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Featured Application: The proposed methodology has been developed to support the Asset
Management (AM) decision making according to an open Building Information Modelling
(openBIM) approach. Within the context of the West Cambridge Digital Twin Research Facility,
a real case scenario has been considered, where the as-built data is imprecise or absent.
The methodology is well suited to dealing with incomplete data on existing buildings, when the
objective is integration among AM, the Internet of Things (IoT) and BIM information.

Abstract: Digital Twins (DT) are powerful tools to support asset managers in the operation and
maintenance of cognitive buildings. Building Information Models (BIM) are critical for Asset
Management (AM), especially when used in conjunction with Internet of Things (IoT) and other
asset data collected throughout a building’s lifecycle. However, information contained within BIM
models is usually outdated, inaccurate, and incomplete as a result of unclear geometric and semantic
data modelling procedures during the building life cycle. The aim of this paper is to develop an
openBIM methodology to support dynamic AM applications with limited as-built information
availability. The workflow is based on the use of the IfcSharedFacilitiesElements schema for processing
the geometric and semantic information of both existing and newly created Industry Foundation
Classes (IFC) objects, supporting real-time data integration. The methodology is validated using the
West Cambridge DT Research Facility data, demonstrating good potential in supporting an asset
anomaly detection application. The proposed workflow increases the automation of the digital AM
processes, thanks to the adoption of BIM-IoT integration tools and methods within the context of the
development of a building DT.

Keywords: BIM; openBIM; IFC; IoT; sensors; cognitive buildings; asset management; digital twin

1. Introduction

Asset Management (AM) is a key organisational area in Architecture, Engineering,
Constructions and Operations (AECO), being a recognised and effective driver for better sustainability
of the built environment, while improving asset condition and performance [1,2]. Moreover,
the management of the built environment has entered a new phase characterised by a digital
transformation of management processes [3]. This phase concerns the adoption of digital tools that can
support the production, storage and update of information during the life cycle of assets [4–6].
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1.1. Digital Modelling in Asset Management

Building Information Modelling (BIM) is now widely adopted by the industry as part of their
digital toolkit, especially when focusing on building systems and components. BIM for building
operation has been standardised internationally by ISO 19650-3 [6], which provides guidance for
information management during the use phase of the assets [7]. The benefits of BIM have been
studied in multiple domains, for example, maintenance prioritisation [8,9], energy management [10],
sustainability assessment [11] and life cycle costing [12]. Advances in BIM are likely to reduce the
time needed to update databases in the use phase by 98% [13]. However, as a dynamic system,
one of the most relevant contemporary challenges in AM concerns the integration of the static data
stored and managed through Asset Management Systems (AMS), with the dynamic data provided by
Building Management Systems (BMS) [14] and Internet of Things (IoT) sensor networks deployed for
specific building management applications [15]. The concept of Digital Twins (DT) aims to address the
integration of static and dynamic data, thereby enabling the creation of a digital replica of the physical
building that is always up-to-date through its life cycle [16]. DTs are therefore integrated, multifaceted,
and multi-scale digital replicas of physical assets, systems, processes, and buildings, that accelerate the
development and benefits of BIM in AECO [17,18].

1.2. Data Integration Management

AM processes are still managed based on outdated procedures in practice, hindering the
innovation and adoption of digital technologies that could strongly support information management
and contribute to the integrity, validity and interoperability of the process [19]. DTs for built
environments are still in their infancy, and there are few applications that integrate static and dynamic
data in AECO, which is a laggard economic sector in terms of adopting innovative digital tools [20].

The following issues were identified regarding the lack of integration between static and dynamic
information in AM:

• BIM models are often created during the design, manufacturing, and construction phases using
unclear procedures, and updated as-built models are hardly accessible or even not available.
In addition to the static nature of BIM, outdated and unreliable (i.e., inaccurate and incomplete)
building information impedes the full potential of the AM applications during the use phase.

