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Abstract: This paper provides a critical review of the literature on deep learning applications in breast
tumor diagnosis using ultrasound and mammography images. It also summarizes recent advances in
computer-aided diagnosis/detection (CAD) systems, which make use of new deep learning methods
to automatically recognize breast images and improve the accuracy of diagnoses made by radiologists.
This review is based upon published literature in the past decade (January 2010–January 2020),
where we obtained around 250 research articles, and after an eligibility process, 59 articles were
presented in more detail. The main findings in the classification process revealed that new DL-CAD
methods are useful and effective screening tools for breast cancer, thus reducing the need for manual
feature extraction. The breast tumor research community can utilize this survey as a basis for their
current and future studies.

Keywords: breast cancer; computer-aided diagnosis; convolutional neural networks; deep learning;
mammography; ultrasound

1. Introduction

Due to the anatomy of the human body, women are more vulnerable to breast cancer than men.
Breast cancer is one of the leading causes of death for women globally [1–4] and is a significant public
health problem. It occurs due to the uncontrolled growth of breast cells. These cells usually form
tumors that can be seen from the breast area via different imaging modalities.

To understand breast cancer, some basic knowledge about the normal structure of the breast is
important. Women’s breasts are constructed of lobules, ducts, nipples, and fatty tissues (Figure 1) [5].
Normally, epithelial tumors grow inside the lobes, as well as in the ducts, and later form a lump [6],
generating breast cancer.
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Figure 1. This scheme represents the anatomy of a woman’s breast. Inside the lobes are the zones 

where the epithelial tumors or cyst grow. Designed by Biorender (2020). Retrieved from 

https://app.biorender.com/biorender-templates 
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masses are the particular kind of masses that have a high probability of malignancy. A spiculated 

mass is a lump of tissue with spikes or points on the surface. It is suggestive but not a confirmation 

of malignancy. It is a common mammography finding in breast carcinoma [8]. 

On the other hand, microcalcifications are small granular deposits of calcium and may reveal 

themselves as clusters or patterns (like circles or lines) and appear as bright spots in a mammogram. 
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irregularly shaped [7,9]. 

Breast cancer screening aims to detect benign or malignant tumors before the symptoms 
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(US) [12], and computed tomography (CT) [13]. These methods help to visualize hidden diagnostic 

features. Out of these modalities, ultrasound and mammograms are the most common screening 

methods for detecting tumors before they become palpable and invasive [2,14–16]. Furthermore, 

they may be utilized effectively to reduce unnecessary biopsies [17]. These two are the modalities 

that are reviewed in this article. 

A drawback in mammography is that the results depend upon the lesion type, the age of the 

patient, and the breast density [18–24]. In particular, dense breasts that are “radiographically” hard 

to see exhibit a low contrast between the cancerous lesions and the background [25,26]. 

Digital mammography (DM) has some limitations, such as low sensitivity, especially in dense 

breasts, and therefore other modalities, such as US, are used [12]. US is a non-invasive, 

non-radioactive, real-time imaging technique that provides high-resolution images [27]. However, 

all these techniques require manual interpretation by an expert radiologist. Normally, the 

radiologists try to do a manual interpretation of the medical image via a double mammogram 
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Figure 1. This scheme represents the anatomy of a woman’s breast. Inside the lobes are the
zones where the epithelial tumors or cyst grow. Designed by Biorender (2020). Retrieved from
https://app.biorender.com/biorender-templates.

Breast abnormalities that can indicate breast cancer are masses and calcifications [7]. Masses are
benign or malignant lumps and can be described in terms of their shape (round, lobular,
oval, and irregular) or their margin (obscured, indistinct, and spiculated) characteristics. The spiculated
masses are the particular kind of masses that have a high probability of malignancy. A spiculated
mass is a lump of tissue with spikes or points on the surface. It is suggestive but not a confirmation of
malignancy. It is a common mammography finding in breast carcinoma [8].

On the other hand, microcalcifications are small granular deposits of calcium and may
reveal themselves as clusters or patterns (like circles or lines) and appear as bright spots in a
mammogram. Benign calcifications are usually larger and coarser with round and smooth contours.
Malignant calcifications tend to be numerous, clustered, small, varying in size and shape, angular, and
are irregularly shaped [7,9].

Breast cancer screening aims to detect benign or malignant tumors before the symptoms appear,
and hence reduce mortality through early intervention [2]. Currently, there are different screening
methods, such as mammography [10], magnetic resonance imaging (MRI) [11], ultrasound (US) [12],
and computed tomography (CT) [13]. These methods help to visualize hidden diagnostic features.
Out of these modalities, ultrasound and mammograms are the most common screening methods for
detecting tumors before they become palpable and invasive [2,14–16]. Furthermore, they may be
utilized effectively to reduce unnecessary biopsies [17]. These two are the modalities that are reviewed
in this article.

A drawback in mammography is that the results depend upon the lesion type, the age of the
patient, and the breast density [18–24]. In particular, dense breasts that are “radiographically” hard to
see exhibit a low contrast between the cancerous lesions and the background [25,26].

Digital mammography (DM) has some limitations, such as low sensitivity, especially in dense
breasts, and therefore other modalities, such as US, are used [12]. US is a non-invasive, non-radioactive,
real-time imaging technique that provides high-resolution images [27]. However, all these techniques
require manual interpretation by an expert radiologist. Normally, the radiologists try to do a manual
interpretation of the medical image via a double mammogram reading to enhance the accuracy of
the results [28]. However, this is time-consuming and is highly prone to mistakes [3,29]. Because of
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these limitations, different artificial intelligence algorithms are gaining attention due to their excellent
performance in image recognition tasks.

Different breast image classification methods have been used to assist doctors in reading
and interpreting medical images, such as traditional computer-aided diagnosis/detection (CAD)
systems [8,30–32] based on machine learning (ML) [33–35], or based on modern CAD-deep learning
(DL) system [36–42].

The goal of CAD is to increase the accuracy and sensitivity rates to support radiologists in
their diagnosis decisions [43,44]. Recently, Gao et al. [45] developed a CAD system for screening
mammography readings that demonstrated an approximately 92% accuracy in the classification.
Likewise, other studies [46,47] used several CNNs for mass detection in mammography’s and
ultrasounds [48–50].

