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Abstract: There has been increased interest in phytoestrogens due to their potential effect in reducing
the risk of developing cancer and cardiovascular disease. To evaluate phytoestrogens’ exposure,
sensitive and accurate methods should be developed for their quantification in food and human matrices.
The present study aimed to validate a comprehensive liquid chromatography-mass spectrometry
(LC-MS) method for the quantification of 16 phytoestrogens: Biochanin A, secoisolariciresinol,
matairesinol, enterodiol, enterolactone, equol, quercetin, genistein, glycitein, luteolin, naringenin,
kaempferol, formononetin, daidzein, resveratrol and coumestrol, in food, serum and urine.
Phytoestrogen extraction was performed by solid-phase extraction (food and serum) and liquid-liquid
extraction (urine), and analyzed by LC diode-array detector (DAD) coupled with a single quadrupole
MS with electrospray ionization (ESI) in negative mode. Validation included selectivity, sensibility,
recovery, accuracy and precision. The method was proved to be specific, with a linear response
(r2
≥ 0.97). Limits of quantification were 0.008–3.541 ng/mL for food, 0.01–1.77 ng/mL for serum and

0.003–0.251 ng/mL for urine. Recoveries were 66–113% for food, 63–104% for serum and 76–111%
for urine. Accuracy and precision were below 15% (except for enterodiol in food with 18% and
resveratrol in urine with 15.71%). The method is suitable for the quantification of a wide number of
phytoestrogens in food, serum and urine. The method was successfully applied in highly consumed
food items (n = 6) from North Mexico and biofluids from healthy women (n = 10).

Keywords: phytoestrogens; food metabolites; biofluids; flavonoids; lignans; coumestrol; resveratrol

1. Introduction

Phytoestrogens are diphenolic plant metabolites that have been associated with a lower risk
of cancer and cardiovascular diseases [1,2]. Phytoestrogens can induce biological activity through
estrogenic mechanisms, by mimicking the action of 17β-oestradiol [3], and non-estrogenic mechanisms,
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by regulating enzyme and antioxidant activities [4,5]. Despite these beneficial effects observed on in vitro
and animal studies, there is still no clear evidence on the effects of phytoestrogens on human health.

Epidemiological studies, investigating the association between phytoestrogens and health,
have been limited due to the difficulty determining phytoestrogen exposure. Traditionally, a food
frequency questionnaire or a 24 h recall are used to accomplish this goal. The information obtained
from these questionnaires is translated into quantitative records through a food composition database
and an individual’s consumption is estimated [6,7]. However, food databases with the content
of phytoestrogens are incomplete, focused on a small group of phytoestrogens (i.e., isoflavones)
and, in some cases, are unavailable [8,9]. In Mexico, foreign databases have been used to estimate
phytoestrogens consumption with the inclusion of a limited number of food items [8]. These adapted
food tables do not provide the phytoestrogens content of regional foods. These regional foods are
characteristic of a typical Mexican diet and could represent a valuable source of phytoestrogens for
the population. Phytoestrogen levels in serum and urine have been used to determine phytoestrogen
intake; however, this is not always feasible, especially in large epidemiological studies.

A proper analytical method for the quantification of phytoestrogens depends not only on the
matrix to be analyzed and the phytoestrogens (and other compounds) contained in the matrix
but also on the processing of the matrix and the capabilities of the analytical technique [10].
Improvement on analytical techniques in the last decade has driven phytoestrogens structural
characterization, identification and quantification in different matrices [11]. Liquid chromatography
(LC) and time-resolved fluoroimmunoassay (TR-FIA) have been developed to analyze phytoestrogens in
food [12] and biological samples [13]; however, some of them have low sensitivity and selectivity [14,15].
Gas chromatography-mass spectrometry (GC–MS) is a technique with high sensitivity and selectivity
but requires several clean-up steps, complex sample preparation and derivatization [14,16,17].
LC–MS is the analytical method preferred due to a simple sample preparation, high sensitivity
and specificity [18–20]. Recently, advances on LC separation along with MSn structural information
and resolving power have improved identification and quantification of small molecules in complex
matrices in the lower ppb-level. The relatively low cost of LC-MS instruments has contributed to
their widespread use in the analysis of phytoestrogens with single quadrupole (Q) that is more
economically available in Latin America. MS instruments, such as Q, time-of-flight (TOF), Q-TOF,
triple quadrupole (QqQ) and others, have ensured more known and unknown phytoestrogens being
accurately identified. However, most LC-MS methods have focused on specific phytoestrogens
to be analyzed per run [10,11]. Furthermore, a validated LC-MS method for the simultaneous
quantification of phytoestrogens in food and biofluids has not been established. Even though these are
complex and different matrices, with different phytoestrogen metabolites and with a wide variation in
concentrations (i.e., serum levels lower compared to food and urine), quantification can be achieved
with a comprehensive LC-MS method.