• Even when updated as-built BIM data is available, scarce attention is still paid during the design
phase to the information management process across the whole asset life cycle. Consequently,
the information requirements (IRs) during the use phase are often not met because of the way
information is created and aggregated (e.g., classified), during the design and construction phase.
BIM is a flexible modelling approach, which supports the inclusion of geometries, assets and
systems as part of the model. However this flexibility may result in chaos if recognisable
hierarchies and classification systems are not defined in the design phase and adopted during the
assets’ life cycle.

• Static and real-time data are managed differently because of their nature. For instance, some asset
information is designed to be static (e.g., asset locations and geometries), whereas asset
performance is measured in real-time in DTs throughout the use phase. Static data is not updated
frequently (or at all) and is stored in passive repositories (e.g., relational data-bases or files to query
or in COBie spreadsheets). Real-time data is variable, requiring special storage and management
(e.g., actively publishing new data for active subscribers). IRs are clearly different for static and
real-time data, leading to AM applications that cannot use both sources of information.

To the three main issues described above, a fourth can be added, concerning the inaccessibility
of proprietary data formats: siloed black box systems that vendors use often make data
interoperability impossible.

Efforts have been made to enable more flexible data integration for AM. On one hand,
several studies are currently being conducted to improve the information exchange during the life
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cycle of the assets within the openBIM approach [21]. OpenBIM indicates the use of BIM based on open
standards and workflows to improve the openness, reliability and sustainability of life-long data and
enable flexible collaboration between all stakeholders. An example is ongoing standardisation efforts
by the International Organisation for Standardisation (ISO), on the 19650 series of standards [4–6].
On the other hand, quality AM processes are being investigated using incomplete and inaccurate
information, particularly on existing assets.

1.3. Aim of the Paper

The aim of this paper is to present an openBIM methodology to overcome the separation of
existing static/dynamic information in supporting AM applications with awareness of inaccurate and
incomplete as-built data. The benefits of this approach include:

• Improved accessibility of the integrated information;
• Users’ profiling and access to the right data at the right moment;
• Dynamic AM application support, with limited as-built information availability and
• Enhanced information quality by better matching with the domain specific requirements from

different AM applications.

2. State of the Art

The BIM approach can be broadly defined as a set of digital modelling tools, procedures,
and methods that support the effective management of information flows during the life cycle
of the asset [22]. The benefits of BIM adoption in AM and Facility Management (FM) are well
documented [19,23,24]:

• It improves the quality of building data (e.g., preventing data replication and limiting redundancy
and inconsistency);

• It facilitates data integration during the building life cycle;
• It improves communication between stakeholders;
• It enables smoother workflows among involved parties according to standardised procedures;
• It allows a reduction in time and cost in the retrieval of FM related information;
• It enables a faster verification process.

Improved information management (i.e., integration, quality, sharing) is the primary benefit
that can be achieved through implementing BIM approaches. Through the incorporation of geometry,
spatial locations and semantic properties, BIM provides a high-fidelity representation for buildings.
The buildings’ interaction with users is captured by IoT sensors which are increasingly deployed
in the built environment to collect real-time data on the operational condition of buildings [15].
The integration of BIM and IoT has been identified as the key driver for the realisation of
cognitive buildings, smart infrastructure and, eventually, the smart built environment [25,26].
Several applications of BIM and IoT data integration can be found in the literature.

2.1. Uses of the BIM and IoT Technologies

In the manufacturing and construction phase, sensor data and BIM technologies can be used
to monitor the construction site schedule and improve the procurement process [27]. The use
of Virtual and Augmented Reality (VR/AR), which simulate the reality using either virtual
reality headsets or multi-projected environments or simply add digital elements to a live view
(e.g., the game Pokemon Go), can support construction operations and prevent issues in the execution
process (e.g., interference among systems and structural parts) [28]. Global Positioning System (GPS)
technologies and Radio-Frequency IDentification (RFID) sensors are utilised to monitor the positioning
of building components against the BIM model [29]. In construction logistics and management,
IoT data can be employed to track and improve construction site operations [29] within the context of
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the lean construction, concerning the digitisation and automation of the construction supply chain [30].
In Health and Safety (H&S) management, VR and BIM data have been employed to improve the
training process of workers, and their ability to recognise and assess risks [31]. In the same sector,
Ref. [32] propose integrating wireless sensor networks and BIM technologies to monitor the safety
status (presence of hazardous gas) of underground constructions sites.

