

 applsci-10-08293

applsci-10-08293

Appl. Sci. 2020, 10(22), 8293; doi:10.3390/app10228293

Article

A MBSE Application to Controllers of Autonomous Underwater Vehicles Based on Model-Driven Architecture Concepts

Ngo Van Hien 1,*[image: Orcid], Ngo Van He 1,*[image: Orcid], Van-Thuan Truong 1,*[image: Orcid] and Ngoc-Tam Bui 2,3,*[image: Orcid]

1

School of Transportation Engineering, Hanoi University of Science and Technology, Hanoi 10000, Vietnam

2

College of Systems Engineering and Science, Shibaura Institute of Technology, Tokyo 135-8548, Japan

3

School of Mechanical Engineering, Hanoi University of Science and Technology, Hanoi 10000, Vietnam

*

Correspondence: hien.ngovan@hust.edu.vn (N.V.H.); he.ngovan@hust.edu.vn (N.V.H.); thuan.truongvan@hust.edu.vn (V.-T.T.); tambn@shibaura-it.ac.jp (N.-T.B.)

Received: 30 September 2020 / Accepted: 21 November 2020 / Published: 23 November 2020

Abstract

:

In this paper, a hybrid realization model is proposed for the controllers of autonomous underwater vehicles (AUVs). This model is based on the model-based systems engineering (MBSE) methodology, in combination with the model-driven architecture (MDA), the real-time unified modeling language (UML)/systems modeling language (SysML), the extended/unscented Kalman filter (EKF/UKF) algorithms, and hybrid automata, and it can be reused for designing controllers of various AUV types. The dynamic model and control structure of AUVs were combined with the specialization of MDA concepts as follows. The computation-independent model (CIM) was specified by the use-case model combined with the EKF/UKF algorithms and hybrid automata to intensively gather the control requirements. Then, the platform-independent model (PIM) was specialized using the real-time UML/SysML to design the capsule collaboration of control and its connections. The detailed PIM was subsequently converted into the platform-specific model (PSM) using open-source platforms to promptly realize the AUV controller. On the basis of the proposed hybrid model, a planar trajectory-tracking controller, which allows a miniature torpedo-shaped AUV to autonomously track the desired planar trajectory, was implemented and evaluated, and shown to have good feasibility.

Keywords:

autonomous underwater vehicle (AUV); AUV control; extended/unscented Kalman filter (EKF/UKF); model-based systems engineering (MBSE); model-driven architecture (MDA); real-time UML/SysML; hybrid automata

1. Introduction

Underwater vehicles have been extensively developed for many military applications in recent decades. In particular, autonomous underwater vehicles (AUVs) are of interest with respect to developing civil applications for enhancing economic effectiveness, e.g., ocean exploration, environmental monitoring, mapping, and disaster and tsunami warnings [1,2,3,4,5,6,7,8].

Controller design for AUVs has been a challenge because controllers are closely linked to AUV dynamics in complex underwater environments [9,10,11]. The AUV controller can consist of discrete models, continuous models, and their interaction in a hybrid dynamic system (HDS), as modeled by hybrid automata (HA) [12,13,14,15]. Traditional control methods have often been used for implementing complex systems to make them more effective for their controllers [16,17,18]. They have also been used for building AUV controllers. Some traditional control techniques applied for AUV applications are described below.

Lyapunov stability [19,20,21,22] was demonstrated to be very reactive. However, the stability of the desired waypoint was not suitable enough to track horizontal planar trajectories. The proportional–integral–derivative (PID) regulator [23,24,25,26] proved to be well suited for use in AUVs when tracking horizontal planar trajectories. It was possible to successfully perform the first autonomous trip using this method. Nevertheless, the PID controller was implemented to control the AUV in the absence of large disturbances. The linear quadratic (LQ) [27,28] controller presented average stabilization results. Backstepping methods [29,30] were shown to be able to control the Euler roll, pitch, and yaw (RPY) angles in conditions of high environmental noise. The sliding-mode controller (SMC) [31,32,33] did not give good results when applied alone, as it seemed to be short of adaptation for the dynamics of AUVs. Hence, in some studies investigating backstepping [34,35], neural networks [36,37,38,39], the computed torque method [40,41], and digital filters such as extended/unscented Kalman filters (EKF/UKF), the SMC has been improved by using control techniques to improve its performance for AUVs.

The above assessment led to us choosing a combination of PID and backstepping to perform a continuous model evolution of the AUV controller, called the integral backstepping (IB) technique.

Reusability must also be considered in the development of new AUV applications with respect to their lifecycle in an effort to reduce their cost and resources. The Object Management Group (OMG) [42] standardized the unified modeling language (UML), which is as an industry standard used to visualize, specify, construct, and document the artefacts of a software-intensive system. The system modeling language (SysML) [43] was standardized by the OMG for systems engineering. SysML is a UML profile that can provide simple but powerful constructs for modeling a wide range of systems engineering problems. However, the drawback of UML and SysML is that they lack the ability to model the evolution of internal continuous behavior for developed systems.

On the other hand, the model-based systems engineering (MBSE) approach was formalized by INCOSE [44,45] to robustly model whole artefacts in the development lifecycle of unintelligible systems. Examples of systems engineering methods [46] were identified in a survey of MBSE methodologies [47], including Harmony for systems engineering (Harmony-SE) [48,49], the object-oriented systems engineering method (OOSEM) [50,51], the rational unified process for systems engineering (RUP-SE) [52], the state analysis method [53], and the object process methodology (OPM) [54,55]. The model-driven architecture (MDA) [56,57] was standardized by the OMG for separating the specification of system operations from the details of how a system uses the capabilities of its platform. The three main goals of MDA are portability, interoperability, and reusability through an architectural separation of concerns. Here, portability allows the same solution to be realized on new or multiple platforms, while interoperability creates systems that can easily integrate and communicate with other systems and use a variety of resource applications, and reusability builds solutions that can be reused in many different applications in different contexts [56]. Sebastián et al. [58] investigated MDA applications by conducting a systematic mapping of MDA literature in software engineering between 2008 and 2018. Actually, the principle of MDA can be used within the unified architecture framework (UAF) [59] to strengthen the interoperability of a system. In many commercial applications, real-time SysML/UML has been combined with the above model-based methods for systems engineering [57,60,61,62,63,64,65,66,67]. Hence, the MBSE approach and the features of MDA can be used in combination with real-time UML [68,69,70,71] and SysML (for example, real-time UML/SysML) to describe, in detail, the artefacts of the developed system.

On the basis of the above-assessed points, this work focuses on the construction of a hybrid control model based on the MBSE methodology, in combination with the MDA concept, real-time UML/SysML, and HA, permitting us to intensively realize an AUV controller. The control artefacts designed can be customized and reused for deployment on various AUV platforms. In this study, the dynamic models of AUV for control were combined with the specialization of MDA features, composed of the platform-specific model (PSM), platform-independent model (PIM), and computation-independent model (CIM). Lastly, a planar trajectory-tracking controller for a miniature torpedo-shaped autonomous underwater vehicle running on a free surface was deployed and evaluated through simulation experiments.

The three main contributions of this research are as follows:

	(1)

	
The MBSE methodology, together with MDA components, was adapted for usability in the lifecycle development of AUV controllers.

	(2)

	
The designed control capsules are customizable and reusable for many kinds of AUVs.

	(3)

	
A planar trajectory-tracking controller of a miniature AUV running on the free surface was developed and evaluated through simulation experiments.

This manuscript is structured as follows. Section 2 presents the adapted dynamics and control structure of AUVs, while Section 3 proposes the details of MBSE-driven development aimed at intensively realizing AUV controllers, consisting of the CIM, PIM, and PSM components. A case study on application of the specialized model is discussed in Section 4, followed by the paper’s conclusions and future prospects.

2. AUV Dynamics and Control Architecture

2.1. AUV Dynamic Model for Controlling

The six motions of the AUV are defined as sway, surge, roll, heave, yaw, and pitch by the Society of Naval Architects and Marine Engineers (SNAME [72] (Table 1).

According to the guidance, navigation, and control of underwater vehicles [9,73,74,75,76,77], the kinematic model in the inertial frame and the dynamic model in the main frame of AUVs can be written as Equations (1) and (2), respectively.

 η ˙ = J (η) ν ,

(1)

 M ν ˙ + C (ν) ν + D (ν) ν + g (η) = τ (v , u) ,

(2)

where η = [η1T,η2T]T consists of the position η1 = [x,y,z]T and the orientation η2 = [ϕ,θ,ψ]T of the vehicle expressed in the inertial frame, while ν = [v1T,v2T]T includes the linear v1= [u,v,w]T and the angular v2 = [p,q,r]T velocities of the vehicle expressed in the body frame. The model matrices M, C(ν), and D(ν) denote inertia, Coriolis, and damping, respectively, while g(η) is a vector of gravity and buoyancy forces. On the right-hand side of Equation (2), τ(v,u) is the vector of resultant forces and moments acting on the AUV, and u represents the control inputs.

A model of state-space discreteness can be used to model the control evolution of an AUV that is used to estimate the states of an AUV by using the EKF or UKF [78,79,80,81,82] methodologies; the motion of the control system can be described as shown in Equation (3).

 { x k = f k − 1 (x k − 1 , u k − 1) + w k − 1 y k = h k (x k) + v k

(3)

where x = [η ν] , xk is the state variable vector at the k-th instant of x, uk and yk are the system’s inputs and outputs, respectively, and hk, wk, and vk are the measurement function, additive process, and measurement noise, respectively.

