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Abstract: In recent years, power grid infrastructures have been changing from a centralized power
generation model to a paradigm where the generation capability is spread over an increasing number
of small power stations relying on renewable energy sources. A microgrid is a local network including
renewable and non-renewable energy sources as well as distributed loads. Microgrids can be operated
in both grid-connected and islanded modes to fill the gap between the significant increase in demand
and storage of electricity and transmission issues. Power electronics play an important role in
microgrids due to the penetration of renewable energy sources. While microgrids have many benefits
for power systems, they cause many challenges, especially in protection systems. This paper presents
a comprehensive review of protection systems with the penetration of microgrids in the distribution
network. The expansion of a microgrid affects the coordination and protection by a change in the
current direction in the distribution network. Various solutions have been suggested in the literature
to resolve the microgrid protection issues. The conventional coordination of the protection system is
based on the time delays between relays as the primary and backup protection. The system protection
scheme has to be changed in the presence of a microgrid, so several protection schemes have been
proposed to improve the protection system. Microgrids are classified into different types based on
the DC/AC system, communication infrastructure, rotating synchronous machine or inverter-based
distributed generation (DG), etc. Finally, we discuss the trend of future protection schemes and
compare the conventional power systems.

Keywords: protection system challenges; microgrid; protection schemes; wide area protection;
intelligent algorithms

1. Introduction

Protection system schemes have increasingly become important due to the increasing complexity
and challenges in power systems. The miscoordination and false tripping of protective relays have
played a significant role in blackouts and in propagating cascading events [1]. The North American
Electric Reliability Council (NERC) has reported that the contribution of protection systems in cascading
events is more than 70% [2]. A CIGRÉ [3] study has stated that 27% of bulk power system disturbances
result from false trips of tie protection systems. Figure 1 illustrates an update of some major blackouts
and disturbances all around the world [3,4].
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The main task of a protection system is to separate the fault section from the healthy part for
a stable supply of electrical energy without any interruption, cascading failures, and blackout events.
Conventional power system coordination includes the primary and back-up protection [5,6]. The main
parts of the power system (grid), including generation, high voltage transmission line, and distribution,
have to be adjusted to appropriate settings. The protection challenges significantly increase with the
growth of the power system.

Generation: There are many protective functions and protection schemes in generator protection
systems. The authors in References [7,8] investigated the differences between distance (21) and
voltage-controlled or voltage-restraint time-overcurrent (51V) protective relays as the backup protection
of a generator. Investigations revealed that the relays 21 and 51V protection functions should not
be activated in a zone relay protection system. Depending on the upstream system configuration,
both protective relays function 21 or 51V can be used as the generator backup protection. The 21 and 51V
protective functions are used as back up protection with, respectively, distance relays and directional
overcurrent (DOC) relays in transmission lines.

High voltage transmission lines: Transmission systems are used for delivering electrical energy
from generation to customer. There are a lot of faults that occur in the transmission system due
to the expansion and long lines. Distance protection is one of the most commonly used ways to
protect transmission lines with different zones. Power swing is a significant problem in a protection
system, where the impedance seen by the distance relay oscillates due to the swings in the voltage
and current in the transmission line. When power swing goes into the operating zone, the relay
may unnecessarily trip [9]. The issues of the transmission system with parallel lines increase due
to the mutual coupling, back-feed, in-feed, and poor discrimination between the faulty and healthy
lines. These issues affect the distance protection especially in the case of fault occurrence near the
far end bus [10,11]. Several solutions have been proposed to solve the problems of parallel lines
protection [12–14]. The authors of References [12,13] proposed methods to protect parallel transmission
lines using wavelet transform by employing its magnificent characteristics to detect the disturbances in
the current signals and to estimate the phasors of all signals as well as to achieve high-speed relaying.
In Reference [14], the authors proposed an adaptive distance protection based on the information
surrounding the protected line under different operating conditions. The impact of flexible AC
transmission system (FACTS) on protective devices, such as distance relays, in the transmission line has
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been shown. The FACTS devices in transmission lines enhance the power transfer capability of the line,
while causing serious problems for distance protection of transmission lines [15,16]. The transformer
inrush current influences protective relays. The inrush currents lead to the maloperation of transformer
differential relays [17,18]. The early solution to avoid the maloperation of differential relays is to
delay the relay operation [19]. Reference [20] presented a differential relay with only harmonic
restraint for bus protection. Modern transformer differential relays use either harmonic restraint or
blocking methods [21]. These methods ensure relay security for a very high percentage of inrush and
over-excitation cases. The method is not useful with very low harmonic content in the operating current.

Distribution system: In recent years, the structure of distribution networks has changed with
the diversification of consumers and technological breakthroughs. Therefore, protection issues of
distribution networks have increased. High impedance fault (HIF) is one of the challenges in
a distribution network. High impedance faults in distribution feeders cause abnormal electrical
conditions that cannot be detected by a typical protection system because of low fault current and high
impedance at the fault point [22]. Moreover, failing to detect an HIF may cause fire hazards and risk to
human life [23–25]. Various solutions have been presented to detect HIFs. Chakraborty and Das [23]
presented an HIF detection method with several even harmonics existing in voltage waveforms.
The authors of Reference [24] used a method with a systematic design of feature extraction based on
the HIF detection and classification method. A discrete wavelet transform has been proposed for HIF
detection along with frequency range and RMS conversion to implement a pattern recognition-based
detection algorithm [26].