In general, DL-CAD systems focus on CNNs, which is the most popular model used for intelligent
image analysis and for detecting cancer with good performance [51,52]. With CNNs, it is possible to
automate the feature extraction process as an internal part of the network, thus minimizing human
interference. DL-CAD systems have added broader meaning with this approach, distinguishing it
from traditional CAD methods.

The next-generation technologies based on the DL-CAD system solve problems that are hard
to solve with traditional CAD [12,33]. These problems include learning from complex data [53,54],
image recognition [55], medical diagnosis [56,57], and image enhancement [58]. In using such
techniques, the image analysis includes preprocessing, segmentation (selection of a region of
interest—ROI), feature extraction/selection, and classification.

In this review, we summarize recent upgrades and improvements in new DL-CAD systems for
breast cancer detection/diagnosis using mammograms and ultrasound imaging and then describe the
principal findings in the classification process. The following research questions were used as the
guidelines for this article:

• How the new DL-CAD systems provide breast imaging classification in comparison with the
traditional CAD system?

• Which artificial neural networks implemented in DL-CAD systems give better performance
regarding breast tumor classification?

• Which are the main DL-CAD architectures used for breast tumor diagnosis/detection?
• What are the performance metrics used for evaluating DL-CAD systems?

2. Materials and Methods

2.1. Flowchart of the Review

The research process is shown in Figure 2, which was in accordance with the PRISMA
(Preferred reporting items for systematic reviews and meta-analyses) flow diagram and protocol [59].

Furthermore, the systematic review process follows the flow diagram and protocol (Figure 3)
given in [60].

We identified appropriate studies in PubMed, Medline, Google Scholar, and Web of Science
databases, as well as conference proceedings from IEEE (Institute of Electrical and Electronics
Engineers), MICCAI (Medical Image Computing and Computer Assisted Intervention), and SPIE
(Society of Photographic Instrumentation Engineers), published between January 2010 and January
2020. The search was designed to identify all studies in which DM and US were evaluated as
a primary detection modality for breast cancer, and were both used for screening and diagnosis.
A comprehensive search strategy including free text and MeSH terms was utilized, including terms
such as: “breast cancer”, “breast tumor”, “breast ultrasound”, “breast diagnostic”, “diagnostic imaging”,
“deep learning”, “CAD system”, “convolutional neural network”, “computer-aided detection”,
“computer-aided diagnoses”, “digital databases”, “mammography”, “mammary ultrasound”,
“radiology information”, and “screening”.
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2.1.1. Inclusion Criteria

Articles were included if they assessed computer-aided diagnosis (CADx) and/or computer-aided
detection (CADe) for breast cancer, DL in breast imaging, deep CNN, DL in mass segmentation and
classification in both DM and US, deep neural network architecture, transfer learning, and feature-based
methods regarding automated DM breast density measurements. From a review of the abstracts,
we manually selected the relevant papers.

2.1.2. Exclusion Criteria

Articles were excluded if the study population included other screening methods, such as MRI,
CT, PET (positron emission tomography), or if other machine learning techniques were used.

2.2. Study Design

The general modern DL-CAD design was divided into four sections (Figure 4). First, different
mammography and ultrasound public digital databases were analyzed as input data for the
DL-CAD system. The second section includes the preprocessing and postprocessing in the
next-generation DL-CAD.
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Figure 4. The general diagram is a flowchart that describes how a modern CAD system process
can be used with DM and US images from public and private databases. Normally, the CAD
system consists of several stages, such as segmentation, feature extraction/selection, and classification.
However, DL-CAD systems are based on CNN models and architectures for automatic feature
extraction/selection and classification with convolutional and fully connected layers through
self-learning. Finally, CAD systems are validated by different metrics. ANN: artificial neural network,
BCDR: Breast Cancer Digital Repository, BUSI: Breast Ultrasound Image Dataset, CADe: computer-aided
detection, CADx: computer-aided diagnosis, DDBUI: Digital Database for Breast Ultrasound Images,
DDSM: Digital Database for Screening Mammography, MIAS: Mammographic Image Analysis Society
Digital Mammogram Database, OASBUD: Open Access Series of Breast Ultrasonic Data, ROC–AUC:
receiver operating characteristic curve–area under the curve, UDIAT: Ultrasound Diagnostic Ultrasound
Centre of the Parc Tauli, VGGNet: Visual Geometry Group.

In the third part, full articles were analyzed to compile the successful CNNs used in DL architectures.
Furthermore, the best evaluation metrics were analyzed to measure the accuracy of these algorithms.
Finally, a discussion and conclusions about these classifiers are presented.
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2.2.1. Public Databases

Normally, DL models are tested using private clinical images or publically available digital
databases that are used by researchers in the breast cancer area. The amount of public medical images is
increasing because most of the DL-CAD systems require a large amount of data. Thus, DL algorithms are
applied to available digitized mammograms, such as those from MIAS (Mammographic Image Analysis
Society Digital Mammogram Database) [61], DDSM (Digital Database for Screening Mammography),
IRMA (Image Retrieval in Medical Application) [62,63], INbreast [64], and BCDR (Breast Cancer Digital
Repository) [45,65], as well as public US databases, such as BUSI (Breast Ultrasound Image Dataset),
DDBUI (Digital Database for Breast Ultrasound Images), and OASBUD (Open Access Series of Breast
Ultrasonic Data) from the Oncology Institute in Warsaw, Poland, and the private US collected datasets,
such as SNUH (Seoul National University Hospital, Korea) [48], Dataset A (collected in 2001 from
a professional didactic media file for breast imaging specialists) [66], and Dataset B collected from
the UDIAT(Ultrasound Diagnostic Ultrasound Centre of the Parc Tauli) Corporation, Sabadell, Spain.
These widely used datasets are listed in Table 1.

Table 1. Summary of the most commonly used public breast cancer databases in the literature.