2.2. General Control Architecture for an AUV

The physical architecture of an AUV consists of the following subsystems: the guidance subsystem; the navigation subsystem; and the control subsystem. These subsystems have their own tasks, yet they must also cooperate to permit the vehicle to complete its mission. Figure 1 shows a block definition diagram in SysML that depicts the interactions of the subsystems.

According to the above AUV dynamic and control architecture, and the definition of an HDS described in [13,14,15], AUV controllers can, thus, be considered HDSs whose dynamic behaviors can be modeled by HA [12] and implemented by line-of-sight (LOS) navigability, as described in [83,84,85,86,87].

3. MBSE-Driven Development for an AUV Controller

3.1. CIM for an AUV Controller

On the basis of the dynamics and control frame of AUVs described in Section 2, the main use case model of AUV controllers is shown in Figure 2. Figure 3a,b describes a case study of path-tracking scenarios, where the state machine of the “Track a desired trajectory” use case is shown using the sequence and state diagrams of real-time UML/SysML conventions.

The system/human actors and use cases of the AUV controller are defined as follows:

	-

	
MDS is the measurement display system actor, which includes the guidance subsystem and navigation subsystem.

	-

	
MES is the marine environment system actor, which represents the marine environmental noises.

	-

	
Maintainer is a human actor who has authority to check the physical AUV components and configure system parameters AUV for running AUV tasks.

	-

	
“Track a desired trajectory” is a use case study for tracking the target of a predefined path.

	-

	
“Ensure safety” is a use case for ensuring system safety.

	-

	
“Configure control parameters of the AUV” is a use case for configuring and updating system parameters.

	-

	
“Maintain the physical components” is a use case for servicing the whole physical system.

In this work, an implemented functional block diagram (Figure 4) is proposed for the kinematic and dynamic models of an AUV, described in Equations (1) and (2), to obtain the internal continuous evolutions for the controller, where Ωdi, i = 1 , n ¯ are desired rotational speeds, which are applied to the n actuators of the AUV, and ΣT and τφ,θ,Ψ are the overall output forces and moments acting on the actuators of the AUV.

As previously assessed, the IB expansion combined with the control Lyapunov function (CLF) can be used in many AUV control applications. This was also applied to the functional blocks of deep control, position control, and attitude control (Figure 4), which participate in the continuous evolutions. PID regulators were also used for the functional block of motor control. This study did not focus on the decomposition of these control techniques for an AUV because they were developed in many AUV applications [23,24,25,26,34,35,88,89,90].

In addition, the discrete state-space models in Equation (3), in combination with the EKF or UKF [78,79,80,81,82] implementations, allowed the estimation of the states of the developed AUV, as introduced in Section 4.

Furthermore, hybrid automata (HA), presented by Henzinger, Kopke, Puri, and Varaiya [12], provide a mathematical model for digital computer systems that interact with an analog environment in real time. In the CIM, HA are established as shown in Equation (4).

HAUV = (Q, X, Σ , A, Inv, F, qo, xco),

(4)

where Q is a set of running cases of the AUV, qo ∈ Q is the starting situation, X is the continuous state-space of continuous elements, xco ∈ X is the initial value, Σ is a set of external events, A is a set of transitions between running cases corresponding to events σ ∈ Σ , Inv is an application tool, which is used to check xc ∈ inv(q), and F is the continuous global model issued from the kinematic and dynamic models in Equations (1) and (2).

3.2. PIM for an AUV Controller

The PIM’s goal is to implement real-time capsule collaboration, which allows capturing, in detail, the design model for control. From the above-identified CIM, the five primary control capsules were specialized to implement the HA for an AUV controller: the discrete part’s capsule, the continuous part’s capsule, the external interface’s capsule, the internal interface’s capsule, and the instantaneous global continuous behavior (IGCB)’s capsule. Figure 5 and Figure 6 indicate the real-time capsule collaboration for an AUV controller using real-time UML cooperation and class diagrams.

Here, the discrete part’s capsule consists of situations Q and transitions A in HA of the AUV controller; the continuous part’s capsule contains the continuous state-space X; the IGCB’s capsule implements concrete global continuous behaviors as f∈F, where f is directly derived from Equation (3) and the implemented functional block diagram (Figure 4) can be implemented in f for the estimation of AUV states; the external interface’s capsule is an intermediary, which receives/sends events/signals between the AUV controller and the MES/MDS; the internal interface’s capsule permits the Inv tool to generate internal events in the HA evolution. The detailed specification of this capsule collaboration can be found in the author’s previous report [63].

Reusability is essential in the operator of controllers for different AUV applications because it reduces manufacturing time and equipment costs. Moreover, this can allow the capsule collaboration of a developed AUV to be customized and reused in a new control application for many types of AUVs, as shown in Table 2.

3.3. PSM for an AUV Controller

In the construction of the AUV controller, the above-designed PIM was converted into the PSM using IBM Rational Software Architect Real Time, IBM Rational Rose Real Time [91], or Papyrus for Real Time (Papyrus-RT) [92]. These tools are effectively used to develop complex real-time and embedded systems and software applications. They act as implementations of real-time UML/SysML for C++, Java, Ada, and runtime system supports.

Hence, the PIM could be converted into the PSM using different implementation development environments (IDEs) to ultimately realize a controller with suitable microcontrollers. The MDA’s features also support model transformation. This transformation model could be rapidly applied through round-trip engineering. The transformation rules, which can be used to convert the PIM into PSM and vice versa through round-trip engineering of the intermediate codes of an object-oriented programming language, were presented in the authors’ previous report [1].

Furthermore, the above-defined HA could be automatically implemented using the state pattern described in [93,94]. According to this pattern, the HA’s structure implementation to display the meaningful programming usefulness of the control program of an AUV is shown in Figure 7. An example of HA implementation based on the state pattern was performed and compiled using Arduino’s IDE [95] to fit into ATMEGA32-U2 and STM32 Cortex-M4 microcontrollers for an AUV controller, as shown in Appendix A.

4. Application

4.1. Physical Application Configurations

Following the above-proposed model, a planar trajectory-tracking controller, which allowed a low-cost AUV possessing a torpedo shape to reach and follow a predetermined trajectory on the free surface, was deployed. This case study represents one element of our long-term research project funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 107.03-2019.302. The torpedo-shaped AUV’s main operating parameters are summarized in Table 3.

4.2. Control Implementation and Test Results

According to the functional block diagram for performance describing the continuous evolution of the AUV controller, the environmental disturbance caused by a wave was only considered as sea state code 1 [96], i.e., slight ripples on the free surface.

The state-space models shown in Equation (3) were implemented to calculate the current states of the AUV using the installed sensors, e.g., the inertial measurement unit (IMU) MPU6000 [97] and the global positioning system (GPS) Ublox Neo 6M [98]. The state estimations in both cases were based on the EKF (Algorithm 1) and the UKF (Algorithm 2). In Algorithms 1 and 2, . ^ denotes an estimation, P is the state covariance, and Q and R represent the covariance matrices of the process and measurement noise, respectively. The state was estimated starting from the following initial conditions: x ^ 0 | 0 = x 0 and P 0 | 0 = 0 12 × 12 .

	Algorithm 1. Navigation filter based on the extended Kalman filter (EKF).

	 Function EKF algorithm

	 Step EKF predict

	 Data: x ^ k − 1 | k − 1 , P k − 1 | k − 1 , f k − 1 (.)

	 Result: x ^ k | k − 1 , P k | k − 1

	 F k − 1 = ∂ f k − 1 ∂ x | x ^ k − 1 | k − 1 u k − 1 ;

	 x ^ k | k − 1 = f k − 1 (x ^ k − 1 | k − 1) ;

	 P k | k − 1 = F k − 1 , P k − 1 | k − 1 F k − 1 T + Q k − 1 ;

	 end

	 Step EKF update

	 Data: x ^ k | k − 1 , P k | k − 1 , h k (.)

	 Result: x ^ k | k , P k | k

	 H k = ∂ h k ∂ x | x ^ k | k − 1 ;

	 S k = R k + H k P k | k − 1 H k T ;

	 L k = P k | k − 1 H k T S k − 1 ;

	 e k = y k − h k (x ^ k | k − 1) ;

	 x ^ k | k = x ^ k | k − 1 + L k e k ;

	 P k | k = P k | k − 1 − L k S k L k − 1 T ;

	 end

	Algorithm 2. Navigation filter based on the unscented Kalman filter (UKF).

	 Function UKF algorithm

	 Step UKF predict

	 Data: x ^ k − 1 | k − 1 , P k − 1 | k − 1 , f k − 1 (.)

	 Result: x ^ k | k − 1 , P k | k − 1

	 (x ^ k | k − 1 , P ¯ k | k − 1) = UT (x ^ k − 1 | k − 1 , P ¯ k − 1 | k − 1 , f k − 1 (.)) ;

	 P k | k − 1 = P ¯ k | k − 1 + Q k − 1 ;

	 end

	 Step UKF update

	 Data: x ^ k | k − 1 , P k | k − 1 , h k (.)