In the present study, we established and validated a high-performance liquid chromatography
diode-array detector electrospray ionization mass spectrometry (HPLC-DAD-ESI-MS) method for the
quantification of sixteen phytoestrogens (biochanin A, secoisolariciresinol, matairesinol, enterodiol,
enterolactone, equol, quercetin, genistein, glycitein, luteolin, naringenin, kaempferol, formononetin,
daidzein, resveratrol and coumestrol), suitable for the analysis of food, serum and urine. The novelty
of this method is the inclusion of a wide variety of phytoestrogens with high oestrogen-like activity
present in food, beverages and related metabolites in human biofluids. The method was successfully
applied to commonly eaten food items from North Mexico, as well as to urine and serum samples from
healthy women. This method is flexible and suitable for phytoestrogens’ quantification, and could be
used to analyze human samples in large-scale epidemiological studies investigating the association
between phytoestrogen exposure and human health. This study will contribute to the development of
food databases in Latin-American countries with the inclusion of regional food items, which could
represent an important dietary source of phytoestrogens.
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2. Materials and Methods

2.1. Materials

Biochanin A, secoisolariciresinol, matairesinol, enterodiol, enterolactone, coumestrol, equol,
genistein, glycitein, kaempferol, formononetin, daidzein, resveratrol, 4-methylumbelliferyl sulfate
potassium salt (4MUS), phenolphthalein β-D-glucuronide (PhP-β-glu), 4-hydroxybenzophenone (IS),
sodium acetate, formic acid, dimethyl sulfoxide (DMSO), β-glucuronidase/sulfatase (from Helix
pomatia; type H1, β-glucuronidase activity: 300 U/mg and sulfates activity: 15.3 U/mg) and
cellulose (from Trichoderma reesei, ≥1 U/mg) were purchased from Sigma-Aldrich (St. Louis, MO,
USA). Quercetin, luteolin, and naringenin were purchased from INDOFINE Chemical Company
Inc. (Hillsborough, NJ, USA). All standards had a minimum HPLC purity of 85% or thin layer
chromatography (TLC) purity of 99%. Methanol, acetonitrile, acetic acid and n-hexane were purchased
from J. T. Baker (Philipsburg, NJ, USA). Water, DMSO, acetic acid, methanol and acetonitrile were
HPLC grade. Sodium acetate and formic acid were of reagent grade (99 and 95% purity, respectively).
Pooled human blank serum was purchased from Innovative Research (Novi, MI, USA).

2.2. Standards Preparation

Standards stock solutions were prepared at a concentration of 1 mg/mL in methanol
(biochanin A in ethanol, 20 µL of DMSO was added to glycitein and coumestrol to increase their
solubility in methanol). From these, a working solution containing the sixteen phytoestrogens
was made at a concentration of 24,000 ng/mL. This mixture was used to make further dilutions,
spike samples and quality controls. The internal standard was prepared in methanol at a concentration
of 20,000 ng/mL. Deconjugation standards, 4-methylumbelliferyl sulfate potassium salt and
phenolphthalein β-D-glucuronide, were prepared at a concentration of 1 mg/mL in water and
methanol, respectively. From these, a working solution containing both deconjugation standards was
made for spiking the samples (serum; 330,000 ng/mL and 400,000 ng/mL, urine; 24,000 ng/mL and
20,000 ng/mL, respectively).

2.3. Phytoestrogen Extraction from Food

Food matrices with low levels of phytoestrogens (i.e., boiled rice and potatoes) according to the
Phenol-Explorer 3.6 database and U.S. Department of Agriculture (USDA) database [21,22] were used
for validation analysis. Food matrix was homogenized, frozen (−70 ◦C), and lyophilized (−50 ◦C)
under vacuum conditions before extraction. The dried sample (100 mg) was diluted with 10% methanol
in sodium acetate buffer (1 mL, pH 5.0, 0.1 M) and sonicated for 30 min. The sample was centrifuged
(30 min, 2500× g), and the supernatant was transferred to a vial. The precipitate was washed and
centrifuged twice. β-glucuronidase/sulfatase and cellulose mixture (3 mL, 10 U/mL) was added to the
supernatant (2 mL) and incubated for 37 ◦C for 16 h. Strata C18 solid-phase extraction (SPE) cartridges
(50 mg) were preconditioned with methanol (1 mL) and 5% methanol (1 mL). The sample was applied
to the cartridges and washed with 5% methanol (2 mL). Phytoestrogens were eluted with methanol
(3 mL) and dried under a gentle stream of nitrogen at 37 ◦C. Additionally, methanol (500 µL) was
added to the vial and evaporated to increase recoveries. Finally, phytoestrogens were resuspended
in methanol (80 µL) and initial mobile phase composition (120 µL, 65% Solvent A, 35% Solvent B).
Regional food items (n = 6, North Mexico, Table 4) were selected for analysis as part of the validation
process based on their frequency of consumption [23], form of consumption (raw or cooked) and
possible content of phytoestrogens.