Type Database Annotations Link Author

Mammograms

DDSM
2620 patients including mediolateral

oblique (MLO) and craniocaudal (CC)
images for classification.

http://www.eng.usf.edu/
cvprg/Mammography/

Database.html
Jiao et al. [67]

BCDR
736 biopsy prove lesion of 344 patients,

including CC and MLO images
for classification.

https://bcdr.eu/ Arevalo et al. [68]

INbreast 419 cases, including CC and MLO images
of 115 patients, for detection and diagnosis.

http://medicalresearch.
inescporto.pt/

breastresearch/index.php/
Get_INbreast_Database

IMoreira et al. [64]

Mini-MIAS
322 digitized MLO images of 161 patients

for segmentation, detection,
and classification.

http://peipa.essex.ac.uk/
info/mias.html Peng et al. [69]

Ultrasound

BUSI

The dataset consists of 600 female patients.
The 780 images include 133 normal images

without masses, 437 images with cancer
masses, and 210 images with benign

masses. This set is utilized for classification,
detection, and segmentation.

https://scholar.cu.edu.eg/
?q=afahmy/pages/dataset Dhabyani et al. [70]

DDBUI 285 cases and 1132 images in total
for classification.

https:
//www.atlantis-press.com/
proceedings/jcis2008/1735

Tian et al. [71]

Dataset A
Private dataset with 306 (60 malignant

and 246 benign) images, which are
utilized for detection.

goo.gl/SJmoti Yap et al. [48]

Dataset B Private dataset with 163 (53 malignant
and 110 benign) images. Byra et al. [66]

SNUH
Private dataset with a total of 1225 patients

with 1687 tumors.
This study includes biopsy diagnosis.

Moon et al. [49]

OASBUD
52 malignant and 48 benign masses,

which are utilized in image
processing algorithms.

http://bluebox.ippt.gov.pl/
~hpiotrzk

Piotrzkowska
et al. [72]

ImageNet

882 US images (678 benign and
204 malignant lesions), which are utilized
in object recognition, image classification,

and automatic object clustering.

http:
//www.image-net.org/

Deng et al. [73]

SNUH: Seoul National University Hospital.

http://www.eng.usf.edu/cvprg/Mammography/Database.html
http://www.eng.usf.edu/cvprg/Mammography/Database.html
http://www.eng.usf.edu/cvprg/Mammography/Database.html
https://bcdr.eu/
http://medicalresearch.inescporto.pt/breastresearch/index.php/Get_INbreast_Database
http://medicalresearch.inescporto.pt/breastresearch/index.php/Get_INbreast_Database
http://medicalresearch.inescporto.pt/breastresearch/index.php/Get_INbreast_Database
http://medicalresearch.inescporto.pt/breastresearch/index.php/Get_INbreast_Database
http://peipa.essex.ac.uk/info/mias.html
http://peipa.essex.ac.uk/info/mias.html
https://scholar.cu.edu.eg/?q=afahmy/pages/dataset
https://scholar.cu.edu.eg/?q=afahmy/pages/dataset
https://www.atlantis-press.com/proceedings/jcis2008/1735
https://www.atlantis-press.com/proceedings/jcis2008/1735
https://www.atlantis-press.com/proceedings/jcis2008/1735
goo.gl/SJmoti
http://bluebox.ippt.gov.pl/~hpiotrzk
http://bluebox.ippt.gov.pl/~hpiotrzk
http://www.image-net.org/
http://www.image-net.org/
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2.2.2. CAD Focused on DM and US

The CAD systems are divided into two categories. One is the traditional CAD system and the
other is the DL-CAD system (Figure 5). In the traditional CAD system, the radiologist or clinician
defines features in the image, where there can be problems regarding recognizing the shape and density
information of the cancerous area. A DL-CAD system, on the other hand, creates such features by itself
through the learning process [74].
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Figure 5. The scheme describes the main difference between the traditional machine learning (ML)-CAD
system and the DL-CAD system.

Furthermore, CAD systems can be broken down into two main groups: CADe and CADx.
The main difference between CADe and CADx is that the first refers to a software tool that assists in ROI
segmentation within an image [75], identifying possible abnormalities and leaving the interpretation
to the radiologist [8]. On the other hand, CADx serves as a decision aid for radiologists to characterize
findings from a CADe system. Several significant CAD works are described in Table 2.

Table 2. The traditional CAD system summary with DM and US breast cancer images. It covers four
stages: (i) image processing, (ii) segmentation, (iii) feature extraction and selection, and (iv) classification.

Reference Models Description Application

[76,77]

Pixel-based, which is based
on the curvature of the edge
and clustering [3,78]:
conventional (CLAHE),
region-based, feature-based
(wavelet), and fuzzy.

Pectoral removal techniques are not sufficient to
provide accurate results. Thereby,
intensity-based methods, line detection,
statistical techniques, wavelet methods, and the
active contour technique have also been tried for
segmenting this area. Its accuracy varies from
84% to 99%, where the active contour technique
reached the highest value of 99%, followed by the
wavelet method with 93% [79].
Enchancement techniques are divided into three
categories: spatial, frequency domain, and a
mixture of these two. These categories can be
classified into four models. The region-based
method requires a seed point and it is
time-consuming.

Preprocessing

[80,81]

Local thresholding and
region-growing [82];
edge detection, template
matching [12,83], and a
multiscale technique [84];
NN [85].

The thresholding method shows greater stability
but is dependent on the parameter selection.
Furthermore, is not sufficient for segmenting
fatty tissue in a DM because its images contain
noise and have low contrast and intensity.
The region-growing method is well-known in
micro-calcification detection and uses pixel
properties for segmenting fatty tissue.
Edge detection utilizes the wavelet transform in a
multiscale structure to represent signals and
variations in US images. Template matching
requires a comparison with a given image (ROI)
with a template image to measure the similarity
between both. Finally, an NN utilizes a
multi-layered perceptron with a hidden layer for
extracting the contours of tumors automatically;
nevertheless, training an NN is time-consuming.

Segmentation
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Table 2. Cont.

Reference Models Description Application

[86] PCA [87],
LDA [88], and GLCM [89].