In FM, BIM and IoT data integration have been studied to enrich the condition monitoring
of critical assets and real-time assessment of their performance [33]. VR/AR technologies enhance
indoor navigation [34], which upgrades maintenance procedures. BIM and energy data integration
improves energy management [35]. Ultrasonic sensors can be used with BIM for maintenance service
optimisation [36]. Dynamic environmental data can be used to achieve higher user comfort and to
adapt system behaviour [37].

The number of applications is growing, and the topic has gained momentum, representing
a leading research field, which lays a solid foundation for the identification, collation and curation of
operational datasets and demonstrating the great potential of the DT applications in AECO.

2.2. Integration Architectures

Besides the applications that can be developed through fruitful BIM and IoT integration, a critical
aspect can be found in the static and dynamic data integration. The development of an effective
architecture allows for leveraging of the true potential of static information concerning geometries,
location and relations among the building elements and the related semantics stored in the BIM
model; AM and FM information is generally collected in an Asset Information Model (AIM) [8];
and the dynamic data streamed through the IoT technologies and managed through the related
infrastructures. Different types of architecture can be found in the literature, allowing diverse
operations on data. Ref. [15] classifies these architectures according to five methods, as shown
in Table 1. These methods fulfil the integration of BIM and IoT by utilising BIM tools’ APIs and
relational database, transform BIM data into a relational database using new data schema, create new
query language, using semantic web technologies and hybrid approach, respectively. Basically, these
methods keep contextual information (BIM data) and time-series (sensor collected) data, and integrate
them from different angles. Their methodological description, advantages and disadvantages are
explained in Table 1.

Table 1. BIM IoT data integration methods [15].

Method Advantages Drawbacks

BIM tools’ APIs + relational
database: Sensor and BIM data are
stored in a relational DB. Virtual
objects are connected to sensor data
through unique identifiers [38,39].

• Extensive software support;
• existing of APIs allow the

export/import of BIM data
in the right format;

• easy of using SQL.

• Poor in BIM data export and
enrichment capabilities;

• insufficient of model change
management support.

New data schema creation:
Transform BIM data into relational
database using new data
schema [40,41].

• Flexible in users’
customisation;

• supporting data federation
(no need for conversion);

• allow effective data
management in large
projects.

• Time-consuming in mapping
operations;

• requires BIM data knowledge
and editing skills.

Create a new Query Language
(QL): for querying time-series and
IFC data [42,43].

• Expressiveness of QL;
• optimised for

domain-specific
applications.

• Scarce dynamic data query
capabilities;

• need to develop a dedicated platform;
• no standardisation.
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Table 1. Cont.

Method Advantages Drawbacks

Semantic web approach:
for storing, sharing, using
heterogeneous data [44,45].

• Linking data silos;
• managing cross-domain

information;
• effective in projects with

broad scope.

• Need to represent data in
homogeneous format (RDF);

• RDF is not optimal for querying
dynamic data;

• data redundancy risk;
• fix structure and storage consuming.

Hybrid approach: semantic web +
relational database: both
approaches are used for storing
cross-domain data [46,47].

• Data is stored in the most
suitable platform;

• time saving (no conversion);
• storage saving;
• better performance;
• effective QL.

• RDF conversion still needed.

3. The Proposed Openbim Methodology

In this section the methods employed to develop the proposed openBIM approach for IoT data
integration are presented while exposing the limitations. Then, the proposed workflow is depicted
addressing these limitations to leverage the full potential of the available static and dynamic data,
supporting the development of AM applications, even when as-built data is incomplete. The purpose is
to create an approach that is effective when dealing with existing buildings where as-built information
is frequently absent or not reliable.

The proposed openBIM approach aims to extend the BIM methods and tools for improved
accessibility, usability, management and sustainability of data in AECO [21]. It promotes data sharing
and collaboration among parties using open standards, addressing the common BIM issues related to
proprietary technologies and software. For this purpose, the Industry Foundation Classes (IFC) data
schema has been adopted to support and handle the BIM data [48].