	 Result: x ^ k | k , P k | k

	 (y ^ k | k − 1 , S ¯ k , P k xy) = UT (x ^ k | k − 1 , P k | k − 1 , h k − 1 (.)) ;

	 S k = R k + S ¯ k ;

	 L k = P k xy S k − 1 ;

	 e k = y k − y ^ k | k − 1 ;

	 x ^ k | k = x ^ k | k − 1 + L k e k ;

	 P k | k = P k | k − 1 − L k S k L k T ;

	 end

We used the OpenModelica tool [99], which is an open-source simulation environment, to perform the simulation of an AUV controller. OpenModelica is an object-oriented modeling environment of Modelica [100] and C/C++ for hybrid systems. A case study in which the MDS was assumed to address an event in the transferring state to the AUV controller with a desired course angle of 020° and average speed of 1.5 m/s is shown in Figure 8. Here, the average transient durations, which correspond to the cases using EKF and UKF, were 6.8 and 6.2 s for the AUV’s stabilized course.

The ATMEGA32-U2 and STM32 Cortex-M4 microcontrollers [95] were installed on the mainboard. The AUV installation for trial trips is shown in Figure 9. The test scenarios were based on different desired courses, for various desired shape-based paths and average velocities. Some of the main planar course-tracking test results are shown in Table 4. Figure 10a,b and Figure 11a,b respectively show that the AUV reached and followed the desired rectangle- and triangle-shaped trajectories.

On the basis of comparison with the test results obtained in the literature [1,63], this current AUV controller was superior in terms of the stabilized interval and trajectory error, which decreased by about 0.7 s and 0.90 m, respectively. The UKF enabled more accurate estimations. Although operations in UKF such as the unscented transform (UT), i.e., the UT function in Algorithm 2, may appear more complex than those for the EKF, the assessments of actual computational complexity and optimizations for the application of various Kalman filter extensions were studied intensively by Zhang, et al. [101] and Raitoharju and Piché [102].

An assessment of the above-described AUV application using MBSE methodology combined with MDA components is described in Table 5.

5. Conclusions and Future Work

This paper introduced an application of MBSE methodology to intensively deploy controllers for AUVs whose dynamics can be considered an HDS. This application model is based on the MBSE methodology, combined with MDA concepts, real-time UML/SysML, EKF/UKF algorithms, and HA to systematically realize the controller. The dynamic models and control structure of AUV were first used for control combined with MDA components such as the CIM, PIM, and PSM. In the CIM, the use case model was defined with continuous behaviors, EKF/UKF algorithms, and HA to closely control the requirements. The PIM was established to establish the design model by constructing a real-time capsule pattern. This pattern can be customized and reused in new AUV control applications (Table 2). The PIM designed was then converted into the PSM through round-trip engineering of the intermediate C++ codes to form an AUV controller with suitable microcontrollers. On the basis of the proposed model, a planar trajectory-tracking controller of a miniature torpedo-shaped AUV running on the free surface was implemented and evaluated using the ATMEGA U2 and STM32-Cortex-M4 microcontrollers. Lastly, the advantages and disadvantages of the MBSE/MDA approach were discussed with respect to this AUV control application (Table 5).

In this case study, the above-described MBSE methodology, combined with MDA concepts, was only applied to simple test scenarios for a miniature torpedo-shaped AUV running on the free surface. We are yet to fine-tune parameters with respect to the process and measurement noise and the evolutionary optimization for noise parameters for this application. Thus, these important further developments are scheduled for the future. Firstly, the EKF/UKF-based navigation filters will be simulated online within a complete AUV combined with depth control and a suitable environment. Then, the new controller will be implemented on the AUV and tested online through fast frequency disturbances. The performances of the different Kalman filter extensions in terms of accuracy will be carefully investigated in different scenarios. In further MBSE/MDA studies, we will also follow our application strategy to specify, in detail, the patterns of model transformations using the different MDA transformation types, and we will compare them to cases using OPM, such as those described in [54,55].

Author Contributions

Conceptualization, N.V.H. (Ngo Van Hien), N.V.H. (Ngo Van He), V.-T.T. and N.-T.B.; methodology, N.V.H. (Ngo Van Hien), N.V.H. (Ngo Van He), V.-T.T. and N.-T.B.; software, N.V.H. (Ngo Van Hien), N.V.H. (Ngo Van He), and V.-T.T.; validation, N.V.H. (Ngo Van Hien), N.V.H. (Ngo Van He), V.-T.T. and N.-T.B.; writing—original draft preparation, N.V.H. (Ngo Van Hien), N.V.H. (Ngo Van He), and V.-T.T.; writing—review and editing N.V.H. (Ngo Van Hien), N.V.H. (Ngo Van He), V.-T.T. and N.-T.B.; visualization, N.V.H. (Ngo Van Hien), N.V.H. (Ngo Van He), V.-T.T. and N.-T.B.; supervision, N.V.H. (Ngo Van Hien); project administration, N.V.H. (Ngo Van He); funding acquisition, N.-T.B. All authors have read and agreed to the published version of the manuscript.

Funding

Vietnam National Foundation for Science and Technology Development (NAFOSTED).

Acknowledgments

This research was funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 107.03-2019.302. The authors would like to warmly express their thanks for the support.

Conflicts of Interest

The authors declare no conflict of interest.

Abbreviations

	AUV
	Autonomous underwater vehicle
	MES
	Marine environment system

	CIM
	Computation independent model
	MOF
	Meta Object Facility

	CLF
	Control Lyapunov functions
	OMG
	Object Management Group

	DoF
	Degrees of freedom
	OOSEM
	Object-Oriented Systems Engineering Method

	EKF
	Extended Kalman filter
	OPM
	Object Process Methodology

	GPS
	Global positioning system
	PID
	Proportional–integral–derivative

	HA
	Hybrid automata
	PIM
	Platform independent model

	Harmony-SE
	Harmony for systems engineering
	PSM
	Platform specific model

	HDS
	Hybrid dynamic system
	RPY
	Roll, pitch, and yaw

	IB
	Integral backstepping
	RUP-SE
	Rational Unified Process for Systems Engineering

	INCOSE
	International Council on Systems Engineering
	SMC
	Sliding-mode control

	IDE
	Implementation development environment
	SNAME
	Society of Naval Architects and Marine Engineers

	IGCB
	Instantaneous global continuous behavior
	SysML
	Systems modeling language

	IMU
	Inertial measurement unit
	UAF
	Unified architecture framework

	LQ
	Linear quadratic
	UKF
	Unscented Kalman filter

	LOS
	Line-of-sight
	UML
	Unified modeling language

	MBSE
	Model-based systems engineering
	UT
	Unscented transform

	MDA
	Model-driven architecture
	XMI
	XML metadata interchange

	MDS
	Measurement display system
	XML
	Extensible markup language

Appendix A

An example of HA implementation based on the state pattern (Figure 7) and C++ codes is shown as Figure A1.

[image: Applsci 10 08293 g0a1 550]

Figure A1. An example of HA implementation based on the state pattern.

Figure A1. An example of HA implementation based on the state pattern.

[image: Applsci 10 08293 g0a1]

References

	

Hien, N.V.; He, N.V.; Truong, V.T.; Diem, P.G. Specifying the Model-Driven Architecture and Real-Time Unified Modeling Language to Implement an AUV Controller. Research Project Report, Funded by State of Vietnam, KC03.TN05/11-15; Hanoi University of Science and Technology: Hanoi, Vietnam, 2013. [Google Scholar]

	

Sivčev, S.; Coleman, J.; Omerdić, E.; Dooly, G.; Toal, D. Underwater manipulators: A review. Ocean Eng. 2018, 163, 431–450. [Google Scholar] [CrossRef]

	

Wynn, R.B.; Huvenne, V.A.I.; Bas, T.P.L.; Murton, B.J.; Connelly, D.P.; Bett, B.J.; Ruhl, H.A.; Morris, K.J.; Peakall, J.; Parsons, D.R.; et al. Autonomous Underwater Vehicles (AUVs): Their past, present and future contributions to the advancement of marine geoscience. Mar. Geol. Int. J. Mar. Geol. Geochem. Geophys. 2014, 352, 451–468. [Google Scholar] [CrossRef]

	

Petillot, Y.R.; Antonelli, G.; Casalino, G.; Ferreira, F. Underwater Robots: From Remotely Operated Vehicles to Intervention-Autonomous Underwater Vehicles. IEEE Robot. Autom. Mag. 2019, 26, 94–101. [Google Scholar] [CrossRef]

	

Han, M.; Lyu, Z.; Qiu, T.; Xu, M. A Review on Intelligence Dehazing and Color Restoration for Underwater Images. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 1820–1832. [Google Scholar] [CrossRef]

	

Bao, J.; Li, D.; Qiao, X.; Rauschenbach, T. Integrated navigation for autonomous underwater vehicles in aquaculture: A review. Inf. Process. Agric. 2020, 7, 139–151. [Google Scholar] [CrossRef]

	

Eiler, J.H.; Grothues, T.M.; Dobarro, J.A.; Shome, R. Tracking the Movements of Juvenile Chinook Salmon Using an Autonomous Underwater Vehicle under Payload Control. Appl. Sci. 2019, 9, 2516. [Google Scholar] [CrossRef]

	

Sheng, M.; Tang, S.; Qin, H.; Wan, L. Clustering Cloud-Like Model-Based Targets Underwater Tracking for AUVs. Sensors 2019, 19, 370. [Google Scholar] [CrossRef]

	