Feature selection methods: wrapper and filter
(chi-square [90]). The most well-known feature
extraction techniques are PCA, LDA, GLCM,
gain ratio, recursive feature [91], RF, WPT [92,93],
Fourier power spectrum [94], Gaussian [95] and
DBT [29]. PCA feature extraction techniques are
better at reducing the high-dimensional
correlated features into low dimensional
features [87].

Feature Selection
and extraction

[12,33] SVM [96,97] and
ANN [98,99].

SVM is useful in DM classification because these
are highly overlapping and nonlinear in their
feature space. It minimizes the generalization
error during the process of testing data and is
much more accurate and computational efficient
because of the reduced number of parameters.
ANN: Backpropagation, SOM, and hierarchical
ANN. The performance of back-propagation is
better than that of linear classifiers.
However, the training process is stochastic and
unrepeatable, even with the same data and initial
conditions. Prone to overfitting due to the
complexity of the model structure.
Finally, advantages and disadvantages from
other classifiers have been previously discussed
in several studies: KNN [100], BDT [101],
simple logistic classifier [102], and DBN [103]

Classification

2.2.3. Preprocessing

It is known that the database characteristics can significantly affect the performance of a CAD
scheme, or even a particular processing technique. Furthermore, it can develop a scheme that yields
erroneous or confusing results [104] since radiological images contain noise, artefacts, and other factors
that can affect medical and computer interpretations. Thus, the first step in preprocessing is to improve
the image quality, contrast, removal noise, and pectoral muscle [105].

Image Enhancement

The main purpose of image preprocessing is to enhance the image and suppress noise while
preserving important diagnostic features [106,107]. Preprocessing for breast cancer diagnosis also
consists of delineation of the tumors from the background, breast border extraction, and pectoral muscle
removal. The pectoral muscle segmentation is a challenge in mammogram image analysis because the
density and texture information is similar to that of the breast tissues. Furthermore, it depends on the
standard view used during mammography. Generally, mediolateral oblique (MLO) and craniocaudal
(CC) views are used [78].

As noted, DM includes many sources of noise, which are classified as a high-intensity, low-intensity,
or tape artefacts. The principal noise models observed in mammography are salt and pepper, Gaussian,
speckle, and Poisson noise.

In the same way, US images suffer from noise, such as intensity inhomogeneity, a low signal-to-noise
ratio, high speckle noise [108,109], blurry boundaries, shadow, attenuation, speckle interference, and low
contrast. Speckle noise reduction techniques are categorized in filtering, wavelet, and compound
methods [12].

Thus, many traditional filters can be applied for noise removal, including a wavelet transform,
median filter, mean filter, adaptive median filter, Gaussian filter, and adaptive Wiener filter [3,110–113].
Furthermore, different traditional methods, such as histogram equalization (HE) [114,115],



Appl. Sci. 2020, 10, 8298 9 of 28

adaptive histogram equalization (AHE) [116], and contrast-limited adaptive histogram equalization
(CLAHE) [117], can be used to enhance the image.

On the other hand, deep CNNs [118] are gaining attention for improving super-resolution [119]
images (SR) based on a CNN, namely, (i) multi-image super-resolution and (ii) single-image
super-resolution [120,121]. Among the most used algorithms for generating high-resolution (HR)
imaging [122,123] are nearest-neighbor interpolation [124], bilinear interpolation [125], and bicubic
interpolation [126].

Image Augmentation

Deep CNN depends on large datasets to avoid overfitting and is necessary for good DL model
performance [127]. Thus, limited datasets are a major challenge in medical image processing [128]
and it is necessary to implement data augmentation techniques. There are two common techniques
for increasing the data in DL, namely, data augmentation and transfer learning/fine-tuning [129,130].
Examples of DL models that have been trained with data augmentation are Imagenet [74] and transfer
learning [47].

The image augmentation algorithms include basic image manipulations (flipping, rotation,
transformation, feature space augmentation, kernel, mixing images, and random erasing [131]) and DL
manipulations (generative adversarial networks (GANs)) [132], along with a neural style transfer [133]
and meta-learning [128]). These techniques increase the amount of data by preprocessing input image
data via operations such as contrast enhancement and noise addition, which have been implemented
in many studies [134–140].

Image Segmentation

This processing step plays an important role in image classification. Segmentation is the separation
of ROIs (lesions, masses, and microcalcifications) from the background of the image.

In traditional CAD systems, the tasks of specifying the ROI, such as an initial boundary or lesions,
are accomplished with the expertise of radiologists. The traditional segmentation task in DM can
be divided into four main classes: (i) threshold-based segmentation, (ii) region-based segmentation,
(iii) pixel-based segmentation, and (iv) model-based segmentation [3,78]. Furthermore, US image
segmentation includes several techniques: threshold-based, region-based, edge-based, water-based,
active-contour-based, and neural-network-learning-based techniques [141,142].

The accuracy of the segmentation affects the results of CAD systems because numerous features
are used for distinguishing malignant and benign tumors (texture, contour, and shape of lesions).
Thus, the features may only be effectively extracted if the segmentation of tumors is performed with
great accuracy [106,142]. This is why researchers are using DL methods, especially CNNs, because these
methods have shown excellent results on segmentation tasks. Furthermore, DL-CAD systems are
independent of human involvement and are capable of autonomously modeling breast US and DM
knowledge using constraints. Two strategies have been utilized for full image sizes for training CNNs
for DM and US instead of ROIs: (1) high-resolution [143] and (2) patch-level [144] images. For example,
recent network architectures that have been used to produce segmented regions are YOLO [145],
SegNet [146,147], UNet [148], GAN [149], and ERFNet [150].

2.2.4. Postprocessing

Image Feature Extraction and Selection

After the segmentation, feature extraction and selection are the next steps to remove the irrelevant
and redundant information of the data being processed. Features are characteristics of the ROI taken
from the shape and margin of lesions, masses, and calcifications. These features can be categorized
into texture and morphologic features [12,86], descriptors, and model-based features [52], which help
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to discriminate between benign and malignant lesions. Most of the texture features are calculated from
the entire image or ROIs using the gray-level value and the morphological features.