A set of interconnected loads and DGs within clearly defined electrical boundaries that act as
a single controllable entity can be operated in both grid-connected and islanded modes [28]. The increase
in the cost of energy delivery from power plants to consumers and the need for improving system
reliability and environmental benefits justify the movement towards DG technologies [29]. In existing
protection methods, a microgrid can cause many challenges in terms of the protection of blinding
zones, false tripping of protective relays, decreasing fault levels, islanding, and auto-reclosers [30–32].
Figure 2 depicts a typical model of a microgrid that is connected to the grid at the point of common
coupling (PCC).Appl. Sci. 2020, 10, x; doi: FOR PEER REVIEW 4 of 32 
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categories depending on the connection to AC or DC buses, i.e., a microgrid can be AC, DC, or hybrid 
AC/DC. These researchers addressed the advantages and disadvantages of AC and DC systems. Most 
power system components, such as loads and transmission lines, work with AC systems. The authors 
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and found that the AC short circuit current has a sinusoidal waveform with two zero-crossing in each 
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Microgrids are very diverse concerning their connection, protection, communication,
DC/AC system, type of DG, etc. The authors of Reference [33] divided microgrids into three types with
different operation modes including facility microgrids, remote microgrids, and utility microgrids.
Facility microgrids operate in intentional or unintentional islanded mode, remote microgrids only
include the islanded mode and utility microgrids operate in grid-connected mode. Additionally,
facility and utility microgrids have utility connections modes contrary to remote microgrids.
Remote microgrids are mainly used in distant areas, islands, and large geographically spans. The authors
of Reference [34] investigated two types of DGs, i.e., a typical rotating synchronous machine and
an inverter-based DG. The main reason for this classification is the difference between the short circuit
current level and AC/DC voltage. A remote microgrid spans a larger geographical area compared
to facility and utility microgrids. The authors of Reference [35] classified microgrids into three main
categories depending on the connection to AC or DC buses, i.e., a microgrid can be AC, DC, or hybrid
AC/DC. These researchers addressed the advantages and disadvantages of AC and DC systems.
Most power system components, such as loads and transmission lines, work with AC systems.
The authors of Reference [36] compared the fault current characteristics of AC and DC distribution
systems in the presence of DGs. They investigated the differences among the protection schemes
in AC/DC systems and found that the AC short circuit current has a sinusoidal waveform with
two zero-crossing in each period including a fault impedance value and a high-raising-rate current.
In Reference [35], the disadvantages of AC systems are presented in terms of DGs synchronization,
power quality, and three-phase unbalance. Some of the advantages of DC systems are higher efficiency,
no power factor losses, and low voltage level as well as no need for inverters and transformer.
In addition, the nature of DC power facilitates exploiting renewable resources and supplying DC
loads. A hybrid microgrid facilitates the direct integration of both AC- and DC-based DGs in the same
distribution network. Reference [37] has proposed a fault analysis method based on a simplified model
of AC/DC hybrid microgrid system. The method used a mathematical model equivalent simplification
for the analysis of the characteristic system under fault conditions. Figure 3 shows a hybrid structure
with both AC and DC microgrids.Appl. Sci. 2020, 10, x; doi: FOR PEER REVIEW 5 of 32 
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A smart grid provides an optimal way of distributing electricity from various sources of generation
plants and DGs. The goals of employing a smart grid in the power system are as follows:

• involving individuals as an integral part of the power system, consumers or electricity providers;
• using more renewable energy;
• decreasing the dependency on electricity generation from power plants;
• decreasing complete blackouts;
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• boosting the power system capacity to supply electricity;
• reducing the time to restore the power system after fault occurrence;
• peak shaving [38].

There have been several discussions on the protection of microgrids, each of them has focused
on different issues. In Reference [36], the authors present a detailed technical overview of microgrids
and smart grids in light of present developments and future trends. They described the functions
of smart grid components that include smart device interface components, advanced forecasting,
control of generation/storage units, data transmission/monitoring, power flow, and energy management.
Reference [37] analyzed the fault current characteristics in AC and DC distribution systems, first, then it
describes the protection methods for AC and DC systems, and, finally, it compares the protection
methods in AC and DC networks. Reference [39] presented a review on issues and approaches
for microgrid protection. This reference focused on microgrid control including centralized and
decentralized controls. Reference [40] reviewed the adaptive protection methods for microgrids.
It presented different methodologies of adaptive protection systems with microgrids. A review on the
protection schemes and coordination techniques in microgrid systems on presented in Reference [41].
This reference concentrated on protection coordination techniques in microgrids, such as coordination
using time–current discrimination using the particle swarm optimization (PSO) algorithm and
a modified PSO optimization algorithm.

In the present review, in addition to extending the mentioned works, the authors try to address
new challenges, such as blinding zones, and future trends in protection systems. In doing so,
first, the protection problems of a power system (generator, transmission line, and distribution
system), especially the challenges with the advent of distributed generation networks, are discussed.
As a reminder, some of these problems still exist in networks and suitable solutions need to be discussed.
Then, the classification of microgrids is briefly discussed. Some problems are expressed in different
ways). The last section of the paper describes future real protection systems consisting of wide-area
protection and adaptive systems. Wide-area protection is based on measurements that are obtained
from phasor measurement unit (PMU) and intelligence protection systems can solve many issues
related to the protection systems of the future. Moreover, the wide-area protection with different data
transfer processes, including remote terminal unit (RTU), supervisory control and data acquisition
(SCADA), energy management systems (EMS), PMU, are reviewed.

The rest of the paper is organized as follows. Section 2 explains the issues that may occur in
a power system after adding DGs and microgrids. Section 3 discusses different methods of solving the
protection issues in the presence of DGs. Section 4 proposes the future trends in protection schemes
regarding wide-area protection (WAP) and intelligent algorithms. Finally, the conclusion is presented
in Section 5.

2. DG and Microgrid Challenges

Despite the numerous advantages of the presence of DGs or microgrids in the power system from
an environmental and economic point of view, there are also negative impacts on the power system.
The major challenge of distributed sources is their effects on the protection system. The presence of a DG
changes the structure and the electrical parameters in the distribution network. Traditional structures
of distribution networks are radial and, therefore, the protection system is designed for a radial scheme.
Adding a DG leads to a change in the direction of the current and looped structure in the distribution
system. Additionally, fault current levels may change by embedding a DG [42]. This may lead to a loss
of protection coordination. Consequently, the conventional protection schemes are not sufficient to
protect power systems [43,44]. In addition, the distribution networks with the high penetration of DG
are operated connected and isolated from the grid. Reference [43] proposed the hardware-in-the-loop
(HIL) adaptive protection scheme (APS) to solve the protection challenges of DGs. This method is
based on the optimal calculation of relay setting groups with online self-adjustment. A novel method
has been presented in Reference [44] to detect faults with HIFs.
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Reference [45] discussed various protection challenges and schemes in microgrids. The microgrid
should be operated in both grid-connected and islanded modes, and the protection system should be
able to disconnect the microgrid from the grid as fast as possible. The adaptive protection scheme with
digital relays and advanced communication is the most successful scheme of microgrid protection.

2.1. Blinding Zones

Current-based relays (overcurrent (OC) and earth fault (EF)) are the main protection devices in
conventional distribution networks. The blinding zone is an area, where the fault cannot be detected
by current-based relays. The short circuit current seen by the feeder OC relay is reduced due to the
contribution of DG when the distributed energy resources are placed between the fault point and
the OC relay. Figure 4 shows the possible blinding zones in the distribution network in the presence
of a DG. More possible blinding zones may occur by a DG that is embedded between the feeding
substation and the fault point. As shown in the figure, the blinding points occur when the total current
is divided among different feeding sources. The short-circuit current at each fault point includes the
feeder current and the DG current as shown in Equation (1) [30,39]:

ISc = I f ault,Feeder + I f ault,DG (1)Appl. Sci. 2020, 10, x; doi: FOR PEER REVIEW 7 of 32 
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Of course, the type, location, and capacity of the DG are important for distinguishing the blinding
points. Various distribution sources have different short circuit levels, which vary depending on
whether the DG is inverter-based (photovoltaic source) or synchronous generator (CHP generators)
and operates in grid-connected or islanded modes [46].

