasting performance compared to the baseline methods
(i.e., LR and SVR).

Table 3. Forecasting performance of the eight models based on testing data of the first dataset.

Method R2 RMSE MAE EV

LSTM 0.990 7.672 3.911 0.990
GRU 0.990 7.768 4.022 0.990
RNN 0.991 7.539 4.072 0.991
BiLSTM 0.990 7.722 3.910 0.990
ConvLSTM 0.832 31.842 16.338 0.832
RBM 0.929 20.672 8.910 0.929
SAE 0.932 20.301 8.300 0.932
SVM 0.971 14.174 12.889 0.972
LG 0.965 15.45 9.942 0.966
VAE 0.995 5.471 3.232 0.995

4.2.2. Forecasting Results Based on Data Set 2: Algerian PV Array Datasets

Now, the effectiveness of the eight methods will be tested based on power output data collected
from the 9 MWp PV plant in Algeria (Data Set 2). In this experiment, the above-trained models will be
evaluated using the testing solar PV power output collected from 20 October to 31 December 2018.
The measured test set together with model forecasts are charted in Figure 9. Similar conclusions are
also valid for these datasets. One major reason is that RNN-based models have a strong capability to
describe time dependents data and can better model the complicated relationship between historical
and future PV power output data than other methods. The RNN-based models and the VAE model
again confirm the superior forecasting performance of PV power output as shown by the scatter plots
in Figure 9. The ConvLSTM model shows poor forecasting performance results (Figure 9).

And then, the statistical indicators are computed to compare the forecasting performance between
the eight models, and baseline machine learning models: LR and SVR based on testing datasets
(Table 4). It is worth noting that the RNN-based models (i.e., RNN, LSTM, BiLSTM, ConvLSTM,
and GRU) and the VAE model show the improved forecasting performance compared to the RBM,
and SAE.

Results in Figure 9 and Table 4 indicate that using RNN-based models and VAE method has led
to improved forecasting performance. Furthermore, the error analysis highlights that the forecasting
accuracy obtained by these models can satisfy practical needs and can be useful for PV power
management. It should be noted that the VAE model is trained in an unsupervised manner in order
to forecast solar PV power. This means that the forecast is based only on the information from past
data. However, the other models are trained in a supervised way by using a subset of training as input
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sequence (x1, . . . , xk) and an output variable xk and we train RNN-based models to learn the mapping
function from the input to the output. After that, these trained models are used to forecast new data.
Even if the VAE model is trained in an unsupervised way, it can provide comparable forecasting
performance to those obtained by the supervised RNN-based models. Accordingly, the VAE-based
forecasting approach is a more flexible and powerful tool to be used in real-time PV power forecasting.

Figure 9. Scatter graphs of PV power forecasting and measurements using the eight models: (a) LSTM,
(b) GRU, (c) RNN, (d) BiLSTM, (e) ConvLSTM, (f) RBM, (g) SAE, and (h) VAE.

Table 4. Forecasting performance of the eight methods using the test set of the second dataset.

Method R2 RMSE MAE EV

LSTM 0.992 246.781 107.799 0.992
GRU 0.991 250.004 117.622 0.992
RNN 0.992 241.170 125.960 0.992
BiLSTM 0.991 259.884 117.579 0.991
ConvLSTM 0.692 1500.070 846.750 0.692
RBM 0.977 407.238 170.568 0.977
SAE 0.983 349.066 124.772 0.983
SVM 0.924 770.996 699.837 0.954
LG 0.899 886.665 837.721 0.926
VAE 0.995 199.645 99.838 0.995

Overall, the NRMSE (%) quantifies the quality of power forecasting between the measured and
forecasted PV power output time-series data, where the larger value indicates a better prediction
performance. A visual display of the NRMSE (%) derived with the eight considered deep learning
methods based on the testing datasets from the two PV systems is displayed in Figure 10. The first
dataset is with a one-minute resolution and the second dataset is with fifteen minutes resolution.
The VAE model achieves better PV power flow forecast performance compared to the RBM and SAE
models and RNN-based models. Furthermore, the results show that VAE models are efficient in
capturing the linear and nonlinear features in PV power data with different time resolutions.
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Figure 10. NRMSE by method based on the testing datasets from the two considered PV systems.

4.3. Multi-Step Ahead PV Power Forecasts

Precise multi-step forecasts are essential to managing the operation of PV systems appropriately.
Now, we assess the capability of the eight methods for multi-step ahead forecasting of PV power output
using data from Data Set 1 (a 243 kW parking lot canopy array in the US) and Data Set 2 (a 9 MW PV
system in Algeria). Based on the past measurements, x = [x1, x2, . . . , xl ], the computed single-,
two-, and multistep-ahead forecast are respectively xl+1, xl+2, and xl+n. The 5, 10, 15 steps-ahead
forecastings of PV power data based on the testing data of the Parking lot canopy array dataset and
the Adrar PV system are tabulated in Table 5.

Table 5. Validation metrics for multistep-step-ahead forecasts.