There are some traditional techniques used for feature selection, such as searching algorithms,
the chi-square test, random forest, gain ratio, and recursive feature elimination [91]. In addition,
other traditional techniques used for the feature extraction include principal component analysis (PCA),
wavelet packet transform (WPT) [92,93], grey-level co-occurrence matrix (GLCM) [91], Fourier power
spectrum (FPS) [94], Gaussian derivative kernels [95], and decision boundary features (DBT) [151].

However, in some classification processes, such as an ANN or support vector machine (SVM),
the dimension of the vectors affects both the computational time and the performance [152] because this
depends on the number of features extracted. Thus, feature selection techniques reduce the size of the
feature space, improving the accuracy and computation time by eliminating redundant features [153].
In particular, DL models produce a set of image features from the data [154], whose main advantage is
that they extract features and perform classifications directly. Providing good extraction and selection
of the features is a crucial task for DL-CAD systems; for example, some CNNs that are capable of
extracting features have been presented by different authors [155,156].

2.2.5. Classification

During the classification process, the dimension of feature vectors is important because these
affect the performance of the classifier. The features of breast US images can be divided into four
types: texture, morphological, model-based, and descriptor features [86]. After the features have been
extracted and selected, they are input into a classifier to categorize the ROI into malignant and benign
classes. The commonly used classifiers include linear, ANN, Bayesian neural networks, decision tree,
SVM, template matching [106], and CNNs.

Recently, deep CNNs, which are hierarchical architectures trained on large-scale datasets, have
shown stunning performances regarding object recognition and detection [157], which suggests that
these could also improve breast lesion detection in both US and DM methods. Some researchers are
interested in lesion [158], microcalcification [159,160], and mass [161,162] classification in DM and
US [15–154,163–165] images based on CNN models.

Deep Learning Models

DL in medical imaging is mostly represented by a basic structure called a CNN [57,75]. There are
different DL techniques, such as GANs, deep autoencoders (DANs), restricted Boltzmann machine
(RBM), stacked autoencoders (SAEs), convolutional autoencoders (CAEs), recurrent neural networks
(RNNs), long short-term memory (LSTM), multiscale convolutional neural network (M-CNN),
and multi-instance learning convolutional neural network (MIL-CNN) [3]. DL techniques have
been implemented to train neural networks for breast lesion detection, including ensemble [75] and
transfer learning [129,157,166] methods. The ensemble method combines several basic models in order
to get an optimal model [167], and transfer learning is an effective DL method to pre-train models to
deal with small datasets, as in the case of medical images.

ANNs are composed of an input and output layer, plus one or more hidden layers, as shown
in Figure 6. In the field of breast cancer, three types of ANN are frequently used: backpropagation,
SOM, and hierarchical ANNs. To train an ANN with a backpropagation algorithm, the error function
is given to calculate the gradient descent. This error propagates in the backward direction and the
weights are adjusted for error reduction. This processing is repeated until the error becomes zero or is
a minimum [3].
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Convolutional Neural Networks

CNNs are the most widely used Neural Networks when it comes to DL and medical image analysis.
The CNN structure has three types of layers: (i) convolution, (ii) pooling, and (iii) full-connection layers,
which are stacked in multiple layers [74]. Thus, a CNN’s structure is determined by different parameters,
such as the number of hidden layers, the learning rate, the activation function (rectified linear unit
(ReLU)), pooling layer for feature map extraction, loss function (softmax), and the fully connected
layers for classification, as shown in Figure 7.
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Figure 7. A feed-forward CNN network, where the convolutional layers are the main components,
followed by a nonlinear layer (rectified linear unit (ReLU)), pooling layer for feature map extraction,
loss function (softmax), and the fully connected layers for classification. The output can be either
benign or malignant classes.

Furthermore, there are several methods for improving a CNN’s performance, such as dropout and
batch normalization. Dropout is a regularization method that is used to prevent a CNN model from
overfitting. A batch normalization layer speeds up the training of CNNs and reduces the sensitivity to
network initialization.

2.2.6. Evaluation Metrics

Different quantitative metrics are used to evaluate the classifier performance of a DL-CAD system.
These include accuracy (Acc), Sensitivity (Sen), Specificity (Spe), area under the curve (AUC), F1 score,
and a confusion matrix. The statistical equations are shown in Tables 3 and 4.
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Table 3. Confusion matrix for a binary classifier that is used to distinguish between two classes, namely,
benign and malignant. TP: true positive; FN: false negative, FP: false positive, TN: true negative, TPR:
true positive rate, FPR: false positive rate.

Classes
Predicted Classes Equation

C1 C2

C1 (Benign) TP FN TPR =
( TP

TP + FN

)
C2 (Malignant) FP TN FPR =

( FP
FP + TN

)
Table 4. Validation assessment measures.

Model Equation

Accuracy Acc =
( TP + TN

TP + TN + FP + FN

)
Sensitivity TPR

Specificity TNR =
( TN

TN + FN

)
Precision Precision =

( TP
TP + FP

)
F1 Score F1 Score = 2 ×

(
precision × recall
precision + recall

)
MCC MCC =

TP × TN − FP × FN√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

The receiver operating characteristic curve (ROC) is a graph for plotting the true positive rate
(TPR) versus a false positive rate (FPR) and is derived from the AUC. The TPR and the FPR are also
called sensitivity (recall) and specificity, respectively, as shown in Figure 8.
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The AUC provides the area under the ROC curve and a perfect score has a range from 0.5 to 1.
A 100% correct classified version will have an AUC value of 1 and it will be 0 if there is a 100% wrong
classification [168].

Cross-validation is a statistical technique that is used to evaluate predictive models by partitioning
the original samples into training, validation, and testing sets. There are three types of validation:
(1) hold-out splits (training 80% and testing 20%), (2) three-way data split (training 60%, validation
20%, and testing 20%), and (3) K-fold cross-validation (from 3 to 5 k-fold for a large data set, 10 k-fold
for a small dataset), where the data are split into k different subsets depending on their size [65].
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3. Results

3.1. CNN Architectures

A model’s performance depends on the architecture and the size of the data. In this sense,
there are different CNN architectures that have been proposed: AlexNet [169], VGG-16 [170],
ResNet [171], Inception (GoogleNet) [172], and DenseNet [173]. These networks have shown promising
performance in recent works for image detection and classification. Table 5 shows a brief description
of these networks.