The IFC schema is an object-oriented open standard [49] widely studied as an effective means for
interoperability, sharing, collaboration and classification. The IFC schema is extensive and complex,
and therefore its usage has been limited to simple software interoperability workflows and visualisation
of key information of the BIM model. Nonetheless, IFC offers good support for not only geometry
representation, but also semantic data enrichment. In this research, the IfcSharedFacilitiesElements
schema has been employed to handle geometric and semantic information of both existing and newly
created IFC objects, supporting real-time data integration.

Rarely, the level of both geometric and semantic detail and the classification system
(the granularity) adopted in developing the BIM model, in the design and construction phase,
is adopted in the use phase. According to [50], the IfcAsset has been adopted for re-aggregating
building components in order to achieve the desired level of granularity used in AM. The IfcAsset
(the element breakdown is elaborated in Figure 1) is defined as “a grouping of elements acting as a
single element that has a financial value”, allowing objects that are not spatially connected to be related,
through the relationship IfcRelAssignsToGroup. Moreover, another artefact that can be leveraged
for semantic enrichment of the BIM model is the IfcAsset, which allows the objectified relationships
IfcAssignToActor, IfcAssignToControl, IfcAssignToProcess and IfcAssignToResources to be
associated with a wide set of data within the context of the AM domain.

In practice, as-built data is incomplete and not reliable. When integrating with IoT data, this may
result in hampering an effective digital representation of both the sensor objects and the spatial
elements measured by the sensors. This issue is addressed by modelling non-geometric objects in
IFC, which allows a modular updating of the BIM model. This approach leverages both the 3D and
semantic potential of the IFC schema, streamlining the integration of BIM, AM and IoT data.

From the perspective of applications, detailed spatial/geometrical information is not always
necessary. As typical distributed systems, buildings need to be monitored, managed and controlled.
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Eventually, buildings’ performance can be simulated under known building systems organisation
using individual asset components. For instance, for the anomaly diagnosis of Heating, Ventilation and
Air-Conditioning (HVAC) systems in a specific building, only the basic mechanical system information
is needed: describing the HVAC system configuration and the links between architecture zones and
HVAC terminal units [51]. This scenario is used in Section 4 for demonstrating the benefits of the
proposed approach. In the development of the IfcAsset, in fact, the classification system adopted
by asset and facility managers must be considered in order to support inter-operable and flexible
AM processes. For querying and modifying the IFC, several Application Programming Interfaces
(APIs) can be used. The IfcOpenShell-python (http://ifcopenshell.org/) module and the BIMserver
(https://github.com/opensourceBIM/BIMserver) software for IFC visualisation and queries are used
in this research.

Figure 1. IfcAsset schema.

Figure 2 depicts the proposed methodology. The process starts with the definition of IRs, which is
designed to identify the relevant data employed for the operation of the building according to the
business and client needs and the outcomes of the application. This step is composed of three
sub-tasks regarding the definition of the static and dynamic IRs and the definition of the Service Level
Agreements (SLAs).The static IRs correspond to the AM information, characterised by a low frequency
of updates and more classical information management. Static IRs include the level of aggregation
of the assets (granularity) at which the maintenance interventions are conducted. The dynamic
IRs concern the IoT data management, including how to aggregate data into indicators to measure
performance through the installed sensors, and how to associate this information with the physical

http://ifcopenshell.org/
https://github.com/opensourceBIM/BIMserver
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and spatial elements of the building. The SLAs concern the performance agreed for operating the
assets at an acceptable service level.

The IRs definition step is crucial to the IFC processing and the creation of the IfcAsset
assignment relationships. The IFC processing should consider the classification system used for
AM (explicitly related to how the static and dynamic data are handled). This would facilitate the
adoption of the methodology in practice and increase its usability.

Figure 2. Research schema.