Sabet, M.T.; Daniali, H.M.; Fathi, A.; Alizadeh, E. Identification of an Autonomous Underwater Vehicle Hydrodynamic Model Using the Extended, Cubature, and Transformed Unscented Kalman Filter. IEEE J. Ocean. Eng. 2018, 43, 457–467. [Google Scholar] [CrossRef]

	

Gibson, S.B.; Stilwell, D.J. Hydrodynamic Parameter Estimation for Autonomous Underwater Vehicles. IEEE J. Ocean. Eng. 2020, 45, 385–394. [Google Scholar] [CrossRef]

	

Yao, F.; Yang, C.; Zhang, M.; Wang, Y. Optimization of the Energy Consumption of Depth Tracking Control Based on Model Predictive Control for Autonomous Underwater Vehicles. Sensors 2019, 19, 162. [Google Scholar] [CrossRef]

	

Henzinger, T.A.; Kopke, P.W.; Puri, A.; Varaiya, P. What‘s Decidable about Hybrid Automata? J. Comput. Syst. Sci. 1998, 57, 94–124. [Google Scholar] [CrossRef]

	

Hien, N.V.; Soriano, T. Implementing hybrid automata for developing industrial control systems. In Proceedings of the 8th IEEE-ETFA, Antibes-Juan les Pins, France, 15–18 October 2001; Volume 2, pp. 129–137, ISBN 0-7803-7241-7. [Google Scholar]

	

Carloni, L.P.; Passerone, R.; Pinto, A.; Sangiovanni, V.A. Languages and Tools for Hybrid Systems Design; Now Publishers Inc.: Boston, MA, USA, 2006. [Google Scholar]

	

Fishwick, P.A. (Ed.) Handbook of Dynamic System Modeling; Taylor & Francis Group: New York, NY, USA, 2007. [Google Scholar]

	

Qing, X.; Karimi, H.R.; Niu, Y.; Wang, J. Decentralized unscented Kalman filter based on a consensus algorithm for multi-area dynamic state estimation in power systems. Int. J. Electr. Power Energy Syst. 2015, 65, 26–33. [Google Scholar] [CrossRef]

	

Karimi, H.R. A sliding mode approach to H∞ synchronization of master–slave time-delay systems with Markovian jumping parameters and nonlinear uncertainties. J. Frankl. Inst. 2012, 349, 1480–1496. [Google Scholar] [CrossRef]

	

Pettersen, K.Y.; Fossen, T.I. Guidance of Autnomous Underwater Vehicles. In Encyclopedia of Robotocs; Ang, M.A., Khatib, O., Sicilano, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]

	

Lei, M. Nonlinear diving stability and control for an AUV via singular perturbation. Ocean Eng. 2020, 197, 11. [Google Scholar] [CrossRef]

	

Khalaji, A.K.; Tourajizadeh, H. Nonlinear Lyapounov based control of an underwater vehicle in presence of uncertainties and obstacles. Ocean Eng. 2020, 198, 9. [Google Scholar] [CrossRef]

	

Li, S.; Wang, X.; Zhang, L. Finite-Time Output Feedback Tracking Control for Autonomous Underwater Vehicles. IEEE J. Ocean. Eng. 2015, 40, 727–751. [Google Scholar] [CrossRef]

	

Zhang, L.; Liu, L.; Zhang, S.; Cao, S. Saturation Based Nonlinear FOPD Motion Control Algorithm Design for Autonomous Underwater Vehicle. Appl. Sci. 2019, 9, 4958. [Google Scholar] [CrossRef]

	

Valluru, S.K.; Kaur, M.; Kartikeya, K.; Goel, A.; Dobhal, D. Experimental Investigation of Fully Informed Particle Swarm Optimization tuned Multi Loop L-PID and NL-PID Controllers for Gantry Crane System. Procedia Comput. Sci. 2020, 171, 130–138. [Google Scholar] [CrossRef]

	

Sarhadi, P.; Noei, A.R.; Khosravi, A. Model reference adaptive PID control with anti-windup compensator for an autonomous underwater vehicle. Robot. Auton. Syst. 2016, 83, 87–93. [Google Scholar] [CrossRef]

	

Guerrero, J.; Torres, J.; Creuze, V.; Chemori, A.; Campos, E. Saturation based nonlinear PID control for underwater vehicles: Design, stability analysis and experiments. Mechatron. Sci. Intell. Mach. 2019, 61, 96–105. [Google Scholar] [CrossRef]

	

Kong, F.; Guo, Y.; Lyu, W. Dynamics Modeling and Motion Control of an New Unmanned Underwater Vehicle. IEEE Access 2020, 8, 30119–30126. [Google Scholar] [CrossRef]

	

Makdah, A.A.R.A.; Daher, N.; Asmar, D.; Shammas, E. Three-dimensional trajectory tracking of a hybrid autonomous underwater vehicle in the presence of underwater current. Ocean Eng. 2019, 185, 115–132. [Google Scholar] [CrossRef]

	

Alaeddini, A.; Morgansen, K.A.; Mesbahi, M. Augmented state feedback for improving observability of linear systems with nonlinear measurements. Syst. Control Lett. 2019, 133, 8. [Google Scholar] [CrossRef]

	

Cho, G.R.; Park, D.G.; Kang, H.; Lee, M.J.; Li, J.H. Horizontal Trajectory Tracking of Underactuated AUV using Backstepping Approach. IFAC-PapersOnLine 2019, 52, 174–179. [Google Scholar] [CrossRef]

	

Ellenrieder, K.D.V. Stable Backstepping Control of Marine Vehicles with Actuator Rate Limits and Saturation. IFAC-PapersOnLine 2018, 51, 262–267. [Google Scholar] [CrossRef]

	

Guerrero, J.; Antonio, E.; Manzanilla, A.; Torres, T.; Lozano, R. Autonomous Underwater Vehicle Robust Path Tracking: Auto-Adjustable Gain High Order Sliding Mode Controller. IFAC-PapersOnLine 2018, 51, 161–166. [Google Scholar] [CrossRef]

	

Zhang, G.C.; Huang, H.; Qin, H.D.; Wan, L.; Li, Y.M.; Cao, J.; Su, Y.M. A novel adaptive second order sliding mode path following control for a portable AUV. Ocean Eng. 2018, 151, 82–92. [Google Scholar] [CrossRef]

	

Xu, H.; Zhang, G.C.; Sun, Y.S.; Pang, S.; Ran, X.R.; Wang, X.B. Design and Experiment of a Plateau Data-Gathering AUV. J. Mar. Sci. Eng. 2019, 7, 376. [Google Scholar] [CrossRef]

	

Wang, X.; Zhang, G.; Sun, Y.; Cao, J.; Wan, L.; Sheng, M.; Liu, Y. AUV near-wall-following control based on adaptive disturbance observer. Ocean Eng. 2019, 190, 17. [Google Scholar] [CrossRef]

	

Guerrero, J.; Torres, J.; Creuze, V.; Chemori, A. Adaptive disturbance observer for trajectory tracking control of underwater vehicles. Ocean Eng. 2020, 200, 13. [Google Scholar] [CrossRef]

	

Wang, J.; Wang, C.; Wei, Y.; Zhang, C. Sliding mode based neural adaptive formation control of underactuated AUVs with leader-follower strategy. Appl. Ocean Res. 2020, 94, 9. [Google Scholar] [CrossRef]

	

Elhaki, O.; Shojaei, K. A robust neural network approximation-based prescribed performance output-feedback controller for autonomous underwater vehicles with actuators saturation. Eng. Appl. Artif. Intell. 2020, 88, 16. [Google Scholar] [CrossRef]

	

Kumar, N.; Rani, M. An efficient hybrid approach for trajectory tracking control of autonomous underwater vehicles. Appl. Ocean Res. 2020, 95, 10. [Google Scholar] [CrossRef]

	

Yan, Z.; Wang, M.; Xu, J. Robust adaptive sliding mode control of underactuated autonomous underwater vehicles with uncertain dynamics. Ocean Eng. 2019, 173, 802–809. [Google Scholar] [CrossRef]

	

Han, S.; Wang, H.; Tian, Y.; Christov, N. Time-delay estimation based computed torque control with robust adaptive RBF neural network compensator for a rehabilitation exoskeleton. ISA Trans. 2020, 97, 171–181. [Google Scholar] [CrossRef] [PubMed]

	

Alvarez, J.; Arceo, J.C.; Armenta, C.; Lauber, J.; Bernal, M. An Extension of Computed-Torque Control for Parallel Robots in Ankle Reeducation. IFAC-PapersOnLine 2019, 52, 1–6. [Google Scholar] [CrossRef]

	

OMG. Documents Associated with Unified Modeling Language™ (UML® Version 2.5.1): OMG Formal/17-12-05; OMG: Needham, MA, USA, 2017; Available online: http://www.omg.org/spec/UML/ (accessed on 19 April 2019).

	

OMG. SysML Specifications Version 1.6: OMG Formal/19-11-01; OMG: Needham, MA, USA, 2019; Available online: https://www.omg.org/spec/SysML/ (accessed on 22 March 2020).

	

INCOSE. Systems Engineering Vision 2025; INCOSE: San Diego, CA, USA, 2014. [Google Scholar]

	

INCOSE. Model-Based Systems Engineering (MBSE). Available online: https://www.incose.org/ (accessed on 22 January 2020).

	

Board, B.E. The Guide to the Systems Engineering Body of Knowledge (SEBoK), V2.2. Available online: https://www.sebokwiki.org/ (accessed on 10 September 2020).