Table 5. Summary of CNN architecture information for breast imaging processing.

Reference Model Description Training Method Application

Krizhevsky
et al. [169] AlexNet

A deep CNN evaluated using the
Imagenet [65] LSVRC-2010

dataset [173], with top-1 and top-5
error rates of 37.5% and 17.0%,

respectively. This achieved a top-5
test error rate of 15.3% compared to
26.2% (ImageNet Large-Scale Visual

Recognition Challenge
(ILSVRC) 2012).

Dropout model Classification

Samala et al.
[174] DL-CNN

CAD system for masses in DBT
volume, which is trained using
transfer learning. The best AUC

obtained was 0.933 and the
improvement was statistically

significant (p < 0.05).

CNN architecture
Detection

tomosynthesis
from DM

Simoyan
et al. [170] VGG-VD

The very deep (VD)-CNN models
(VGG-VD16 and VGG-VD19 [158])

were evaluated in ILSVRC
2014 (ImageNet).

Deep ConvNet
architecture Classification

He et al.
[171] ResNet

An ensemble of these residual nets
achieved a 3.57% error on the

ImageNet (ILSVRC 2015) test set.

ResNet with a depth of up
to 152 layers 8× deeper Classification

Huang et al.
[172] DenseNet

DenseNet was proposed to reduce the
vanishing gradient problem, to reduce

the number of parameters, and to
strengthen the feature propagation.

ImageNet with a CNN Object recognition

Szegedy
et al. [27] Inception v5 A deep CNN was evaluated in

ILSVRC 2014. Deep-CNN Classification
and detection

Das et al.
[175] VGGNet

BreakHist dataset with 58 malignant
and 24 benign cases was evaluated

with a deep CNN. The best accuracy
percentage was reached with

100× (89.06%).

MIL architecture Histopathology

Cao et al.
[152] Deep CNN Private dataset that contains 577

benign and 464 malignant cases.

Detection: Fast R-CNN,
Faster R-CNN, YOLOv3,

and SSD;
Classification: AlexNet,

VGG, ResNet, GoogleNet,
ZFNet, and Densenet

US lesion detection
and classification

Chiao et al.
[153] Deep CNN

Private US imaging dataset that
contains 307 images with 107 benign

and 129 malignant cases.

Mask R-CNN with ROI
alignment; based on a
faster R-CNN using an
RPN to extract features

Sonogram lesion
detection and
classification

Yap et al.
[48]

LeNet,
UNet,

deep CNN

This work studies the performance of
CNNs in breast US detection using

two private datasets A and B.

LeNet [163], U-Net [148],
and transfer learning [176]

US breast
lesion detection

Geras, K. et
al. [176]

Multi-view
DL-CNN

INbreast [77] and DDSM [58]
databases were used; the model

achieved an AUC of 0.68%.

The CNN is jointly trained
using stochastic gradient

descent with
backpropagation [175,176]
and data augmentation via
random cropping [168,177]

High-resolution,
augmentation,

and DM classification
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Table 5. Cont.

Reference Model Description Training Method Application

Han et al.
[62]

GoogleNet with
ensemble learning

Dataset contains a total of 7408 US
breast images, with 657 used as the
training set and 829 as the test set.
The accuracy reached was 90.21%.

The CNN was trained with
10-fold cross-validation.
Data augmentation was

carrying out with the
Caffe method

Data augmentation,
detection, and

classification of
breast lesions in US

Dhungel
et al. [178]

LeNet for CNN
models in cascade

R-CNN

INbreast dataset was used, with 115
cases and 410 images from MLO and
CC views. The results showed that

the DL-CAD system is able to detect
90% of masses, with a segmentation

accuracy of 85% and the classification
reached a sensitivity of 0.98 and a

specificity of 0.7.

DL detection: Fast R-CNN,
multiscale-DBN,

and random forest;
DL segmentation: CRF;

DL classification:
regression method.

Detection,
segmentation, and

classification of
masses in DM

Singh et al.
[165] GAN

The Mendeley database [179] was
used, which contains 150 malignant

and 100 benign tumors. The
performance metrics achieved scores
of dice = 93.76% and IoU = 88.82%.

Segmentation with
GAN learning.

Segmentation and
classification of

US images

Cheng, J. Z.
[37] SDAE based CADx

The method was carried out on a
private database, with 520 breast
sonograms (275 benign and 245

malignant lesions). The AUC
performance reached 0.80%.

An SDAE (OverFeat)
model was used to classify
with the ensemble method.

Breast lesion/nodules
diagnosis and

classification of
US images

3.2. Performance Metrics

Furthermore, brief reviews of the DL architectures based on DM and US breast images, along with
their evaluation metrics, are presented in Tables 6 and 7 [50,180].

Table 6. The quantitative indicators that were used to evaluate the performance between different
CNN architectures in DM datasets.

Reference Database Deep CNN Model Acc
(%)

Sen
(%)

Spec
(%)

Precision
(%)

F1 Score
(%)

AUC
(%)

Al-Masni et al.
[145]

DDSM with 600 DM.

CNN YOLO5:
Fold cross-validation in

both datasets;
mass classification

99 93.20 78 - - 87.74

DDSM augmentation
with 2.400 Mass detection 97 100 94 - - 96.45

Ragab et al.
[168]

DDSM with 2620 cases Deep-CNN-based linear
SVM using ROI manually 79 76.3 82.2 85 80 88

CBIS- DDSM with
1644 cases

ROI threshold 80.5 77.4 84.2 86 81.5 88

SVM-based
medium Gaussian 87.2 86.2 87.7 88 87.1 94

Duggento et al.
[180] CBIS-DDSM Deep CNN 71 84.4 62.4 - - 77

Chougrad et al.
[181]

BCDR

Inceptionv3

96.67 - - - - 96

DDSM 97.35 - - - - 98

INbreast 95.50 - - - - 97

MIAS 98.23 - - – 99



Appl. Sci. 2020, 10, 8298 15 of 28

Table 7. The quantitative indicators that were used to evaluate different CNN architectures’
performances on US datasets.