In other words, an OC relay cannot pick-up in blind zones. Figure 5 illustrates the operation
and blinding zones by the characteristic curve of the OC relay (pick-up current was 400A [30]).
Many researchers have tried to improve the performance of OC relays in blind zones. The change in
settings is the conventional method to protect the distribution network in blind zones. Reference [30]
investigated the recloser effect on covering the blinding zones and improving the reliability in a real
distribution network. A recloser relay in a suitable location can also detect high impedance faults.
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The high penetration of DG may result in underreaching or overreaching problems of distance
relays in distribution systems. A distance relay is less sensitive to changes in power system topology
comparing to an OC relay [27]. The distance relay setting has a definite time for any fault in the
transmission line or a distribution feeder. It may not operate according to the zone setting in the
presence of a DG. The measured impedance of the line changes with high penetration of the DG.

2.2. Sympathetic or False Tripping

The high penetration of various sources may change the flow of the fault current in the radial
feeder of a distribution network. A traditional AC distribution system has a radial topology with
a non-directional OC relay. Non-directional OC relays cannot determine the change in fault current
direction, and this causes an unwanted trip in the main feeder [47,48]. Reference [47] proposed DOC
relays to protect radial distribution networks in the presence of DGs. The DOC settings are divided
into OC and directional elements. A DOC relay restricts the relay maloperation due to the short circuit
occurring on the adjacent feeders. The DOC element settings consist of the fault direction (forward and
backward), maximum torque angle, and polarizing quantity (voltage and current). A method has
been proposed in Reference [48] to avoid sympathetic tripping of non-DOC relays in the distribution
network with an embedded DG. This method is offline to overcome false tripping issues and uses
a genetic algorithm and a linear programming to access optimal responses. In Reference [49], a method
was proposed for utilizing single-setting and dual-setting DOC relays with a minimum number of two
schemes for protection. The interior-point method has been used for the optimization problem and
solving the protection coordination problem. Reference [50] suggested a novel quaternary protection
scheme with dual-DOC relays to protect microgrids. This scheme uses a centralized protection control
strategy that can re-adjust the optimal relay setting automatically with computational intelligence
optimization. Reference [51] presented a protection method in inverter-based microgrids by comparing
a current-only polarity between the pre-fault current and the fault current components. The detection
of fault is based on the angle difference between the pre-fault current and fault current components.

Figure 6 depicts the basic principle of false tripping in the main feeder (DGs feeder) due to a fault
on the adjacent feeder. As shown in the figure, the main feeder relay may operate by a fault on the
adjacent feeder.
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A DOC relay was proposed as the best solution to avoid the sympathetic tripping in the presence
of DG in multi-loop systems [47,48].

2.3. Islanding Problems

A microgrid with high penetration of DGs and interconnected loads can be operated in
grid-connected and islanded mode [52]. Based on the Institute of Electrical and Electronics Engineers
(IEEE) standard 1547, the DG should be isolated upon the occurrence of any type of fault in the grid [53].
As the main advantage, islanded mode enables the microgrid to inject energy to the local loads to
enhance the reliability of the power system. However, in such a system, the protection and control
of the microgrid during grid-connected and islanded modes are very complicated [54]. Overcurrent
relays as the main protection device in radial distribution are not adequate to protect the microgrid in
islanded mode [55].

2.4. Recloser–Fuse Problems

Reclosers and fuses are the main protective devices that are used to protect distribution systems
against faults. Reclosers are utilized to clear temporary faults in the main feeders, while fuses are used
to protect the system against permanent faults in lateral feeders. The presence of DGs may increase the
fault current in distribution systems, so this presence may cause abnormality and miscoordination of
reclosers and fuses [56,57].

DGs may affect the recloser performance in two ways: loss of coordination between the fuse
and recloser or reducing recloser sensitivity. Moreover, the presence of a DG may influence the
recloser pick-up sensitivity [58]. Figure 7 illustrates the design of DG and recloser placement in the
distribution network.
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2.5. Sensitivity and Response Time

A microgrid has a very fast response time and low system inertia, especially in islanded mode.
This is due to the lack of high reserves in DG sources, especially reactive power. A protection system
must be able to detect quickly and accurately, as small disturbances cause catastrophic consequences
in the system [59].

2.6. Variation of Short Circuit Level

Short circuit current is a significant factor in determining and protecting the equipment in a power
system. Short circuit current increases with DG penetration in the power system. The short circuit level
depends on the type and operation mode of DGs. The fault level is different in synchronous generators
and inverter-based DGs. The maximum fault current of an inverter-based DG is not more than twice
the inverter-rated current [42,60]. The synchronous machine-based DGs can generate fault currents that
are 4 to 10 times greater than inverter-based DGs [61]. The variation of short circuit level is reflected in
traditional protective devices, such as fuses and OC relays. Inverter-based DGs may cause trip failure
in protective devices [42]. Additionally, the short circuit levels in grid-connected microgrids are greater
than islanded ones [40]. In the islanded mode, some DGs have limited short circuit capabilities that are
not adequate to be detected by the protective devices. Of course, the variations in the short circuit can
affect the relay operating time, especially indefinite time sections, for example, in OC and distance
relays. A fault current limiter (FCL) is implemented to limit the fault current values [62].

In [63], several methods have been proposed to reduce the negative effects of DGs as follows:

• Modifying or changing the protection scheme;
• Installing FCL;
• Restricting DG capacity;
• Isolating the DG from the power system immediately after detecting the fault;
• Using an adaptive protection.
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3. Protection Scheme of Microgrid

The coordination of traditional protection relays as standalone units with fixed settings is based
on the operating time of the primary and backup protection (Figure 8) [64–66]. This scheme of power
system protection cannot adapt to the changes in topology and operation mode. Reports have indicated
that the conventional protection schemes have a main role in major blackouts of power systems [67].
Therefore, the demand and structure of the distribution network as well as the nature of the distribution
system have changed with the high penetration of DGs.
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The major challenges of the distribution network are associated with the changes in the nature
of the microgrid. Many schemes have been proposed to protect the distribution network with high
penetration of resources.

3.1. Modifications of Scheme

Embedded various distributed resources in traditional distribution networks cause problems in
the protection system. There are several simple solutions to improve the conventional structure of
distribution networks such as changing relay settings and using DOC relays.

3.1.1. Changing Relay Settings or Relay Type

The simple solution to protect against changes in the power system topology is the readjustment
of the protective relay settings. In blinding zones, the relay cannot pick-up the fault and these zones
can be covered by increasing the sensitivity of the relay through reducing the pickup current value.
It should be noted that changing relay setting may cause problems in the protection coordination [29,55].
In Reference [68], a method of microgrid protection has been proposed by using low voltage ride
through (LVRT) operation. The protective relay setting values have been corrected in the outcome of
the simulation results. Reference [69] has presented an improved OC protective relay based on the
compound fault acceleration factor and the beetle antennae search (BAS) optimization in microgrids.
The method has enhanced the speed of the OC protection and the coordination between the primary
and backup relays.