	

Estefan, J.A. Survey of Model-Based Systems Engineering (MBSE) Methodologies. Rev B INCOSE Technical Publication, Document No. INCOSE-TD-2007-003-01; INCOSE: San Diego, CA, USA, 2008. [Google Scholar]

	

Douglass, B.P. The Telelogic Harmony/ESW process for realtime and embedded development, IBM Corporation Software Group Somers, NY 10589, USA. White Pap. 2008, 2008, 12. [Google Scholar]

	

Douglass, B.P. Real-Time Agility: The Harmony/ESW Method for Real-Time and Embedded Systems Development, 1st ed.; Pearson Education: Boston, MA, USA, 2009. [Google Scholar]

	

Lykins, H.; Friedenthal, S.; Meilich, A. Adapting UML for an Object Oriented Systems Engineering Method (OOSEM). In Proceedings of the INCOSE International Symposium, Minneapolis, MN, USA, 16–20 July 2020; pp. 490–497. [Google Scholar]

	

INCOSE. Object-Oriented SE Method. Available online: https://www.incose.org/incose-member-resources/working-groups/transformational/object-oriented-se-method (accessed on 12 September 2020).

	

Cantor, M. Rational Unified Process® for Systems Engineering: RUP SE Version 2.0. Ibm Ration. EdgeWhite Pap. 2003, 2003, 17. [Google Scholar]

	

Ingham, M.D.; Rasmussen, R.D.; Bennett, M.B.; Moncada, A.C. Generating requirements for complex embedded systems using State Analysis. Acta Astronaut. 2006, 58, 648–661. [Google Scholar] [CrossRef]

	

Dori, D. Object-Process Methodology: A Holistic Systems Paradigm; Springer: New York, NY, USA, 2002. [Google Scholar]

	

Dori, D. Model-Based Systems Engineering with OPM and SysML; Springer: New York, NY, USA, 2016. [Google Scholar]

	

OMG. Model Driven Architecture (MDA): Guide Revision 2.0 of MDA Guide Version 1.0.1 (12 June 2003); OMG Document ormsc/2014-06-01; OMG: Needham, MA, USA, 2014; Available online: http://www.omg.org/cgi-bin/doc?ormsc/14-06-01 (accessed on 25 July 2019).

	

OMG. MDA Success Stories. Available online: https://www.omg.org/mda/products_success.htm (accessed on 24 April 2020).

	

Sebastián, G.; Gallud, J.A.; Tesoriero, R. Code generation using model driven architecture: A systematic mapping study. J. Comput. Lang. 2020, 56, 11. [Google Scholar] [CrossRef]

	

OMG. Unified Architecture Framework, Version 1.1: Formal/19-11-07; OMG: Needham, MA, USA, 2020; Available online: https://www.omg.org/spec/UAF (accessed on 12 August 2020).

	

Agner, L.T.W.; Soares, I.W.; Stadzisz, P.C.; Simão, J.M. A Brazilian survey on UML and model-driven practices for embedded software development. Syst. Softw. 2013, 86, 997–1005. [Google Scholar] [CrossRef]

	

Rashid, M.; Anwar, M.W.; Khan, A.M. Toward the tools selection in model based system engineering for embedded systems—A systematic literature review. J. Syst. Softw. 2015, 106, 150–163. [Google Scholar] [CrossRef]

	

Freire, L.O.; Oliveira, L.M.; Vale, R.T.S.; Medeiros, M.; Diana, R.E.Y.; Lopes, R.M.; Pellini, E.L.; Barros, E.A. Development of an AUV control architecture based on systems engineering concepts. Ocean Eng. 2018, 151, 157–169. [Google Scholar] [CrossRef]

	

Hien, N.V.; He, N.V.; Diem, P.G. A model-driven implementation to realize controllers for Autonomous Underwater Vehicles. Appl. Ocean Res. 2018, 78, 307–319. [Google Scholar] [CrossRef]

	

Soriano, T.; Hien, N.V.; Tuan, K.M.; Anh, T.V. An object-unified approach to develop controllers for autonomous underwater vehicles. Mechatron. Sci. Intell. Mach. 2016, 35, 54–70. [Google Scholar] [CrossRef]

	

Anwar, M.W.; Rashid, M.; Azam, F.; Kashif, M. Model-based design verification for embedded systems through SVOCL: An OCL extension for SystemVerilog. Des. Autom. Embed. Syst. 2017, 21, 1–36. [Google Scholar] [CrossRef]

	

Anwar, M.W.; Rashid, M.; Azam, F.; Kashif, M.; Butt, W.H. A model-driven framework for design and verification of embedded systems through SystemVerilog. Des. Autom. Embed. Syst. 2019, 23, 179–223. [Google Scholar] [CrossRef]

	

Soriano, T.; Pham, H.A.; Hien, N.V. Analysis of coordination modes for multi-UUV based on Model Driven Architecture. In Proceedings of the 12th France-Japan and 10th Europe-Asia Congress on Mechatronics, Tsu, Japan, 10–12 September 2018. [Google Scholar]

	

OMG. UML Profile for MARTE: UML for Model-Driven Development of Real Time and Embedded Systems (RTES); OMG formal/19-04-02; OMG: Needham, MA, USA, 2019; Available online: https://www.omg.org/spec/MARTE/:OMG (accessed on 26 May 2020).

	

Douglass, B.P. Real-Time UML Workshop for Embedded Systems, 2nd ed.; Elsevier: Oxford, UK, 2014. [Google Scholar]

	

Selic, B.; Gerard, S. Modeling and Analysis of Real-Time and Embedded Systems with UML and MARTE; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]

	

Selic, B. Using UML for modeling complex real-time systems. Lect. Notes Comput. Sci. 1998, 1474, 250–260. [Google Scholar] [CrossRef]

	

SNAME. Nomenclature for Treating the Motion of a Submerged Body through a Fluid; SNAME: New York, NY, USA, 1950. [Google Scholar]

	

Fossen, T.I. Handbook of Marine Craft Hydrodynamics and Motion Control; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]

	

Figueiredo, A.B.; Matos, A.C. MViDO: A High Performance Monocular Vision-Based System for Docking A Hovering AUV. Appl. Sci. 2020, 10, 2991. [Google Scholar] [CrossRef]

	

Martínez, N.L.; Ortega, J.F.M.; Castillejo, P.; Martínez, V.B. Survey of Mission Planning and Management Architectures for Underwater Cooperative Robotics Operations. Appl. Sci. 2020, 10, 1086. [Google Scholar] [CrossRef]

	

García, J.G.; Espinosa, A.G.; Urquizo, E.C.; Valdovinos, L.G.G.; Jiménez, T.S.; Cabello, J.A.E. Autonomous Underwater Vehicles: Localization, Navigation, and Communication for Collaborative Missions. Appl. Sci. 2020, 10, 1256. [Google Scholar] [CrossRef]

	

Yao, F.; Yang, C.; Liu, X.; Zhang, M. Experimental Evaluation on Depth Control Using Improved Model Predictive Control for Autonomous Underwater Vehicle (AUVs). Sensors 2018, 18, 2321. [Google Scholar] [CrossRef]

	

Wan, E.A.; Merwe, R.V.D. The Unscented Kalman Filter. In Kalman Filtering and Neural Networks; Haykin, S., Ed.; Wiley: New York, NY, USA, 2001; pp. 221–280. [Google Scholar]

	

Bar-Shalom, Y.; Li, X.R.; Kirubarajan, T. Estimation with Applications to Tracking and Navigation-Theory Algorithms and Software; John Wiley & Sons: Hoboken, NJ, USA, 2001. [Google Scholar]

	

Allotta, B.; Caitib, A.; Costanzi, R.; Fanelli, F.; Fenucci, D.; Meli, E.; Ridolfi, A. A new AUV navigation system exploiting unscented Kalman filter. Ocean Eng. 2016, 113, 121–132. [Google Scholar] [CrossRef]

	

Allotta, B.; Chisci, L.; Costanzi, R.; Corato, F.D.; Fantacci, C.; Fenucci, D.; Meli, E.; Ridolfi, A. An unscented Kalman filter based navigation algorithm for autonomous underwater vehicles. Mechatron. Sci. Intell. Mach. 2016, 39, 185–195. [Google Scholar] [CrossRef]

	

Dong, L.; Xu, H.; Feng, X.; Han, X.; Yu, C. An Adaptive Target Tracking Algorithm Based on EKF for AUV with Unknown Non-Gaussian Process Noise. Appl. Sci. 2020, 10, 3413. [Google Scholar] [CrossRef]

	

Lekkas, A.M.; Fossen, T.I. Integral LOS Path Following for Curved Paths Based on a Monotone Cubic Hermite Spline Parametrization. IEEE Trans. Control Syst. Technol. 2014, 22, 2287–2301. [Google Scholar] [CrossRef]

	

Shojaei, K.; Dolatshahi, M. Line-of-sight target tracking control of underactuated autonomous underwater vehicles. Ocean Eng. 2017, 133, 244–252. [Google Scholar] [CrossRef]

	

Zheng, Z.; Zou, Y. Adaptive integral LOS path following for an unmanned airship with uncertainties based on robust RBFNN backstepping. ISA Trans. 2016, 65, 210–219. [Google Scholar] [CrossRef]

	