Reference Database Deep CNN Model Acc
(%)

Sen
(%)

Spec
(%)

Precision
(%)

F1 Score
(%)

AUC
(%)

Moon et al.
[49] BUSI SNUH

VGGNet-like 84.57 73.65 93.12 89.34 80.74 91.98

VGGNet 16 84.57 73.64 93.12 89.34 80.74 93.22

ResNet 18 81.60 86.49 77.77 75.29 80.50 91.85

ResNet 50 81.60 75.68 86.24 81.16 78.32 88.83

ResNet 101 84.57 75,00 92.06 88.10 81.02 91.04

DenseNet 40 85.46 79.05 90.48 86.67 82.69 93.52

DenseNet 12 86.35 77.70 93.12 89.84 83.33 92.48

DenseNet 161 83.09 69.59 93.65 89.57 78.33 89.18

Byra et al.
[66,182]

ImageNet
VGG19

88.7 0.848 0.897 - - 93.6

UDIAT 84 0.851 0.834 - - 89.3

OASBUD [150] 83 0.807 0.854 - - 88.1

Cao et al.
[152]

Private dataset consisting of 579
benign and 464 malignant cases

Single Shot Detector
(SSD)300 + ZFNet

YOLO
SSD300 + VGG16

96.89 67.23 - - 79.38 -

96.81 65.83 - - 78.37 -

96.42 66.70 - - 78.85 -

Han et al.
[62]

Private database with a total of
7408 US images with

4254 benign and
3154 malignant lesions

CNN-based GoogleNet 91.23 84.29 96.07 - 91

Shan et al.
[35]

Private database containing
283 breast US images (133 cases

are benign and 150 cases
are malignant)

ANN 78.1 78 78.2 - - 82.3

Furthermore, Table 8 gives a brief overview of the new DL-CAD systems’ approaches and the
traditional ML-CAD systems.

Table 8. DL-CAD systems vs. traditional ML-CAD systems.

Reference Application Method Dataset Acc
(%)

Sen
(%)

Spec
(%)

AUC
(%)

Error
(%)

Dheeba
[183] DM classification ML wavelet neural network

Private database
consisting of 216

multiview CC and
MLO images.

93.67 94.16 92.10 96.85 96.85

Trivizakis
et al. [184]

DM classification
ML with transfer learning and

features based on ImageNet
and CNN architecture

Mini MIAS and DDSM
79.3 - - 84.2 -

74.8 - - 78.00 -

Samala
et al. [185] DM classification Multitask transfer learning by a

Deep CNN ImageNet 90 - - 82 -

Jadoon
et al. [186]

DM extraction and
classification

CNN + wavelet
CNN + SVM

IRMA, DDSM,
and MIAS

81.83 - - 83.1 15.43

83.74 - - 83.9 17.46

Debelee
et al. [42] DM extraction

CNN + SVM MIAS 97.46 96.26 100 - -

DDSM 99 99.48 98.16 - -

MIAS 87.64 96.65 75.73 - -

MLP DDSM 97 97.40 96.26 - -

MIAS 91.11 86.66 100 - -

KNN + SVM DDSM 97.18 100 95.65 - -

Ahmed
et al. [187] DM detection Deep CNN with five–fold

cross-validation INbreast 80.10 80 - 78 -

Xu et al.
[51]

US image
segmentation Deep CNN Private 3D breast US 90.13 88.88 - - -
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Table 8. Cont.

Reference Application Method Dataset Acc
(%)

Sen
(%)

Spec
(%)

AUC
(%)

Error
(%)

Shan et al.
[35]

US image
segmentation

ML decision tree Private breast US
consisting of 283

images, where 133 cases
are benign and

150 cases are malignant

77.7 74.0 82.0 80 -

ANN 78.1 78.0 78.2 82 -

Random forest 78.5 75.3 82 82 -

SVM 77.7 77.3 78.2 84 -

Gu et al.
[188]

3D US image
segmentation

Preprocessing: morphological
reconstruction; segmentation:

region-based approach

Private database with
21 cases, with masses

prior to biopsy
85.7 - - - -

Zhang et al.
[36]

US image feature
extraction and
classification

DL architecture

The private dataset
consisting of

227 elastography
images, with 135 benign

tumors and
92 malignant tumors

93.4 88.6 97.1 94.7 -

Almajalid
et al. [147]

US image
segmentation DL-CNN architecture U-net

The private
dataset containing

221 BUS images
82.52 78.66 18.59 - -

Singh et al.
[189]

US image
classification

ML fuzzy c-means and
backpropagation ANN

178 breast US
containing 88 benign

and 90 malignant cases
95.86 95.14 96.58 95.85 -

Cheng
et al. [37]

US (sonogram)
classification DL-SDAE

520 breast US
(275 benign and

245 malignant lesions)
82.4 78.7 85.7 89.6 _

Shi, et al.
[190]

US image
classification Deep polynomial network

A total of
200 pathology-proven

breast US images
92.40 92.67 91.36 - -

4. Discussion and Conclusions

Considering that breast tumor screening using DM has some consequences and limitations because
a higher number of unnecessary biopsies and ionizing radiation exposure endangers the patient’s
health [12], along with low specificity and high FP results, which imply higher, recall rates and higher
FN results [191]. This is why US is used as the second choice for DM. Thus, US imaging is one of the
most effective tools in breast cancer detection because it has been shown to achieve high accuracy in
mass detection, classification [38], and diagnosis of abnormalities in dense breasts [192].

For the abovementioned reasons, we have addressed using both kinds (DM and US) of images
in this review, focusing on different ML and DL architectures applied in breast tumor processing,
and offering a general overview of databases and CNNs, including their relation and efficacy in
performing segmentation, feature extraction, selection, and classification tasks [192].

Thus, according to the research shown in Table 1, the most utilized databases for DM images are
MIAS and DDSM, and for US image classification, the public databases BUSI, DDBUI, and OASBUD
are most used. The DM images contributed to 110 and 168 published conference papers for the
DDSM and MIAS databases, respectively [5]. However, the databases report some limitations and
advantages; for example, the MIAS database contains a limited number of images, strong noise,
and low-resolution images. In contrast, the DDSM contains a big dataset. Likewise, INbreast contains
high-resolution images but has a small data size. BCDR, in comparison with DDSM, has been used in
a few studies. Some details about the others strengths and limitations of these databases are discussed
in Abdelhafiz [65].