A DOC relay has been proposed to protect the DG feeder from sympathetic tripping as a result of
fault on the adjacent feeder [46]. In particular, the DOC relay is required to prevent the unwanted
tripping in neighboring feeders [55]. Modern protective relays are digital and multifunctional with the
capability of activating multiple protections simultaneously.
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3.1.2. Fault Current Limiter

A fault current limiter is a series device used to limit the fault current and does nothing in
normal operation; fast action is needed to limit the short circuit current level using a preset value
by inserting a series of high impedance values under fault condition [62]. Several FCL technologies
and applications have been reported in References [70,71]. The FCLs have been classified into four
groups: the superconducting FCLs (SFCLs), solid-state FCLs (SSFCLs), hybrid FCLs (HFCLs), and other
technologies [72]. Figure 9 shows the classification of different types of FCL.
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Inductive FCLs have superior performance and higher operation speed than other FCLs [73].
Inductive and resistive FCLs are examined to limit the current drawn from DGs during a fault
somewhere in the power system. An FCL was implemented at the beginning of a radial distribution
feeder equipped with a DG [62]. In Reference [58], a solution was presented using FCLs to restore
the relay coordination in looped distribution networks. Figure 10 shows a fault current limiter in the
distribution network with a DG.
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3.2. Impedance-Based Protection Method

An impedance-based protection method protects a distribution network in the presence of DGs.
Fault location is estimated by the impedance method based on the measurement of voltage and current
at the relay point or at the two ends of the line [74,75]. A distance relay is a protective device that
measures the impedance of a line using the voltage and current at the relay point. Distance protection
does not normally need communication among relays [74,76]. Reference [76] described the efficiency
of various types of admittance criteria during high resistance faults. Analog or digital techniques are
used to realize admittance-type protections. The admittance-type protection can be used under the
damaged or switched-off resistor conditions. Moreover, admittance-based protection can be widely
used in resistor-grounded networks. The authors of Reference [77] studied a distance protection scheme
for detecting and protecting both islanded and grid-connected microgrids. Distance relays can clear
faults quickly, thereby facilitate maintaining the stability of the system during contingencies. Figure 11
shows different zones of distance relays. Distance relays usually cover three zones (zone 1, zone 2
and zone 3). Zone 1 of a distance relay commonly covers 80% of the protected line and operates
without delay. The other two zones (zones 2 and 3) are overreaching zones with time delay. Zone 2 of
a distance relay is usually designed to cover the protected line plus 50% of the shortest adjacent line or
120 percent of the protected line, whichever is greater. Zone 3 provides a backup protection for zones 1
and 2 of unclear faults in the adjacent sections [78].
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The authors of Reference [79] studied distance relays using the wavelet transform (WT) method
for detecting faults. The analysis of wavelet is widely used for signal processing that can be applied
effectively to overcome difficulties of the traveling wave protection techniques. The WT method is
a novel signal processing technique developed from the Fourier transform (FT) [80,81].

A dyadic wavelet transform was used in Reference [80] for investigating transmission line
protection. The discrete approximation factor of dyadic wavelet transform with Haar wavelet is
used as an index for detecting the transmission line faults. The proposed algorithm technique uses
a moving data window. Reference [81] presented a new wavelet transform based on fault detection.
This fault detection method utilizes artificial neural networks (ANNs) to accurately approximate
decomposition of phase voltages and current samples. In Reference [82], a microgrid protection scheme
was proposed based on the autocorrelation of three-phase current envelopes by using the squaring
and low-pass filtering techniques. The protection method included fault detection, fault direction,
fault zone identification, fault classification, and tripping units. This method provides the coordination
of the primary and backup protection. In Reference [83], a hybrid method was presented to detect
ground fault in the blinding zones. The approach consisted of detailed coefficients of discrete wavelet
transform (DWT) using a pulsation signal generator injection in an ungrounded low voltage direct
current (LVDC) microgrid. The WT method is based on transformation from the time domain into
the time-frequency domain. Fault location method uses two different ways based on the existing
communication scheme, a single-ended method, and a double-ended method. A single end fault
location scheme is also possible when the current and voltage transients are available at the relaying
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point. In the double-ended method, the fault is recorded simultaneously at both ends of the line by
two separate channels [75,84–86].

The impedance method is the most known main-frequency component-based method. This method
can calculate the fault location without requiring any especial hardware/software by obtaining data [87].
The authors of [88] improved the impedance-based fault location by using a short-distributed line
model. The high penetration of DGs changes the short circuit current level. The low fault current in
inverter-based microgrids is mainly due to the inverter’s controller and not due to the power system’s
impedance. Elkhatib and Ellis [89] studied an impedance-based pilot protection scheme. Their proposed
protection scheme employed communication between relays or, in general, between relays of the same
protection zone to locate the fault. The relay feeder was equipped with an impedance element to detect
a fault with a directional element that determines the direction of the fault. The communication-assisted
impedance-based protection scheme was proposed for inverter-dominated microgrids. Consequently,
the vast literature and extensive existing experiences in designing impedance and directional elements
can be utilized in designing these protection elements [90,91]. Different pilot protection logics can be used
to determine the location of faults. Nunes and Bretas [92] investigated the fault location in an unbalanced
DG system using an impedance-based method. Reference [93] proposed an efficient protection scheme
for a DC microgrid with high penetration of constant power loads (CPLs). This method exploits the
fault location scheme strategy using the transient behavior of the first-order derivatives of fault current;
in addition, it utilizes pre-fault data for fault location in the CPL line and for detecting high- and
low-resistance faults in dc microgrids. In Reference [94], a microgrid protection and control scheme has
been proposed in synchronous islanded mode using the PCC breaker relays, battery energy storage
system (BESS) inverter controller, and remote input/output mirror bits based communications approach
(85RIO). Figure 12 shows the impedance-based protection scheme with various distributed resources.
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3.3. Differential-Based Protection Method

Differential protection is another common method to protect transmission lines and transformers
in power systems [74,95,96]. The principle of differential relay operation is based on using the imbalance
current flow into and out of a specific protected zone. The differential-based protection method is
mainly utilized to detect low short circuit current in the islanded microgrid. The method cannot be
used as a complete protection scheme and is more suited to detect downstream earth faults, while some
other techniques have to be taken into account to identify further faults like upstream ground faults,
line-to-line (L–L) faults, and symmetrical faults. The method also utilizes communication links for
differential operation [40]. Figure 13 depicts the differential-based protection scheme of a microgrid
with a communication channel.
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Normally, this scheme has the best selectivity since it depends on the communication between the
beginning and the end of the protected line segment [74]. The authors of Reference [97] investigated
an adaptive wide-area current differential protection system. The method divides the power system
into different protection zones that are dynamically online. The protection system adaptively changes
with the topological variations of the power system. References [42,44] proposed the protection of
a microgrid with a communication network using digital relays. These methods use differential
protection for low fault currents, such as in an HIF and inverter-based-microgrid. In Reference [98],
a communication-assisted OC protection scheme was proposed for PV in DC microgrids. This method
is based on differential protection, which is used as the backup protection. The protection scheme in
grid-connected and islanded operation mode of a DC microgrid uses OC relays. Otherwise, a protection
scheme has been suggested based on differential protection. Reference [99] has presented a protection
scheme in the loop distribution system in the presence of DGs. This method is based on the equivalent
circuit of the distribution system and uses a control center with high-speed communication as the
centralized protection scheme.