Liu, F.; Shen, Y.; He, B.; Wan, J.; Wang, D.; Yin, Q.; Qin, P. 3DOF Adaptive Line-Of-Sight Based Proportional Guidance Law for Path Following of AUV in the Presence of Ocean Currents. Appl. Sci. 2019, 9, 3518. [Google Scholar] [CrossRef]

	

Lantos, B.; Márton, L. Nonlinear Control of Vehicles and Robots; Springer: London, UK, 2011. [Google Scholar]

	

Wan, J.; He, B.; Wang, D.; Yan, T.; Shen, Y. Fractional-Order PID Motion Control for AUV Using Cloud-Model-Based Quantum Genetic Algorithm. IEEE Access 2019, 7, 124828–124843. [Google Scholar] [CrossRef]

	

Zhou, J.; Zhao, X.; Chen, T.; Yan, Z.; Yang, Z. Trajectory Tracking Control of an Underactuated AUV Based on Backstepping Sliding Mode with State Prediction. IEEE Access 2019, 7, 181983–181993. [Google Scholar] [CrossRef]

	

Yan, Z.; Yang, Z.; Zhang, J.; Zhou, J.; Jiang, A.; Du, X. Trajectory Tracking Control of UUV Based on Backstepping Sliding Mode with Fuzzy Switching Gain in Diving Plane. IEEE Access 2019, 7, 166788–166795. [Google Scholar] [CrossRef]

	

IBM. IBM Rational’s Methodology, Software, Online Documentation and Training Kits. Available online: https://my15.digitalexperience.ibm.com/b73a5759-c6a6-4033-ab6b-d9d4f9a6d65b/dxsites/151914d1-03d2-48fe-97d9-d21166848e65/academic/home (accessed on 20 April 2020).

	

Papyrus. Eclipse Papyrus for Real-Time (“Papyrus-RT”). Available online: https://www.polarsys.org/papyrus-ic/products (accessed on 20 April 2020).

	

Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. Design Patterns: Elements of Reusable Object-Oriented Software; Addison-Wesley: Oxford, UK, 1995. [Google Scholar]

	

Douglass, B.P. Design Patterns for Embedded Systems in C: An Embedded Software Engineering Toolkit, 1st ed.; Elsevier: Oxford, UK, 2011. [Google Scholar]

	

Arduino. Open-Source Electronics Prototyping Platform for Hardware and Software. Available online: http://www.arduino.cc/ (accessed on 19 January 2020).

	

Price, W.G.; Bishop, R.E.D. Probalistic Theory of Ship Dynamics; Chapman and Hall.: London, UK, 1974. [Google Scholar]

	

InvenSense. Sensor System on Chip. Available online: http://www.invensense.com/ (accessed on 22 March 2020).

	

u-blox. Product Selector. Available online: https://www.u-blox.com/en/product-search (accessed on 18 February 2020).

	

OpenModelica. OpenModelica Software, Version 1.14. Available online: https://www.openmodelica.org/ (accessed on 20 April 2020).

	

Fritzson, P. Principles of Object-Oriented Modeling and Simulation with Modelica 3.3: A Cyber-Physical Approach, 2nd ed.; Wiley-IEEE Press: Hoboken, NJ, USA, 2015. [Google Scholar]

	

Zhang, B.; Chu, H.; Sun, T.; Jia, H.; Guo, L.; Zhang, Y. Error Prediction for SINS/GPS after GPS Outage Based on Hybrid KF-UKF. Math. Probl. Eng. 2015, 2015, 10. [Google Scholar] [CrossRef]

	

Raitoharju, M.; Piché, R. On Computational Complexity Reduction Methods for Kalman Filter Extensions. IEEE Aerosp. Electron. Syst. Mag. 2019, 34, 2–19. [Google Scholar] [CrossRef]

	

OMG. XML Metadata Interchange Version 2.5.1: OMG Formal/15-06-07; OMG: Needham, MA, USA, 2015; Available online: https://www.omg.org/spec/XMI/ (accessed on 17 May 2020).

[image: Applsci 10 08293 g001 550]

Figure 1. Autonomy architecture block definition diagram for an autonomous underwater vehicle (AUV).

Figure 1. Autonomy architecture block definition diagram for an autonomous underwater vehicle (AUV).

[image: Applsci 10 08293 g001]

[image: Applsci 10 08293 g002 550]

Figure 2. Use case model of the developed AUV.

Figure 2. Use case model of the developed AUV.

[image: Applsci 10 08293 g002]

[image: Applsci 10 08293 g003 550]

Figure 3. (a) Desired trajectory-tracking scenario, and (b) local state machine for performing the “track a desired trajectory” use case.

Figure 3. (a) Desired trajectory-tracking scenario, and (b) local state machine for performing the “track a desired trajectory” use case.

[image: Applsci 10 08293 g003]

[image: Applsci 10 08293 g004 550]

Figure 4. Functional block diagram for implementing the continuous evolution of an AUV controller.

Figure 4. Functional block diagram for implementing the continuous evolution of an AUV controller.

[image: Applsci 10 08293 g004]

[image: Applsci 10 08293 g005 550]

Figure 5. Collaboration diagram of real-time capsules for an AUV controller (data from [63]).

Figure 5. Collaboration diagram of real-time capsules for an AUV controller (data from [63]).

[image: Applsci 10 08293 g005]

[image: Applsci 10 08293 g006 550]

Figure 6. Class diagram of real-time capsules for an AUV controller (data from [63]).

Figure 6. Class diagram of real-time capsules for an AUV controller (data from [63]).

[image: Applsci 10 08293 g006]

[image: Applsci 10 08293 g007 550]

Figure 7. State pattern structure of hybrid automata (HA) for the AUV controller.

Figure 7. State pattern structure of hybrid automata (HA) for the AUV controller.

[image: Applsci 10 08293 g007]

[image: Applsci 10 08293 g008 550]

Figure 8. Average transient response time in a desired course of 020° from the current position for the cases using EKF and UKF.

Figure 8. Average transient response time in a desired course of 020° from the current position for the cases using EKF and UKF.

[image: Applsci 10 08293 g008]

[image: Applsci 10 08293 g009 550]

Figure 9. AUV installation for trial trips.

Figure 9. AUV installation for trial trips.

[image: Applsci 10 08293 g009]

[image: Applsci 10 08293 g010 550]

Figure 10. The AUV reached and followed a desired rectangle-shaped trajectory: (a) with the extended Kalman filter (EKF) algorithm; (b) with the unscented Kalman filter (UKF) algorithm.

Figure 10. The AUV reached and followed a desired rectangle-shaped trajectory: (a) with the extended Kalman filter (EKF) algorithm; (b) with the unscented Kalman filter (UKF) algorithm.

[image: Applsci 10 08293 g010]

[image: Applsci 10 08293 g011 550]

Figure 11. The AUV reached and followed a desired triangle-shaped trajectory: (a) with the EKF algorithm; (b) with the UKF algorithm.

Figure 11. The AUV reached and followed a desired triangle-shaped trajectory: (a) with the EKF algorithm; (b) with the UKF algorithm.

[image: Applsci 10 08293 g011]

[image: Table]

Table 1. Society of Naval Architects and Marine Engineers (SNAME) notations for underwater vehicles (data from [64]).

Table 1. Society of Naval Architects and Marine Engineers (SNAME) notations for underwater vehicles (data from [64]).

	Degree of Freedom
	Motions
	Force and Moment
	Linear and Angular Velocity
	Position and Euler Angles

	1
	Surge
	X
	u
	x

	2
	Sway
	Y
	v
	y

	3
	Heave
	Z
	w
	z

	4
	Roll
	K
	p
	ϕ

	5
	Pitch
	M
	q
	θ

	6
	Yaw
	N
	r
	ψ

[image: Table]

Table 2. The customizability and reusability of designed control capsules in new control applications for many types of AUVs. IGCB, instantaneous global continuous behavior.

Table 2. The customizability and reusability of designed control capsules in new control applications for many types of AUVs. IGCB, instantaneous global continuous behavior.

	
Designed Control Capsules

	
Specialization Rules

	
Generic Artifacts the New AUV Controller

	
Specialized Artifacts the New AUV Controller

	
IGCB

	
The state machine, ports, and protocols of this capsule are not changed.

	
The specifications of the IGCB’s capsule make up the new IGCB model and are formed by the new continuous components.

	
Continuous part

	
The ports and protocols of this capsule are not changed.

	
It is specialized by adding or removing down continuous elements.

	
Discrete capsule

	
This is not changed.

	
None.

	
External interface

	
The state machine, ports, and protocols of this capsule are not changed.

	
It is specialized by adding/removing inputs/outputs events issued from the outside.

	
Internal interface

	
The state machine and ports of this capsule are not changed.

	
It is specialized by adding/removing Inv in/from the new IGCB.

The real-time capsule collaborations shown in Figure 5 and Figure 6 are not changed for new control applications of AUVs.

[image: Table]

Table 3. The torpedo-shaped AUV’s main operating parameters (data from [63]).

Table 3. The torpedo-shaped AUV’s main operating parameters (data from [63]).