Algerian PV System Parking Lot Canopy Array

Model Steps Minutes RMSE MAE R2 EV RMSE MAE R2 EV

BiLSTM 2 30 1591.639 1303.28 0.675 0.876 18.309 10.011 0.951 0.953
CNN 2 30 1007.54 613.344 0.87 0.888 24.105 16.534 0.915 0.916
ConvLSTM2D 2 30 359.128 262.526 0.983 0.991 17.31 7.786 0.956 0.956
GRU 2 30 910.589 770.907 0.894 0.936 17.454 7.897 0.955 0.955
LSTM 2 30 376.359 285.324 0.982 0.982 17.47 7.914 0.955 0.955
RBM 2 30 390.581 213.174 0.98 0.98 17.564 7.847 0.955 0.955
RNN 2 30 1448.063 1170.279 0.731 0.868 18.101 8.474 0.952 0.953
SAE 2 30 477.986 255.739 0.971 0.974 17.724 8.783 0.954 0.955
VAE 2 30 303.091 117.701 0.988 0.988 17.31 7.566 0.956 0.956
BiLSTM 3 45 374.303 186.576 0.982 0.982 21.855 12.028 0.93 0.93
CNN 3 45 1166.323 749.863 0.826 0.84 26.135 18.617 0.9 0.9
ConvLSTM2D 3 45 370.848 260.922 0.982 0.986 21.315 10.397 0.933 0.934
GRU 3 45 395.163 225.154 0.98 0.98 21.78 11.596 0.93 0.932
LSTM 3 45 367.048 194.691 0.983 0.983 21.485 9.707 0.932 0.932
RBM 3 45 579.104 341.151 0.957 0.958 21.76 10.434 0.931 0.931
RNN 3 45 428.615 284.6 0.976 0.977 22.458 11.99 0.926 0.93
SAE 3 45 521.723 255.686 0.965 0.969 21.823 10.335 0.93 0.93
VAE 3 45 344.468 164.635 0.985 0.985 21.461 9.878 0.932 0.932
BiLSTM 4 60 432.448 229.34 0.976 0.977 23.687 13.131 0.918 0.92
CNN 4 60 949.999 567.358 0.884 0.897 27.022 17.502 0.893 0.9
ConvLSTM2D 4 60 462.93 360.618 0.972 0.978 23.174 12.113 0.921 0.921
GRU 4 60 538.857 381.686 0.963 0.965 23.252 11.681 0.921 0.921
LSTM 4 60 533.916 355.042 0.963 0.966 23.298 11.912 0.92 0.921
RBM 4 60 614.722 379.406 0.951 0.951 23.321 11.605 0.92 0.92
RNN 4 60 476.67 297.196 0.971 0.971 24.152 13.208 0.914 0.918
SAE 4 60 554.917 274.536 0.96 0.961 23.604 11.768 0.918 0.918
VAE 4 60 420.029 193.157 0.977 0.978 23.134 11.664 0.921 0.921

We can easily observe that, for all data sets, except BiLSTM and ConvLSTM, the other models
performed consistently reasonable forecasting results five-, ten-, fifteen-step-ahead forecasting.
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For instance, the VAE model achieved R2 values of 0.902,0.873, 0.856 for five-, ten-, fifteen-step-ahead
forecasting when using the first for Data Set 1, R2 values of 0.951,0.877, 0.818 for Data Set 2. The RNN,
GRU, RBM, SAE, and VAE models performed about equally in terms of R2, MAPE, and RMSE in
all cases.

For Data Set 1, the five-step-ahead forecasting R2’s for all models except ConvLSTM is around
0.90 (Table 5). Results in Table 5 show that for five-steps ahead forecasting based Data Set 2 almost
all models provide relatively good forecasting accuracy in terms of R2 which is around 0.94. It is
worthwhile noticing that for a ten-step -ahead forecast, the accuracy of all models starts to decrease
and achieve R2 values around 0.86. In the fifteen-step -ahead forecasting, we observed that LSTM,
BiLSTM, and ConvLSTM achieved poor forecasting performance. The other models are still providing
acceptable forecasting accuracy. We notice that the SAE model outperforms slightly the other models
with higher R2 and lowest forecasting errors. The overall forecasting performance of the RNN, GRU,
RBM, SAE, and VAE model was satisfying, and they can maintain a reasonable forecasting performance
to forecast solar PV power output as the number of steps increases. The error for the second dataset
is large compared to the first one. The first dataset is 15 min time resolution recorded for one year,
while the second data is of one-minute time resolution recorded for three years. Moreover, we used
90% of data for both datasets for training and 10% for testing. The one-minute data is very dynamic,
which explains the large error compared to the first dataset.

It is challenging to tell which models were absolutely superior on the basis of the R2, MAPE,
and RMSE values. The results of this study show that RNN, GRU, and VAE performs slightly better on
average than the other models in most cases for one- and multi-step-ahead forecasting. The obtained
results demonstrate that both RNNs with supervised learning and VAE with unsupervised learning can
perform a one-step and multi-step forecasting accurately. Overall, the VAE deep learning model gives
an effective way to model and forecast PV power output, and it has emerged as a serious competitor
to the RNN-driven models (i.e., RNN, GRU, and LSTM).

5. Conclusions

PV power output possesses high volatility and intermittency because of its great dependency
on environmental factors. Hence, a reliable forecast of solar PV power output is indispensable for
efficient operations of energy management systems. This paper compares eight deep learning-driven
forecasting methods for solar PV power output modeling and forecasting. The considered models
can be categorized into two categories: supervised deep learning methods, including RNN, LSTM,
BiLSTM, GRU, and ConvLSTM, and unsupervised methods, including AE, VAE, and RBM. We also
compared the performance of the deep learning methods with two baseline machine learning models
(i.e., LR and SVR). It is worth highlighting that this study introduced the VAE and RBM methods
to forecast PV power. For efficiently managing the PV system, both single- and multi-step-ahead
forecasts are considered. The forecasting accuracy of the ten models has been evaluated using two
real-world datasets collected from two different PV systems. Results show the domination of the
VAE-based forecasting methods due to its ability to learn higher-level features that permit good
forecasting accuracy.

To further enhance the forecasting performance, in future study, we plan to consider multivariate
forecasting by incorporating weather data. Also, these deep learning models can be applied and
compared using data from other renewable energy systems, such as forecasting the power generated
by wind turbines. Further, it will be interesting to conduct comparative studies to investigate the
impacts of data from different technologies, such as monocrystalline, and polycrystalline.
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