3.4. Harmonic Current

The high penetration of converter-based distributed generation has increased harmonics levels
in microgrid topologies. The power system harmonics depend on the topology of the network as
well as the source of harmonic interactions [100,101]. Modern relays can monitor total harmonic
distortion (THD) of the inverter terminal, which can control the system concerning the harmonic
changes. The harmonic content method is mainly designed to protect the DG rather than the power
system [101]. The relationship between stability and harmonic importance of the microgrid has been
studied in [102,103]. The harmonic impedance is a key factor in assessing harmonic emission levels
in electrical power systems. Reference [102] proposed a new measurement technique by a complex
data-based least-square regression, combined with two techniques of data selection. The method takes
into account two techniques of data selection. The two kinds of data-selection methods can be used
together to cross-check the results of each other. The control strategies of inverter operation in a different
mode has been suggested in Reference [103] in which each component of the microgrid harmonic is
determined. In this method, the harmonic impedance is measured by injecting a current disturbance.

Al-Nasseri and Redfern [104] presented a new type of protection scheme for microgrids based on
the harmonics content of the inverter output voltage. Their method can protect against faults that are
both internal and external to the protection zone. The method uses the Fourier transform (FFT) and
THD. In Reference [105], a new high-frequency protection relay has been proposed to detect and isolate
the fault by injecting harmonic signals. According to the strategy of harmonic injection, only one DG
takes responsibility for the activation of the corresponding relay. As a result, the relays behave like
directional relays. The main advantage of this method is that the resultant directional relays do not
need any voltage transformer to detect direction of the fault. Therefore, it is a cost-effective solution for
microgrid protection.
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3.5. Voltage-Based Scheme

The voltage-based method is another approach to protect microgrids using voltage
measurements [106]. The method uses the voltage level gradient through the power system during
faults and is often applied as a backup protection scheme [86,107]. The authors of Reference [106]
implemented the voltage-based protection scheme in combination with directional elements to develop
a protection scheme for low fault and low voltage radial microgrids. Several research works have
described the abc–dq transformation to detect voltage disturbances. The method converts the signals
from abc reference to a dq frame [108,109]. The output voltages of micro-source are transformed into
DC quantities by the dq reference frame. Any disturbance at the micro-source output due to the fault
on the grid is reflected as disturbances in the dq values [108]. The authors of Reference [108] suggested
a protection scheme based on the abc–dq transformation of the voltage waveforms to detect faults
in a microgrid. The proposed method can protect both internal and external faults in a set zone of
protection associated with the microgrid.

Redfern and H. AL-Nasseri [110] presented the voltage-based protection method in a dq rotating
frame in islanded microgrids. Their method presents a variety of faults in a three-phase power system
and a voltage-based protection scheme monitoring the voltages seen at the converter’s terminals.
The principles of this scheme can be applied to both single-phase and three-phase generators. It should
also be noted that determining the fault location based on voltage measurements is extremely difficult
due to the magnitude of the voltage dip during the faults. This is because the voltage magnitude
would be the same at different locations [89]. In addition, the voltage drop may not be large enough
in HIFs. Consequently, the under-voltage protection function may not be able to distinguish a faulty
condition from a power system overload [55].

3.6. Adaptive Protection

The protection system cannot protect the power system against widespread changes. An adaptive
protection scheme can change the relay setting/protection requirement according to the new prevailing
conditions such as operational or topological changes [111–114]. The power system protection is
improved, and system security is enhanced by following adaptive protection philosophy. The adaptive
protection schemes are more effective for the protection of such a power system [46]. Adaptive protection
is “an online activity that modifies the preferred protective response to a change in system
conditions or requirements in a timely manner using externally generated signals or control action”.
Adaptive protection has been developed since the 1980s [61]. An adaptive protection scheme solves
the problem of both grid-connected and islanded modes of operation [115]. In an adaptive protection
system, there is an automatic readjustment of relay settings, when microgrid mode changes from
grid-connected to islanded and from islanded to grid-connected.

The authors of References [116,117] investigated an adaptive OC-based microgrid protection
scheme that only considers synchronous generators and lacks HIF detection. The authors of
Reference [118] used an adaptive protection only for a power system with synchronous generators that
have a significant fault current contribution. The proposed method is unable to detect a single-phase
fault and every fault type.

References [43,119,120] have proposed a method using communication-assisted adaptive
protection schemes. This method is used for looped/meshed distribution systems with DG penetration.
The method is based on each DOC relays of the setting group in advance using optimization
algorithms. Reference [118] also used adaptive schemes that include two sets of relay settings, one for
the grid-connected and the other for islanded mode. This adaptive scheme determines the relay
communication protocol/communication infrastructure for interacting among the relays and master
controller. The relays update the settings with the master controller that senses the topology of
the microgrid and communicates [46,118]. Reference [111] proposed an adaptive multi-stage OC
relay protection scheme in the presence of DGs in the distribution network. The adaptive DOC relay
coordination was performed using the ant colony optimization (ACO) and genetic algorithm (GA) [112].
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In Reference [113], an adaptive protection coordination scheme has been proposed for numerical
DOC relays by using the commercial AMPL (a mathematical programming Language)-based IPOPT
(interior point optimization) solver.

An adaptive protection system was studied in References [67,114] using the optimal coordination
of OC relays. The method is divided into two separate parts: an adaptive protection device and
an adaptive protection system. The device, in general, uses actual data and can adapt to the changes in
the processing mode for certain zones. The adaptive protection scheme based on GPS in the distribution
network with high penetration of DGs is presented in References [29,41,121]. The distribution network
was divided into several zone breakers according to a reasonable balance of DGs and local loads.

Tables 1–3 list the classification of different items of the review. Nowadays, different protection
schemes are increasingly used in the real world. Table 1 presents the items in the literature for the
protection of microgrids including the type of DGs, protection scheme, protective relay, the simulation
situation (including simulation of a real network or simulation of a test case), and the year of publication.
Some protection schemes in the table have been implemented in the real world, and their simulation
and experimental results are given in the paper. A comparison between simulation and experimental
results confirms the research quality. The empirical results are according to real-time conformity.
For instance, the protection scheme and the type of the relays and DGs are completely similar in
References [30,120], while the former implemented a real network and the latter simulated a test case.
The empirical results are according to real-time conformity.

Table 1. Classification of different items used in microgrid protection schemes in the literature.