The next step is IFC data processing to meet the IRs. To achieve this, it is necessary to edit the initial
IFC file generated through the BIM authoring software. IoT integration requires access to data schemes
related to objects that might not be available (modelled) in the IFC file. This is a common issue with
existing buildings, where the BIM information is partial or outdated as a result of the modifications
of the physical elements and functions of the building during its use. These modifications can be
recorded, for example, in the building logbook, but they are rarely collected and managed in BIM
models. Furthermore, system components are frequently difficult to access and inspect, and therefore
to model correctly in the BIM environment. For this reason, in a streamlined approach to BIM data
updates, the geometry of not accessible (or visible) components may be overlooked, focusing mainly on
the semantic enrichment. Nonetheless, the modular development of the digital model should always
be considered, enabling detailed 3D data integration once available (e.g., through a detailed inspection,
after a refurbishment). Additionally, to represent correctly the semantic relationships among the newly
created and existing IFC classes, the objectified relationships also need to be modelled. This allows
for the connection and effective querying of systematically interdependent IFC classes that are not
originally related in the IoT applications. When dealing with existing building data, the aggregation
and classification system adopted in design and construction does not match its counterpart used in
operations. As a consequence, re-aggregation must be conducted to unlock the real potential of BIM
data in AM. The IfcAsset class has been employed for this purpose as the grouping entity enabling
the collection of homogeneous sets of elements forming the parts of the systems in the building.

The last step concerns IoT data integration. The entire IFC schema is not necessary to handle
IFC and IoT integration; rather, it can be achieved by linking the sensor readings to the existing
or newly created IFC classes, through the Globally Unique Identifier (GUID) of each IFC object.
Therefore, only the relevant IFC subset need to be exported, following a Model View Definition (MVD)
approach [52]. The MVD is essentially a filtered view of the IFC, which allows the extraction of
specific packages of model information to meet a particular use. The application development and
implementation based on this integration must support dynamic decision-making. Some of them
are listed in the Step 4 in Figure 2. Step 2, IFC data processing will be discussed in detail in the
following section.

4. Case Study

The proposed methodology has been applied to the Institute for Manufacturing (IfM) building
located in the West Cambridge campus of the University of Cambridge. It is part of the West
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Cambridge DT Research Facility [18] and has been equipped with a customised IoT sensor network,
comprising a set of Monnit (https://www.monnit.com/Products/Sensor/) wireless sensors measuring
indoor environmental and asset parameters, for instance, temperature (◦C), relative humidity (%),
CO2 concentration (ppm) of indoor spaces and window open/close status, and HVAC pump vibration
frequency (Hz) among others.

A BMS, based on the Trend (http://www.trendcontrols.com/en-GB/) platform, is currently
used to monitor the performances of mechanical, electrical and pumping (MEP) systems. This data
remains in a different system and is not integrated with the IoT sensor data. Thus, it cannot easily
be used together to make informed decisions on assets operations. To demonstrate the capability of
the designed scheme, a typical anomaly detection application for the HVAC system monitoring is
implemented [35].

Assets responsible for delivering the functionalities of the building determine the quality of
the services and the comfort of the spaces that it provides for its inhabitants. Monitoring the
working condition of the assets and further revealing the raised anomalies, either environmental
or asset-wise, is important for guaranteeing building operational performance. As a result of
the limitation in computational resources for buildings, the performances of HVAC system
components are monitored individually without considering their interdependence. Even for
individual component, the monitoring of assets anomaly detection, for operation and maintenance
management requires comprehensive data sources, both static and dynamic, for re-classifying building
facilities information. For the definition of the static information requirements, the following
information has been considered:

• Geometries and location of the HVAC components, including primary air loop, variable refrigerant
flow (VRF), water circulation pumps and radiators;

• Relevant data in the civil components of the building (technical specifications, active contracts,
maintenance records, models and producer of the components);

• Sensor location and technical specifications;
• System architecture, that is, the way the HVAC system is organised from multiple components,

according to a classification system;
• Interface requirements with the real-time platform.

The real-time information requirements are defined considering the following:

• Set points for the HVAC system (e.g., the temperature of the rooms, relative humidity,
CO2 concentration);

• Data on comfort parameters measurements (BMS, Monnit sensors);
• Data on the BMS and IoT sensors status.