	Parameters
	Values

	Size (L × H × W)
	(1.50 × 0.20 × 0.20) m

	Weight
	11.50 kg

	Autonomous duration
	25 min

	2× Li–Po battery
	22.2 V, 20,000 mAh

	Ultimate capacity
	285 W

	Maximum submersing/rising speed
	0.70 m/s

	Maximum horizontal moving speed
	1.80 m/s

	Maximum operation depth
	1.20 m

	Maximum radius of operation
	400 m

	Inertia moment on x-axis, Ixx
	0.057 kg·m2

	Inertia moments on y-axis and z-axis, Iyy = Izz
	1.271 kg·m2

[image: Table]

Table 4. Testing results for the course-tracking of the torpedo-shaped AUV.

Table 4. Testing results for the course-tracking of the torpedo-shaped AUV.

	No.
	Desired Course Angle (°)
	Average Velocity (m/s)
	Stabilized Interval (s), (with the EKF)
	Stabilized Interval (s), (with the UKF)

	1
	010
	0.5
	7.1
	6.4

	2
	010
	1.5
	5.7
	5.2

	3
	020
	0.5
	7.6
	7.1

	4 *
	020
	1.5
	6.9
	6.2

	5
	030
	0.5
	9.3
	8.8

	6
	030
	1.5
	8.3
	7.9

* This test scenario corresponds to the simulation case shown in Figure 8.

[image: Table]

Table 5. Assessment of the torpedo-shaped AUV control application of model-based systems engineering (MBSE) methodology combined with the model-driven architecture (MDA). CIM, computation-independent model; PIM, platform-independent model; PSM, platform-specific model; IDE, implementation development environments; OMG, Object Management Group; XML, extensible markup language; MOF, Meta Object Facility; UML, unified modeling language; SysML, systems modeling language.

Table 5. Assessment of the torpedo-shaped AUV control application of model-based systems engineering (MBSE) methodology combined with the model-driven architecture (MDA). CIM, computation-independent model; PIM, platform-independent model; PSM, platform-specific model; IDE, implementation development environments; OMG, Object Management Group; XML, extensible markup language; MOF, Meta Object Facility; UML, unified modeling language; SysML, systems modeling language.

	Proposed Models
	Advantages
	Disadvantages

	CIM
	This model focuses on a global model of top level, which can combine discrete models and continuous models.
	An implemented functional block diagram must be supplemented in the CIM to depict internal continuous behaviors for the control system developed.

	PIM
	The PIM–PSM separation and its model transformation allow the designed control elements to be customizable and reusable for various kinds of AUVs.
	This can influence the performance effort of projects.

	PSM
	The control capsules can be transformed into various PSM IDEs (e.g., Java, Net, or Ada IDEs).Arduino microcontrollers are used to deploy the real-time and embedded control system using open-source solutions.
	Within the OMG, the XML Metadata Interchange (XMI) specification [103] supports the exchange of model data when using an MOF-based language such as real-time UML/SysML. However, development engineers may need training to develop the required skills in different IDEs.

	
	
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

media/file13.jpg
-
J——) pmmm—il

s & discremPanit
honimpann Jiaca

™
[-

7S

) gp p proecs
WemzsVoatle (o) msestiscuors
e
LosConiosTomas (5 erttodsos o)
Unck o) s o)
CrenSemaghas i) TemesEot)
Lok KinaeSe 10)
R)

LasiFashedrwe (59 DncuctadErt o)
KeteEimar o) ComaPassedTims §0d)

media/file4.png
bdd [Project] AUV [General Control Structure]

<>

«Block»
AUV

1

*

<

transmits_data_of sensors

1“1

Guidance_System

1

Is_influenced by

«Block»

Marine_Environment_System

\%:onsists_of Y
gathers_control_variables

1"t
Ny

N 1.2

/|

1

transmits_the_desired_trajectory_and_depth

transmits_the _estimation_of depth_position_attitude_and_velocity

1

Navigation_System

1 = gives_the_estimation_of_depth_position_attitude_and_velocity

«Block»
Controllers

1.%

media/file18.png
— Desired course angle (deg) —--=- Transient reponse time with the EKF (s) —-- = Transient response time with the UKF (s)

Point|for the stabilized course with the UKF

- —- A
wn (S wn ()

Transferring course angle (deg)

o

T -

. ...-"""-?-::- s : - :

- Lo ’..-"-‘" . Point for the stabilized course with the EKF
- g - | | |

-’ o lead

] ‘_J" ..p'"

. S~

. ™ -

- /' "/

o~ -
7 o' A/
.l -

. v ,’/

- 4

" "/ '/.,

_ AV

A /‘/’

7 I",’

1.4

4

T | T | J ! | I | ! 8 |
0 2 4 5 8 Time (s) 10

media/file21.jpg
B B
H 3
a0 §
£
25 2
o
8y £
20
“0
—+-Desired wajectory ponts
g0 | @ Reached positons W To e wdecpdnis
AOrgin: 21004275 East decton [m] East diecton m]
105 843436 °F A Orgin: 21.004156°N, 105 843297 °E
© string ot @ Sostra oot

(a) (b)

media/file3.jpg
'bdd [Project] AUV (General Control Structure]

—f

«Blocks 1 i «Blocks.
fo———
< iuenced_by

transmits_data_of_sensors

10

Bocks

Tm-m_m %
gathers_control_variables

q ocks

| Guldance_System |"\ .. the_desired_trajectory_and_depth trollers)

1
transits_the_estimation_of_depth_position_atttude_and_velocity
1

+_gives the_estimation_of depth_position_atitude_and_velocity

media/file22.png
&)
=
J

2

(m]

P
=

""""""""""""""""

North direction
North direction [m)]
S

Mo
=

0
-20
20 F
40 |-
—t—DéSlred trajei-:tory pmntis

50 l Resached pc-smons '

ADrlgln 21.004278 °N EﬂSt direction [m] East direction [m]

105.843436 °E AOrigin: 21.004156 °N, 105.843297 °E
© starting point © Starting point

(a) (b)

media/file19.jpg
ST o ROV il NN Compenara]

L

+ ATUEGATZU2 g
T3 Canect mcrocanrters

+ AU MPUSO00, GPS: Ut Neo 641

media/file7.jpg
)

aeectod s

[

[T —
pr———
Fre———,
D —

=
7 Ot et o s

[y e———"
IR —1
=y

0 Reahed dmvodvancion

@ (b)

media/file10.png
Command inputs (e.g.

the desired way-points,

AUV Controller

and depth
®

A 4

VX, Y d),e,lpwd),-ﬂ,l]]
Depth - Positi Attitud
p ST, osition 0, itude
Control Control Control
(1B) (1B) hg (1B)
A N
1z . i
T | ’
Desired trajectory Motor Control (PID)
and depth Tﬂﬂ‘#\l/ ST
Estimation of position, Underwater
depth,l attitude and velocity Vehicle
Guidance Navigation < A
System dystem . Environment |

media/file14.png
————
/ interpnalinterfaceR1

———

/ externallnterfaceR1

. / discretePartR1
{ tontinuousPartR / 1GCBR1
! +< I<FS)"M>T W
igna
b (from RealTime Deﬂgn : v .
—_—
— - -
Internalinterface DiscretePart IGCB @ Externalinterface
ContinuousRart s BoalT i D
(from RealTime Design) . (from RealTime Design) (from RealTime Design) (from RealTime Design)
< <P0|t>>0 <<Port (from RealTime D <<Pbrt>>
+ / P_Element +/ P_Blement~ <<P <<Port>> + / Signal~
1. \ <<Port>>
n D—1EI B P + / State_D
T + / Signal <<Fprt>>
CP_AUV_Protocol +/ Signdl_D~ e § i
(from RealTime Design) 3 : +/ Sigﬂﬂ'_D 1..nv \/1" W
..n | I 1 ||| I .n
Terminal (void) 1. > ' <
Ready (void) W EI_AUV_Protocol 1. n <<Port>> |IGCB_AUV_ProwcoI
Veﬁfyinvaﬁam (de) (from ResalTime Designi): + / Event (from ResalTime Design)
InvariantFalse (void)
DP_AUV_Protocol ool i) IdentifvBehavi (void)
i
MemorizeVariable (void) PR L — m;"“utE;g:?ss@‘gd) S s
VariableUpdated (void) __ ;
d . ' ChangeNotification (void)
LastContinuousTerminal (void) |dentifedState (void) Create (wid) Updated (void)
Unlock (void) Acquire (wid) Recewe (void) NotifyServer (void)
CreatSemaphore (void) MemorizeEvent (void) SetPeriod (void) Return (void)
Lock (void) ActivateState (wid) Delete (void) ContinuousElement_1 (void)
Restim (void) ContinuousElement (void) ContinuousElement_2 (void)
LastFinishedElement (void) DectectedEvent (void) Output Signals (void) ContinuousElement_m (void)
ACimemont fyout) ControlPas sedTime (void) OutputEvents (void) ContinuousEvolution (void)

media/file11.jpg
+TEvent

"~/ Event
DP_AW_Protocal | /aiscretepariR1
Discreteart

media/file6.png
MES Maintainer
from Actars) | Maintain the phyacal components (from Actors)
{from Use cases) -Omhgure control parameters of the
AU
(from Use cases)
MDS Track a desired lrajer:tanf Ensure safety
{from Actors) (from Use cases) (lrcems s