Refs. Published
Year DG Presence Protection Scheme Real/Simulation Protective Relay

[75] 2003 Without DG Impedance Based Real Current and
Voltage

[29] 2004 DG Adaptive Simulation Fuse and Recloser
[108] 2006 Inverter Based Voltage Based Simulation Voltage
[62] 2008 DG Modification Simulation DOC

[104] 2008 Inverter Based Harmonic Based Simulation IDM
[44] 2010 SE/WT Differential Based Real Differential
[64] 2010 SM Based Adaptive Simulation Current Based
[66] 2010 SM Based Adaptive Simulation Current Based
[92] 2011 SM Based Impedance Based Real Distance

[106] 2011 SM and Inverter
Based Modification Real OC

[55] 2012 Inverter Based Modification Real Current and
Voltage

[103] 2012 Inverter Based Harmonic Based Simulation Current Based
[27] 2013 DG Impedance Based Real Distance
[42] 2014 Inverter Based Differential Based Simulation Differential
[57] 2014 DG Adaptive Real Fuse and Recloser

[101] 2014 Inverter Based Harmonic based Real IDM
[86] 2014 Inverter Based Adaptive Simulation Current
[43] 2015 DG Adaptive Simulation DOC
[56] 2015 DG Modification Real Fuse and Recloser
[74] 2015 SM Based and WT Impedance Based Real Distance

[111] 2015 SM and
Inverter-Based Adaptive Simulation OC

[112] 2015 SM and Inverter
Based Adaptive Simulation DOC

[58] 2016 SM Based Modification Real Fuse and Recloser
[89] 2017 Inverter Based Impedance Based Simulation Distance

[120] 2017 SM Based Adaptive Simulation OC
[88] 2018 Inverter Based Impedance Based Real Distance

[105] 2018 Inverter Based Harmonic Based Real DOC
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Table 1. Cont.

Refs. Published
Year DG Presence Protection Scheme Real/Simulation Protective Relay

[113] 2018 DG Adaptive Simulation DOC
[30] 2019 SM Based Modification Real OC
[47] 2019 SM Based Modification Real DOC

[119] 2019 SM and Inverter
Based Adaptive Real Current and

Voltage
[51] 2019 Inverter Based Modification Simulation Current Based
[98] 2019 Inverter Based Modification Simulation OC
[49] 2020 Inverter Based Adaptive Simulation DOC
[50] 2020 DG Modification Simulation DOC

[68] 2020 SM and Inverter
Based Modification Real OC

[69] 2020 DG Modification Simulation OC

[82] 2020 SM and Inverter
Based Modification Simulation OC

[83] 2020 Inverter Based Impedance Based Simulation IDM
[93] 2020 Inverter Based Modification Real Current Based
[94] 2020 Inverter Based Adaptive Real IDM
[99] 2020 DG Adaptive Simulation Current Based

[116] 2020 SM and Inverter
Based Adaptive Simulation Current and

Differential
[122] 2020 DG Adaptive Simulation DOC
[123] 2020 DG Adaptive Simulation DOC

Three-phase (L.L.L), two-phase (L.L), two-phase to-ground (L.L.G), single line-to-ground (L.G). Solar energy (SE),
wind turbine (WT), synchronous machine (SM), intelligent device manager (IDM).

The main contributions of the literature are given in Table 2. Important works on different
protection schemes from the beginning until now are summarized in Table 2.

Table 2. Classification of important research works in the field of protection systems.

Refs. Published Year Main Contribution

A.Y. Abdelaziz et al. [114] 2002 AP scheme by applying an LPT
D.W.P. Thomas et al. [75] 2003 Single-end fault location based on the TW

J.-A. Jiang et al. [80] 2003 Fault location using the dyadic WT with Haar wavelet
S.M. Brahma and A.A. Girgis [29] 2004 AP based on communication and network device data

T.M. Lai et al. [26] 2005 DWT and NNR classification, HIF detection
H. Al-Nasseri et al. [108] 2006 Proposing a method based on the abc–dq transformation

W. El-Khattam and T.S. Sidhu [62] 2008 Coordination of the DOC relay by FCL based on DGs capacity
H. Al-Nasseri and M. Redfern [104] 2008 The FD by using the DFT and THD

E. Sortomme et al. [44] 2010 Using the DS by high-rate sampling of the current
A. Prasai et al. [64] 2010 Multi-level protection based on communication with PLC
H. Wan et al. [66] 2010 Multi-agent protection system based on communication

J.U.N. Nunes and A.S. Bretas [92] 2011 Fault location estimation based on the impedance-based scheme

M.A. Zamani et al. [106] 2011
Proposing a programmable MPRs relay with directional
elements in grid-connected and islanded modes without

communication
M.A. Zamani et al. [55] 2012 MBP coordination strategy through the communication-assisted

H. Shi et al. [103] 2012 Using harmonic impedance by injecting a current disturbance
M.F. Al_Kababjie et al. [79] 2012 Fault location of distance relay using the Haar WT

A. Sinclair et al. [27] 2013 Setting the distance protection based real event data

S.A.M. Javadian et al. [31] 2013 Analyzing the risk of protection systems operation in the
presence of DG

E. Casagrande et al. [42] 2014 Using the DS by the symmetrical component of the current
P.H. Shah and B.R. Bhalja [57] 2014 The adaptive scheme for coordination between recloser-fuse

X. Li et al. [86] 2014 TW using MM technology and multi-end protection scheme

J. Merino et al. [101] 2014 Proposing a passive islanding detection method based on the
5th harmonic voltage magnitude

V. Papaspiliotopoulos et al. [43] 2015 The HIL AP scheme
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Table 2. Cont.

Refs. Published Year Main Contribution

A. Supannon and P. Jirapong [56] 2015 Using the AAT to suitable coordination of the recloser–fuse
Hengwei Lin et al. [74] 2015 Adopting the distance protection considering infeed current

S. Shen et al. [111] 2015 AP scheme by using Thevenin equivalent parameters
M.Y. Shih et al. [112] 2015 Adaptive PS with ACO and GA

K.A. Wheeler et al. [58] 2016 Algorithm for assessing the fuse-reclose protection coordination
M.E. Elkhatib and A. Ellis [89] 2017 Impedance PS with the CA

E. Purwar et al. [120] 2017 Optimal relay coordination with independent settings
S.H. Mortazavi et al. [24] 2018 Estimating HIF location with time-domain analysis

R. Dashti et al. [88] 2018 Fault locating using current and voltage at the beginning of
feeder and DG terminal

S. Beheshtaein et al. [105] 2018 Harmonic-based OC relay by using injecting harmonic signals
M.N. Alam [113] 2018 AP scheme with AMPL based IPOPT solver
Q. Cui et al. [25] 2019 MDL-based algorithm, HIF detection

J. Sahebkar et al. [30] 2019 Adding recloser to protect of the blind areas
A.H. Abdulwahid [38] 2019 FD with WT and avoiding malfunction of differential protection
J. Sahebkar et al. [47] 2019 Using the DOC to avoid the false tripping of the adjacent feeder

B. Wang and L. Jing [51] 2019 Using current-only polarity comparison
A. Shabani and K. Mazlumi [98] 2019 Using communication-assisted in OC protection scheme

A.M. Tsimtsios et al. [119] 2019 The PS based on PnP with the CA, numerical relays
M. Nabab Alam et al. [49] 2020 Using single-setting and dual-setting DOCRs

P. Tharara and P. Jirapong [50] 2020 Using a dual-DOC relay to protect the microgrid
H. Shin et al. [68] 2020 Using OC relay based on LVRT operation and relay settings

L. Ji et al. [69] 2020 Improved OC relay based on compound fault acceleration factor

s. Baloch al. [82] 2020 Protection scheme based on autocorrelation of current envelopes
using the squaring and low-pass filtering technique.