Table 2 collects the information requirements defined for two rooms (labelled G.44 and 1.58) and
the related assets in the building. According to the anomaly detection application needs, the level of
aggregation of the assets has been defined. This new bespoke classification has been employed to group
the relevant building elements to be monitored through the anomaly detection application. Some were
already present in the initial version of the IFC file (i.e., Table 2 marked as Existing “yes”), while others
had to be created (as non-geometrical classes). In the modelling procedure, the IFC2x3 TC1 [53]
version has been used. This version, despite being improved by Version 4, offers wider software
support, allowing more accurate visualisation of complex geometries, especially in commercial
software. However, the possibility to upgrade the workflow with more recent IFC versions has
been considered.

https://www.monnit.com/Products/Sensor/
http://www.trendcontrols.com/en-GB/
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Table 2. Anomaly detection application information requirements definition.

Code Asset Sensor Name Location Sensor Type Unit IFC Entities Existing

G44 G.44 (lev.0) IfcSpace yes
G44_1 Monnit sensor G.44 room sensor unit ◦C/% IfcSensorType no
G44_2 Temperature VRF Air terminal at VRF 36 sensor unit ◦C IfcEnergyConversionDevice yes
G44_3 Temperature VRF Air terminal at VRF 37 sensor unit ◦C IfcEnergyConversionDevice yes
G44_4 Fan speed VRF Air terminal at VRF 36 integrated level (1-n) IfcFanType no
G44_5 Fan speed VRF Air terminal at VRF 37 integrated level (1-n) IfcFanType no
AHU AHU2 IfcAsset no
AHU_1 AHU extract air temperature after the air mixer sensor unit ◦C IfcSensorType no
AHU_2 AHU extract fan speed AHU extract fan integrated ls-1/% IfcFanType no
AHU_3 AHU extract air filter DPS AHU extract air filter integrated Pa IfcFilterType no
AHU_4 AHU supply air filter DPS AHU supply air filter integrated Pa IfcFilterType no
AHU_5 AHU supply fan speed AHU supply fan integrated ls-1/% IfcFanType no
AHU_6 AHU supply air reheat level AHU supply air reheat integrated % IfcCoilType no
AHU_7 AHU supply air temperature before the air splitter sensor unit ◦C / Pa IfcSensorType no
AHU_9 Thermowheel exchange rate Thermowheel integrated % heat IfcAirToAirHeatRecoveryType no
WR2 WR2 IfcAsset no
WR2_1 WR2 supply temperature before WR2 loop sensor unit ◦C IfcSensorType no
WR2_2 WR2 cooling pump DPS WR2 cooling pump integrated Pa IfcPumpType no
WR2_3 WR2 return temp leaving WR2 loop sensor unit ◦C IfcSensorType no
DAC_1 Dry air cooler DPS DAC integrated Pa IfcChillerType no
DAC_2 DAC on temp before DAC integrated ◦C IfcSensorType no
DAC_3 DAC off temp after DAC integrated ◦C IfcSensorType no
DIAL 1.58 (lev. 1) IfcSpace yes
DIAL_1 Space temp space sensor unit ◦C IfcSensorType no
RAD Radiators IfcAsset no
RAD_1 Radiator pump DPS Radiator pump integrated Pa IfcPumpType no
RAD_2 VT flow supply temp radiator inlet sensor unit ◦C IfcSensorType no
RAD_3 VT flow return temp radiator outlet sensor unit ◦C IfcSensorType no
RAD_4 VT heat meter sensor unit Kwh IfcFlowMeterType no
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In the definition of the IRs, IoT and BMS sensors are crucial for collecting data on the comfort
and function of the spaces and equipment in the building. Different types of sensor had to be
handled accordingly: environmental sensors (i.e., temperature, RH and CO2) have been related
directly to the IfcSpace, while integrated sensors have been associated with the directly related
building components (e.g., AHU_4.AHU supply air filter DPS in Table 2 have been associated to
IfcFilterType). After creating the missing IFC objects, they have been aggregated to form assets,
through the IfcAsset. Figure 3 represents the updated IFC including missing building components in
Table 2.

Figure 3. UML schema of the proposed approach implemented in the case study.