Thereby, Table 2 shows a summary of traditional ML-CAD systems that use public and private
databases of DM and US breast images. It covers (i) image preprocessing and (ii) postprocessing
steps. This is in contrast with Table 5, which shows a brief summary of DL-CAD systems based on
CNN architectures in both types of digital breast images. Thus, in Table 5, various DL architectures
and their training strategies for detection and classification tasks are discussed. Based on the most
popular datasets, CNN seems to perform rather well, as demonstrated by Chiao et al., Yap et al.,
and Samala et al. [48,153,174]. Furthermore, [169,173] used several preprocessing and postprocessing



Appl. Sci. 2020, 10, 8298 17 of 28

techniques for high-resolution [58] data augmentation, segmentation, and classification. The most
commonly CNNs used are AlexNet, VGG, ResNet, DenseNet, Inception (GoogleNet), LeNet, and UNet,
which employ recent Python libraries for implementing CNNs, such as Tensorflow, Caffe, and Keras,
with different hyper-parameters to training the network [55].

Most of these DL architectures use a large data set; thus, it is required to apply an augmentation
technique to avoid overfiting and to have better performance during classification. In this sense,
the researchers mentioned in Table 6 [145,168,180,181] and Table 7 [35,49,62,66,152,182] the authors
used transfer learning and ensemble methods, such as data augmentation, to improve the performance
of the CNN network, reaching an 89.86% accuracy and 0.9578% AUC in DM, and an AUC of 0.68% on
US images. Furthermore, Singh et al. [165] showed that the results obtained with a GAN for breast
tumor segmentation outperformed the UNet model, and the SegNet and ERFNet models yielded the
worst segmentation results on US images.

In addition, according to Cheng et al. [37], DL techniques could potentially change the design
paradigm of CADx systems due to their several advantages over the traditional CAD systems. These
are as follows: First, DL can directly extract features from the training data. Second, the feature
selection process will be significantly simplified. Third, the three steps of feature extraction, selection,
and classification can be realized within the same deep architecture. Thus, SDAE architecture can
potentially address the issues of high variation in either the shape or appearance of lesions/tumors.
Furthermore, various studies [39–41,55] prove that those CNN methods that compare images from CC
and MLO views improve the accuracy of detection and reduce the FPR.

Furthermore, different evaluation metrics are described in Tables 3 and 4 as corroboration of the
performance of these techniques. The results in Tables 6 and 7 describe different research where their
authors have used a variety of datasets (Table 1), approaches, and performance metrics to evaluate
CNN techniques in DM and US imaging. For example, better results were achieved in DM analysis by
Al-Masni [145] with YOLO5 using DDSM data augmentation, while Chougrad et al. [181] used a deep
CNN (Inception V3) with DDSM and MIAS datasets. On the other hand, Moon et al. [49] introduced
a DenseNet model to analyze private (BUSI and SNUH) US datasets. Byra et al. [66] achieved high
accuracy with the VGG19 deep CNN model using the ImageNet database. Similarly, Cao et al. [152]
attained an accuracy of 96.89% with SSD + ZFNet and Han et al. [62] reached 91.23% using a private
dataset with GoogleNet.

Likewise, Table 8 contains a literature review for the comparison of the evaluation metrics
between DL-CAD systems and traditional ML-CAD systems. Even though Table 8 shows that
Deheeba et al. [183] presented a good traditional wavelet neural network CAD system with high
accuracy (93.67%) and AUC of 96.85%, Debelee et al. [42] exceeded this percentage using a CNN + SVM
DL-CAD system with DDSM (99%) and MIAS (97.18%) DM datasets. In US images Zhang et al. [36]
and Shi et al. [190] proved that a DL-CAD based on CNN and a deep polynomial network achieved
better results in terms of accuracy (93.4 and 92.40%) and AUC (94.7%), respectively. In the same
way, DL-CAD reached higher values than ML-CAD when used on private US images. For example,
Shan et al. [35] and Singh et al. [41] showed ML based on an ANN for segmentation and classification
that reached accuracies of 78.5 and 95.86% and an AUC of 82%, respectively. These works demonstrate
that in most cases, the DL architectures outperformed traditional methodologies.

To conclude, the use of DL could be a promising new technique to obtain the main features
for automatic breast tumor classification, especially in dense breasts. Furthermore, in medical
image analysis, using DL has proven to be better for researchers compared to a conventional ML
approach [41,42]. It appears as though DL provides a mechanism to extract features automatically
through a self-learning network, thus boosting the classification accuracy. However, there is a
continuing need for better architectures, more extensive datasets that overcome class imbalance
problems, and better optimization methods.

Finally, the main limitation in this work is that several algorithms and results are not available in
the open literature because of proprietary intellectual property issues.
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Abbreviations

ANN artificial neural network
CADx computer-aided diagnosis
CADe computer-aided detection
CNN convolutional neural network
DM digital mammography
DL deep learning
DNN deep neural network
DL-CAD deep learning CAD system
CC craniocaudal
MC microcalcifications
ML machine learning
MLO mediolateral oblique
ROI region of interest
US ultrasound
MLP Muli-layer perceptron
DBT digital breast tomosynthesis
MIL multiple instances learning
CRF conditional random forest
RPN region proposal network
GAN generative adversarial network
IoU intersection over union
SDAE stacked denoising auto-encoder
CBIS Curated Breast Imaging Subset
YOLO You Only Look Once
ERFNet Efficient Residual Factorized Network
CLAHE contrast-limited adaptive histogram equalization
PCA principal component analysis
LDA linear discriminant analysis
GLCM grey-level co-occurrence matrix
RF random forest
DBT decision boundary features
SVM support vector machine
NN neural network
SOM self-organizing map
KNN K-nearest neighbor
BDT binary decision tree
DBN deep belief networks
WPT wavelet packet transform
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