K.-M. Lee and C.-W. Park [83] 2020 Using a hybrid method by pulsating signal generator and DWT
in ungrounded LVDC

N. Bayati et al. [93] 2020 Using the fault location scheme of CPL in a dc microgrid

Vukojevic and S. Lukic [94] 2020 Using seamless Transition islanding and grid synchronization in
PCC

H.-C. Seo [99] 2020 Using a method based on the equivalent circuit
O.A. Gashteroodkhani et al. [116] 2020 protection technique using Time-time -transform and DBN
S. Saldarriaga-Zuluaga et al. [122] 2020 Using optimal coordination of DOC by GA
S. Saldarriaga-Zuluaga et al. [123] 2020 Using optimal coordination of DOC by GA and multiple options

Minimum Description Length (MDL); Nearest Neighbor Rule (NNR); Fault Detection (FD); Adaptive Protection
(AP); Differential Scheme (DS); Automatic Analysis Tool (AAT); Main and Backup Protection (MBP); Power Line
Carrier (PLC); Traveling Wave (TW); Mathematical Morphology (MM); Discrete Fourier Transform (DFT); Microgrid
Protection Relay (MPR); Linear Programming Technique (LPT); Deep Belief Network (DBN); Plug and Play (PnP);
Protection Scheme (PS); Communication-Assisted (CA).

Table 3 lists a summary of the microgrid protection schemes [36,40,41,124].
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Table 3. Summary of microgrid protection schemes.

Protection Scheme Used Devices Operation Method Advantages Disadvantages

Current based
(Conventional) OC Current symmetrical

component

• Simple
• Inexpensive

• Difficult to coordinate in the meshed distribution system
• Problems with unsymmetrical loads due to the

single-phase DGs

Current based
(Modification)

DOC Current symmetrical
component

• Easy to coordinate in the meshed distribution system.
• Selective

• More expensive than OC

FCL Current transient component • Reduction of the short circuit current • Costly

Voltage based UV, OV, UF,
and OF Voltage symmetrical component • Designing load shedding and preventing blackout system

• HIF cannot be detected
• Poor accuracy in the grid-connected and varying

power systems
• Voltage drops can create errors

Impedance based Distance Measured impedance with
threshold values

• Easier than DOC for coordination in the meshed
distribution system

• Accuracy affected by harmonics and transients
• Errors due to the fault impedance
• Not effective with short-range lines

Differential current Differential Comparison of input and
output current of a zone

• High speed and sensitivity
• Relatively simple.
• High-performance for high impedance fault
• Immune to the current flow direction and

magnitude variations

• Problems due to the unbalances and transients
• Depends on the communication channel

Harmonic content IEDs device Voltage components • Used for inverter-based system • Might fail to trip in several dynamic loads

Adaptive Any relay Relay setting changes according
to network state

• Compatibility relay setting with power system conditions
• Online system

• Requiring network upgrades
• Requiring a prior knowledge of configurations
• Communication requirements
• Fault calculations for relay settings
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4. Future Trends of Protection Systems

The structure of the futuristic power systems may be changed with the high penetration of
renewable energies. Predicting the future of power systems, it is expected to increase in the number
interconnected power systems including wind and solar sources [125]. The power system’s reliability
and protection will become more important with the increasing demand for electrical energy. For this
reason, a comprehensive protection system is required with a central controller, and the data processing
of the central control system is performed using intelligent systems.

4.1. Wide Area Protection (WAP)

Wide area protection (WAP) is a protection and control system that can meet the future challenges
of protection. This system is a new concept that has been proposed with the complexity of the
power system and the high penetration of distributed generations in recent years [126–128]. The WAP
system improves reliability and stability performance and coordinates protective relays. Moreover,
the performance of WAP is based on power system data through network communication. It can
detect and clear the fault selectively and quickly. Then, it analyzes the effect of power system stability
after fault components disconnection and uses appropriate control measures [126]. The performance
time of a WAP system has significant importance during the fault. The WAP should collect data from
different locations of the protected areas and analyze data collecting to respond to the disturbances
in a somewhat longer time frame. The processing time of the WAP system operation is long due to
the communication delays during the information transmission process. The speed of the operation
leads to the use of wide-area information to enhance the reliability of backup protection. It is imagined
that improved communication and measurements will provide enhanced solutions to protect against
instability in the future [127].

The research works in References [128–130] have introduced wide-area protection algorithms.
Reference [131] proposed a WAP algorithm based on the composite impedance directional principle
that can realize fault detection. The authors of Reference [132] presented a wide-area backup protection
algorithm using distance protection fitting factor because of time delay and potential information
loss problem in wide-area data acquisition. Reference [129] mainly focused on three aspects of the
WAP-based methods:

(1) Online adaptive computing and verification of protection settings;
(2) Preventing chain trips of backup protections by recognizing large-scale flow transfer and faults

with the help of a regional stability control system;
(3) Wide-area backup protection centering on the identification of fault equipment, which also takes

advantage of PMU/WAMS.

RTUs are data acquisition and digital measurements. SCADA systems use RTUs to collect data
from remote sites and send them to the energy management system (EMS) every two to ten seconds.
Computer-based devices can record and store massive amounts of data aperiodicity depending
upon the intended purpose of the device [133,134]. The SCADA’s sampling speed is very slow
and needs to be improved. Furthermore, the technology of conventional SCADAs does not have
a phase angle as an analog measurement. Hence, the synchronized phasor measurement technology
is required [130,135]. The phasor measurement unit (PMU) can measure the voltage phasor of the
installed bus and the current phasors of all the lines connected to that bus [136]. The PMU technologies
have a high-speed power system device that can provide synchronized measurements of real-time
phasors of voltages and currents, respectively. These technologies are also used for the calculation of
voltage and current magnitudes, phase angles, real/reactive power flows, etc. The synchronization is
usually achieved by simultaneous sampling of voltage and current waveforms using timing signals
from GPS satellites [137–139]. Generally, PMU takes 30 measurements per second, thereby presenting
the possibility of a much timelier view of the power system dynamics comparing to conventional
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measurements. Basically, PMUs measurements are based on synchronizing, as they are time stamped
by the GPS’s universal clock [140].

Some of the advantages of using PMUs are summarized as follows [137]:

1. Improving real-time monitoring and control of power system;
2. Enhancing congestion management;
3. State estimation of the power system;
4. Post disturbance analysis of the power system;
5. Overload monitoring and dynamic rating;
6. Restoration of the power system;
7. Protection and control application of distributed generation.

Synchronized data estimated by PMUs will develop the modern wide area protection schemes.
Many advanced techniques are developed in communication to improve the protection and accelerate
the restoration process, analysis, operation, and planning [141].