The entities necessary to develop the IfcAsset classes can be defined in advance through the
IfcOpenShell-python software and are used as follows:

G44_asset = ifcfile.createIfcAsset(
create_guid(),
owner_history,
’G44 Asset’,
’Critical components in Room G44’,
’Asset’,
Identification,
OriginaValue,
CurrentValue,
TotalReplacementCost,
Owner,
User,
ResponsiblePerson,
IncorporationDate,
DepreciatedValue
)

The relationships among the relevant elements and the assets are created and associated with
the asset.

ifcfile.createIfcRelAssignsToGroup(
create_guid(),
owner_history,
’Asset AHU - group’,
’Group of objects in AHU asset’,
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(AHU_1, AHU_2, AHU_3, AHU_4, AHU_5, AHU_6, AHU_7,
AHU_9),
None,
AHU
)

Finally, the assets are connected to the served room.

ifcfile.createIfcRelAssignsToProduct(
create_guid(),
owner_history,
None,
None,
(G44_asset, AHU, WR2),
None,
G44)

The processed IFC can be visualised and queried in BIMserver as displayed in Figure 4.
Furthermore, the model can be queried through JavaScript Object Notation (JSON) queries, and the
subset of the original IFC data can be downloaded, allowing the creation of MVDs able to support
further data integration. This is relevant in the anomaly detection application since, after running
necessary algorithms on dynamic data, it is possible to access the information related to the assets
potentially responsible for the detected anomalies.

Figure 4. Visualisation of processed IFC through BIMserver.

Taking the asset anomaly detection application on the HVAC system as an example (Figure 5),
the processed IFC lays a solid foundation for flexible data integration that supports corresponding
AM functions. In this case, the real-time operational data of the HVAC components, such as the WR2
cooling pump and AHU extract fan, and the real-time environmental data of the regulated spaces,
are integrated for analysis through the proposed approach (Figure 5).
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Figure 5. Anomaly detection application.

Contextual anomaly detection algorithms, like cumulative sum (CUSUM) control chart or
Bayesian Online Change Point Detection (BOCPD), can be used to dynamically reveal anomalous
behaviours that deviate from the anticipation [35]. Subsequently, extracting the objectified relationships
among modelled assets and spaces, the causality of found anomalies can be inferred, and the
root cause can be identified accordingly. Picking up the correlations of the unexpected anomalies,
corresponding local repair, replacement and maintenance operation activities can be triggered to enable
preventive maintenance and mitigate the effects of failure risk. In particular, the proposed approach
provides a useful tool to back up semantic and geometric data management for AM applications and
to facilitate the development of potential application areas [54].

5. Discussion

The proposed approach supports data integration and interoperability in the digital built
environment. The methodology enables the effective utilisation of BIM data in the use phase of
the assets, supporting the dynamic decision making. Data from the three systems (BIM environment,
IoT platform and BMS) were integrated and processed, focusing on the usability of the systems,
building a new data structure on top of the existing data sets. Accordingly, information can be
accessed and used, integrating and supporting the workflows and operations of the asset management
team. The data re-aggregation and processing allows useful insights supporting operations in AM of
cognitive buildings’.

The methodology was developed employing open source software for better interoperability and
cross-platform usage. In addition, the open standard IFC is used to support information management
in the context of the cognitive buildings and smart built environments. IFC also allows the accessibility
and integration capabilities to be increased in the development of further applications. The proposed
approach, considering the Digital Twin system architecture proposed by [18], sits in the Data/Model
integration layer and therefore supports the data integration for the development of multiple
AM applications.

IFC artefacts such as IfcAsset and IfcSharedFacilitiesElements were used in the proposed
methodology to enable data integration, including the association with the controls and processes



Appl. Sci. 2020, 10, 8287 13 of 17

(Figure 1) capable of supporting the automation of AM processes. Although the enrichment of the
IFC schema with relevant AM information (e.g., contractors, resources, economic and financial data,
maintenance planning data etc.) may be beneficial in the standardisation of the data collection and
process, it can also result in storage and update issues. IFC is a static data format, which poorly
supports the dynamic data update. Accordingly, the IRs definition phase in this methodology is vital
to the success of this approach, since it includes the potential uses of data during operation.