Condition-{falled components or low 5u|:|;|.'lied power or bad weather}
Extention point: Get Safety

media/file15.jpg
ot S rervo
T A
! |
m—»v‘-ﬂ()« Attiude_poskion_Contrl D06 Contiol
T |y p— [Je———
H eorepioid
5 eohead
g ' hencevod
L ==
H s pie s & suton Do
MR 2 Tranferog() 2 -sumergig) D -R)
H eoreroa i eoe)od e H eareod
b0 i rence()08 I rende)od 1 rende)0d
D) 4D Transerrng) 4D Submeron) £ Ren)

nav.xhtml

 applsci-10-08293

 		
 applsci-10-08293

media/file16.png
4tsState or -stuahon

=*

E mnaurrent_ID:int
= evohve():void
void
E M:w i handie():void
| T | - |
Idle Transferring Submerging Rising
= stuation_D:int = stuation_ID:int =] stuation D:int = stuaton_D:nt
« D ~Ide() = D ~Transferring() = B ~Submerging() « D ~Rising()
E evolve():void E evolve()void E evove()void E evolve():void
handle() :void handle():void handle():void handle() :void
<D me() %D Trangferring() €D Submerging() € Risnq()

media/file2.png
#ifindef HA_Q_AUV _H
#define HA_Q_AUV H
#include =oxfoxi h=
#include =oxfiomcollec_h=
[link itsState
class State;
class HA_CQ ALV {
public :
HA_ AUV
~HA_ G AUV
void requesti);
OMIterator<State™= getlisState() const;
void additsState(State* p_State);
void removeltsStatelState™ p_State);
void clearltsStatel);
protected :
void cleanUpRelations();
OMCollection=5tate*= itsState; /## link is'5tate
public :
void _additsState(State™ p_State);
void _remaoveltsState(State* p_State);
void _clearltsState();
h

#include "HA_Q ALV R
#include "State. h"
HA ALV HA Q_ AUV |

¥
HA_C_AUV: ~HA_Q AUV {
cleanUpRelations();

¥

void HA_ Q. AUV request() {

¥

OMIiterator=5tate™ HA_Q AUV getltsStatel) const |
OMIterator<5State®= iter(itsState);
return iter;

3

void HA_Q_AUV::addltsState(State* p_State) {
if(p_State = NULL)

p_State-=_setltsHA_Q_AUV(this);
}
_addlitsState(p_State);

}
void HA_Q_AUV:removeltsState(State” p_State) {
if(p_State I= NULL)
{

p_State->__ setltsHA_Q_AUV(NULL);
}
_removeltsState(p_State);

}
void HA_Q_AUV::clearltsState() {
OMIterator<State™> iter(itsState);
while (*iter}{
(*iter)->_clearltsHA_Q_AUVI();
iter++;

}
_clearltsState();

}

void HA_Q_AUV:.cleanUpRelations() {
{

OMIterator<State™= iter(itsState);
while (*iter){
HA_Q_AUV* p_HA_Q_AUV = (*iter)-
>getitsHA_Q_AUV():
if(;}_HA_Q_AUV I= NULL)

(*iter)-=__setitsHA_Q_AUV(NULL);
iter++;

}
itsState_.removeAll();
}

}
void HA_Q_AUV:._additsState(State* p_State) {
itsState.add(p_State);

}
void HA_Q_AUV::._removeltsState(State* p_State) {
itsState.remove(p_State);

}

void HA_Q_AUV:._clearlitsState() {
itsState.removeAll();

}

media/file20.png
bdd [Project] AUV [Physical AUV Components]

itsActuators

. «Block» . «Block»
AUV L. Actuators
: _
e

itsGuidance_System :
= itsNavigation_System ftsControllers
/ B i «Block»
«Block» «Block» Controllers
Guidance_System Navigation_System —— —

itsSensors_and_CommunicationUnits

|+ ATMEGA32-U2 and
«Block » L STM32 Cortex-M4 microcontrollers
Sensors_and_CommunicationUnits + IMU: MPU6000. GPS: Ublox Neo 6M

media/file23.jpg
60

50

o

North direction (m)

@ Reached poinis
—+=Desired ajoctory pos

® sartng o

East dracton]

(a)

Nort ecton)

©

S

2

8 Reached ponis.
Bl ajciay poris

omn s
e 105847136 °€
© suoron

Eastdrocson)

(b)

media/file5.jpg
MES O Maintainer
Maintain the physical componants (o Ackrs)

(rom Actas)
(rom Use casesg Corfigure control Bl

o
% . <cotens> O
MDS Track a desired trajectory, Ensure safety

(from Actors) (hom Use cases) e

Condition:{failed components or low supplied power or bad weather}
Extention point: Get Safety

media/file24.png
T - ")
1 1 1
W i i
c - m m
o ZWU !
p_ﬂnﬂo I |
e _ _
----W.J.u.l..m_......--v S R
842 VBT _
mwu.u__“_..ﬂ..m_ i
Q= X 5.
d..m_,,l.% ol
oo Ve o
-m-n_luL.,m--..m-, N S sl
%.H_.@ o
QO = =
ot 4 @

...

|||||

0

60
50

40 £
30

2

0 4

[w] uonoauip yuoN

e
e L]
2 .._|mwa
|m||NJ||$_.._rl|g|
e o oM~
s @ _H,M =
27T ©% 35
B T8 2
Do _.1 ()
= @D E =
= +=
g¢ £ =
ro o 97,
s} 4 o

“ “ A U
=] -
[—

[w] uonoaup yuon

“
o
-

20 -
30 -

f
]
=

60 ;-
11 S

 Eastdirecton[m]

-20
30 Lo

~ Eastdirection [m]

(b)

(a)

media/file1.jpg
rummmmwtuwn

oy

#indef HA QAW H
#define HA_Q_AUV_H
#nciude <GGAN>

void ceanUpRelatons():
 SHColecion<ie>fstas 4 ks

P15 _sanssttestatep Ste)
void removelsSiate(Stte* p_Stae);
void cleatisSiate(;,

%

denat

e

File Path: DefaulConfgHA_Q_AUV cpp

o -
#include "HA_Q_AUV
Finciude "Stale

HADLAWHA 0. AVO(

HAQ_AUV-~HA QAUVO (
‘deantpRelations()

)
JoaHAO_ AUVt

ONterator<State"> HA_Q_AUV. getsState() const
Ohierator<State"> ensStale),
e,

YlgHA 0 ANttt i)

i
| PS> SaUHALQ AN
_sdatsStatep_State)

g 0_ AUV emvetstatetatp._Sae)
p_State 1= NULL)

P_Stale>_setisHA_O_AUVINULLY,
)
_removelsStatep_Stat);

O
Cuniai-Se o)

R——
[T ———
¢

OMiterator<State™ fer(tsState),
i Cter
HAQ_AUV" p_HA Q_AUV = (ter
>gBlISHA G AUVD).
o HA_Q_AUY 1= NULL)
T

| (te>_SeishA_0_AUVOULL)
eres;

)
sState removeu(;
)
)
VOId HA_O_AUV:._addisStateState"p_State)
| Pl k.St
Vo HAQ_AUV:_removelsState(State”p_Stte)
HsState remove(p._Stte),

)
VoldHA Q_AUV:_ learsState) (
St removei(,

)

media/file12.png
.

-

+/ BEvent +/ BEvent +/ Event
- El_ AUV _Protocol~ “El_AUV_Protocol “DP ALV Protocol J_‘ / discretePartR1
L - - DiscretePart
" |
/ externalnterfaceR1 | FrEventD R 0
i -DP_AWNV_Protocol~ ; '
- BExternalinterface +/ State D
- _, H] SIGCB AUV Proocol
1 .I - _ —
+/ Sighal +/ Signal_D + | State
- El_AUV_Aotocd~ - El_AUV_Protocal -DP_AUV_Protocpl~
___*+/Signal / continuousPartR1 . CFT!;U_‘E Prnlg:‘.w
-El_AUV_Protocol “ContinuousPart O~ =" "=
ulm)
]
/ Signal D + /|Signal + [State
“EI| AUV _Protocol~ \/Qae 1GCB_AUV_Protocol “DP_AUV_Protocdl
sul " IGCB_AUV Probbcol~ w
/IGCBR1 +/ Signal {internalinterfaceR1
" 1GCB B Inemalnterface
L -16eB_AUV_Protocol~ /P _Element
ool “CP_ALV_Protocol

media/file9.jpg
AUV Controller

- .00y 601
Depth |5y, | Poston [| Auitude
Control Control Control
(18) (18) () (18)
Desired trafectory Motor Control (PID)
and depth G
Command inputs (e.g, Estimation of position, Underwater
the desired way-points, depth, attitude and velocity Vehicle
and'depth Guidance Navigation —p—

System System Environment |

media/file0.png

media/file8.png
X

X

MES MDS

; i 1: Gives a desired trajectory ;
loop(5) | :
[detected errors]

. 2: Gets occurred ppise events

U 3: Give the occured noise event

U 4: Determine errors o

7 [

—

5: Send values of the errors

T

o

Make the error-compensation

Demand to determine the errors cmmensgfed

9. Make up for the errors returned
1

8: Returned values of the new errors

10: Reached desired frajectory

i

(a)

?

Tracking

End ofa trip

Execution
Attitude and position control
displace

Trackad

ired trajectory

|c|||e J
7

[Transferring]

idle

@ ______

Depth control

t submerge
W

[Submerging] [Rising]

rise

i

(b)

media/file17.jpg
Trarsferring course angle (deg)

[

3

5

— Desred course angle (deg) == Transient reponse time with the EXF (s) =<~ Transient response time with the UKF (s)

ot stabsze course wih e K

H 1 P - Time (5) 10