4.2. Artificial Intelligence Algorithms

Artificial intelligence (AI) and related technologies are effective in solving complex system controls
and decision problems [142]. These techniques, such as expert systems (ESs), GAs, fuzzy logic (FL),
and ANNs, have emerged with the development of computers [143,144]. These techniques have
brought an advancing frontier in power engineering and power electronics. An intelligent or smart
power system with future advanced electrical devices can integrate state-of-the-art power electronics,
communication, computers, information, and cyber technologies.

Over the past two decades, the application of AI techniques for protection systems has been
studied [145]. As a branch of AI techniques, agents have been introduced into the protection system.
The relay agents are classified into the concept of a cooperative protection system by their roles [97,146].
The authors of Reference [147] have proposed an intelligent coordinated protection and control
scheme for a distribution network with the integration of wind generation. In References [148–151],
several algorithms with AI technologies, such as genetic evolution, Tabu search, and fuzzy control
principle were investigated to realize the fault-tolerance function of WAP systems.

Several fault detection methods have been presented according to AI techniques such as the
methods based on the expert system [149]. In Reference [152], a distribution harmonic state estimator
was developed using a modified particle swarm optimization (PSO) algorithm. This method uses PMU
data, line/DG parameters, pseudo measurements, and known uncertainties to estimate the harmonic
phasors through the minimization of the error between PMU measurements and the estimated values.
Reference [153] proposed an integrated impedance angle (IIA)-based protection scheme using wide-area
positive sequence components of voltages and currents with PMUs. The IIA for the lines considers
information from both ends of PMU, which is an important key to detect faults in the microgrid.

A weighted least-squares algorithm is applied along with singular value decomposition to
estimate the harmonics [154,155]. In References [156], a new hybrid GA method was suggested
that was successfully applied to solve DOC relays coordination problems. A DOC relay is usually
adjustable with a fixed power system topology in an interconnected power system. The system may
change the topologies due to the outages of the transmission lines, transformers, and generating units.
Reference [157] investigated the problem of determining the optimum values of time multiplier setting
(TMS) and plug setting of DOC relays in different topologies. The study introduces the method to
improve the convergence of the GA, as a new hybrid method. In Reference [158], a hybrid method has
been proposed to overcome the drawbacks of GA and nonlinear programming (NLP) method, and to
determine the optimum settings of OC relays, TMS and plug setting (PS). In References [122,123], a new
method has proposed for optimal coordination of DOC relays in microgrids. The optimization method
is based on multiple parameters, such as the upper limit of the plug setting multiplier (PSM) in the GA.
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In general, the future of protection systems tends towards smart or intelligent grids. A smart grid
is a cyber-enabled electric power system that combines information and communication technologies
with power engineering. Some of the benefits of smart grids are as follows [159]:

(1) Providing two-way power and information flows;
(2) Developing a wide-area monitoring system and pervasive control capability over widespread

utilities’ assets;
(3) Enabling energy efficiency and demand-side management;
(4) Integrating intermittent renewable energy sources into the existing power grid;
(5) Providing self-healing and resiliency against cyber and physical attacks or system anomalies.

The main differences between smart and traditional power grids are the improvement in controlling,
monitoring, and communication systems. Furthermore, a smart grid can effectively improve energy
efficiency by using digital technology. The restoration in traditional power grids due to the lack of
controller is manual, while smart grids are based on self-healing that enables automatic detection and
recovery of the system during a fault. Table 4 illustrates a general comparison between the traditional
power grids and smart grids [160,161].

Table 4. Comparison of traditional power grids and smart grids.

Characteristics Traditional Power Grid Smart Grid

Topology Mainly radial Network

Generation Centralized (due to the
governmental view) distributed (due to the private view)

Efficiency Low efficiency Relatively high efficiency
Control Limited More extensive

Reliability Based on static, offline models Real-time predictions

Distribution One-way distribution Two-way distribution From
alternative energy

Monitoring Manual (due to the lack of sensors) Self-monitoring using
digital technology

Response to Disturbances Response after faults to prevent
further damage

Responds to faults by focusing
on prediction

Technology Electromechanical infrastructure Digital infrastructure and
communication

Restoration Manual (due to the lack of controller) Self-healing

Assets Management Low data relationship with
asset management

Planning for an asset with extensive
monitoring of their information

Equipment Failure and blackout Adaptive and islanding
Customer Choices Fewer choices Many choices

Active Participation Consumer Consumers do not participate Consumers participate actively
Provision of Power Quality Slow response to power quality Rapid resolution of power quality

Resiliency against Cyber-Attack and
Natural Disasters

Vulnerability to natural and human
destructive actions

High resilience to cyber-attack and
natural disasters

New Products, Services, and Markets Limited opportunity and the market
for consumers

Integrated market and the right to
choose for customers

Reaction Time Slow reaction time Extremely quick reaction time
System Communications Limited to power companies Expanded and real-time

Sensors Few sensors Multiple sensors throughout

5. Conclusions

This paper presented an overview of protection in power systems and microgrids.
Protection systems need to be reviewed to consider the integration of distributed generation technologies.
The presence of a microgrid causes many challenges in the protection of the power system. This
study addressed these challenges and their solutions. Changing the protective relay settings and
the optimal replacement of reclosers have been proposed to improve the performance of OC relays
in blinding zones. The DOC relays have been used to avoid false tripping in the presence of DGs.
Distributed energy resources should be isolated from the grid with fault. Furthermore, during the
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islanding operation of a microgrid, the protection and control are complicated. The presence of the
microgrid also affects the recloser/fuse and the short circuit level. In addition, many protection schemes
have been proposed to protect the power system against changing the topology in the presence of
a microgrid. Various types of protection schemes have been considered to detect faults in microgrids,
especially in an inverter-based microgrid in islanded mode. Most studies on microgrid protection in
islanded mode were communication-based. Wide-area protection based on measurements obtained
from PMU and intelligent protection systems can resolve many issues related to the protection and
control of the smart grids in the future. In future protection systems, the wide-area protection can
protect the power system with microgrids in proper time, including the time of collecting data,
processing, analyzing, and tripping commands during the fault.

Future works for completing this review may discuss various parts of adaptive protection
schemes, such as digital relays, communication capabilities, and supervisory software. Moreover,
discussing PMUs and communication platforms as well as implementing them in the control and
protection of microgrids, especially in islanded mode, might be a hot topic. The structure of future
protection systems will consist of adaptive protection and intelligent protection, which will work based
on communication with modern digital protective relays using PMU and IDM. The main concern in
this regard is the time delay of communication links that plays an important role in future protection
designs, especially in microgrids. Moreover, the expansion of adaptive systems with a communication
platform increases the risk of cyber-attacks. A protection system must be sufficiently secure against
cyber-attacks to prevent blackouts. Therefore, further research specifically on cyber-security is necessary.
Fault detection in an inverter-based microgrid in islanded mode with/without a communication scheme
is an interesting subject for future studies.
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