The case study demonstration was conducted using IFC 2x3, despite Version 4 [48] being
available. The methodology can be adapted to the newest version for the data set based on Version 4.
The application of the workflow to a digital model with more detailed geometries is possible, since the
type entities have been generated in IFC for non-geometric virtual elements. The types can be related
to the geometric objects by means of the IfcRelDefinesByType relationships, once they become
available (e.g., after a refurbishment). After updating the IFC with geometries, further capabilities
of the schema can be leveraged for location-enabled AM services (e.g., indoor navigation, H&S and
agent-based simulations).

Despite IFC being one of the primary means for interoperability and openBIM standards, it often
needs to be converted to be fully usable in the development of software applications. A conversion
procedure should be defined. BIMserver offers the possibility to export a sub-set of the imported
IFC data, in order to achieve this result. Data can also be exported in JSON format, enabling the
development of more generic and cross-domain applications [55]. This process should follow the
MVD approach [52] in order to be repeatable and recognisable within the BIM domain, even though
this approach is not extensively described in this article. Accordingly, it is possible to enhance the
capabilities offered by the IFC model and IFC data, which can be queried through existing technologies
and languages after being processed.

We consider that the classification of BIM IoT data integration methods in Table 1 requires some
extension with the advent of new technologies. The openBIM methodology proposed in this paper
cannot be completely classified into any of those categories, as it shares some characteristics of multiple
methods. The characteristics of the openBIM approach that we propose are:

• Flexible schema: Data in the OpenBIM approach is not constraint by a classical relation data
schema. A flexible data schema is proposed to facilitate data collection from diverse data sources.

• Standardised metadata: Predefined common metadata attributes to tag data from different sources
homogeneously in the data platform. These agreed metadata attributes also enable dynamic data
integration and multi-format conversion.

• Real-time perspective: One of the main goals is to enable rapid data transfers by limiting the size
of data packages. This reduces the latency of data end-to-end and allows timely decision-making.

We have implemented this data management approach by using JSON Objects throughout
the platform. JSON is a Not Only Structured Query Language (NoSQL) approach with a flexible
schema. The flexibility is managed through predefined attributes to tag each data message. There is no
need for a particular querying language, since JSON Objects can be serialised in plain text. This also
supports rapid data transfer given that data coming from dynamic sources send small packages
embedding data in individual JSON files. BIM information is extracted from the original IFC files with
BIM tools APIs and integrated as required by the AM applications. Thus, it is possible to assert that
our approach could be considered as a combination of all the categories in Table 1, leveraging most
advantages from each one of them. Further quantitative investigation of the methodology performance
is necessary, particularly when comparing it with other integration architectures.

From the application perspective, the designed IFC scheme opens the door for a diversity
of AM applications. Through the definition of the IRs at the beginning of the specific application
development, it is possible to integrate both real-time and static information from different systems to
support conventional and dynamic decision-making in AM. Overcoming the challenge of fragmented
data, the use of diverse information collected in the design, construction and, particularly, the use
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phase, together, can be beneficial for a variety of AM practices, such as commissioning and closeout,
quality control and assurance, energy management, maintenance and repair, and space management
[54]. Within this context, the proposed methodology will be further tested in applications requiring
IFC data to be re-aggregated according to a different criteria, supporting information management
and static/dynamic data integration.

6. Conclusions

The proposed approach has shown good applicability to existing buildings, allowing the issues
arising from the lack or incompleteness of data to be addressed. Through the proposed methodology,
the potential of data usually siloed in their own domain can be accessed more easily, supporting
the development of AM applications for cognitive buildings. It offers an effective approach to data
integration in the mid-term perspective, providing support for both the integration of static AM
information and real-time IoT data. Furthermore, this paper demonstrates the potential of the openBIM
approach in built AM, enabling a data-driven approach that can help to reduce the uncertainty arising
from the lack of knowledge on the physical and digital assets and automating operations. In future
research, its robustness should be tested in the development of additional application case studies.
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