2.4. Phytoestrogen Extraction from Serum

Methanol (200 µL) and n-hexane (1 mL) were added to serum (1 mL) followed by centrifugation
to remove proteins and lipids. The remaining (800 µL) was spiked with internal standard (50 µL,
20 µg/mL) and deconjugation standards (10 µL), and was vortexed for 10 s. Conjugated phytoestrogens



Appl. Sci. 2020, 10, 8147 4 of 17

were hydrolyzed by the addition of β-glucuronidase/sulfatase mixture (800 µL, 33 mg/mL in sodium
acetate buffer; pH 5.0; 0.1 M) and were incubated at 37 ◦C overnight. Bond Elut C18 SPE cartridges
(Agilent, 3 mL, 100 mg) were preconditioned with methanol (3 mL) and sodium acetate buffer (3 mL).
The samples were centrifuged (10 min, 7200× g) and then applied to the cartridges. The matrix
interferences were washed with methanol—2% acetic acid (3 mL, v/v, 5/95). Phytoestrogens were eluted
with methanol (3 mL), followed by acetonitrile (2 mL). The eluate was dried under a gentle stream
of nitrogen at 37 ◦C and was resuspended in methanol (80 µL) and initial mobile phase composition
(120 µL). Serum samples were collected and analyzed from healthy women (n = 10), who gave
written consent before they participated in the study, as part of the validation process. This research
was conducted in accordance with the Declaration of Helsinki and the protocol was reviewed and
approved by the Ethical Committee of Centro de Investigación en Alimentación y Desarrollo A.C.
(registration number CE/005/08).

2.5. Phytoestrogens Extraction from Urine

Pooled urine samples were obtained from subjects following a low phytoestrogens diet
(intake < 40 µg/day) and used as matrix blanks for validation analysis. Urine (2 mL) was centrifuged
and diluted with sodium acetate buffer (2 mL, pH 5.0; 0.1 M). Internal standard (100 µL) and
deconjugation standards (4 µL) were added to the sample. Phytoestrogens were hydrolyzed by the
addition of β-glucuronidase/sulfatase mixture (30 µL, 5.14 mg/mL in sodium acetate buffer; pH 5.0;
0.1 M) and were incubated at 37 ◦C for 4 h. Liquid-liquid extraction was done by adding diethyl ether
(5 mL, twice) to the urine. The organic layer (approx. 10 mL) was transferred and evaporated under
a gentle stream of nitrogen at 37 ◦C. The sample was resuspended in methanol (80 µL) and initial
mobile phase composition (120 µL). Urine samples (12 h, n = 10) were collected, corrected for creatinine
and analyzed as part of the validation process from healthy women.

2.6. Liquid Chromatography/Mass Spectrometry

The method was validated on an Agilent HP 1100 series G1946A LC-MSD (model VL,
Chemstation software rev B.03.02), equipped with a degasser, quaternary pump, autosampler,
thermostated column oven, photodiode array ultraviolet (UV) detector (DAD), coupled to a single
quadrupole (Agilent Technologies, Inc., Palo Alto, CA, USA). An injection volume of 50 µL was applied
to the HPLC-MS. Phytoestrogens separation was performed using a Water XBridge C18 reversed-phase
(3.0 mm id × 150 mm, 3.5 µm) column with a C18 guard column (3.0 mm id × 20 mm, 3.5 µm), at 52 ◦C.
The mobile phase consisted of water (Solvent A) and methanol/acetonitrile (80:20, v/v, Solvent B),
both with formic acid (0.025%, v/v), at a flow rate of 0.6 mL/min. The gradient elution was programmed
as follows: 35–40% B at 5 min, 100% B at 16 min, returned to 35% B at 19 min and re-equilibrated for
3 min. DAD was set at 290, 340, 260, 216 and 280 nm. Phytoestrogens were analyzed using electron
spray ionization (ESI) interface in negative ion mode, with capillary voltage at 3.5 kV, drying gas flow
of 11 L/min and 350◦C, and nebulizer gas pressure of 60 psi. Ion confirmation was done using the four
mass-selective detector (MSD) signals set in single ion monitoring (SIM) quantification.

2.7. Method Validation

The analytical method was evaluated in terms of selectivity, linearity, sensitivity, accuracy,
precision and recovery. Internal standard and deconjugation standards were included during
the validation process. Analytical controls were included to identify any interference in the
samples. Every analysis included a glassware blank (water processed without internal standard),
reagent blank (reagents and solvents without matrix processed with internal standard), matrix blank
(matrix low/without phytoestrogens, see Materials Section 2.1 for serum, Section 2.3 for food and
Section 2.5 for urine, processed with internal standard), spiked matrix blank, and a solution containing
the 16 phytoestrogens. A random real sample (women’s biofluids and regional food) was processed in
duplicate. Statistical analysis was carried on with NCSS 2001 statistical program.
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2.7.1. Selectivity

Blank samples were tested for interferences at the retention time of the phytoestrogens and
deconjugation standards in the four MSD signals.

2.7.2. Linearity and Sensitivity

System and method linearity were tested for all phytoestrogens covering a wide range, from 0.16
to 16,000 ng/mL, due to the different concentrations expected in food, serum and urine samples.
The final concentration of the standards ranged from 0.008 to 1200 ng/mL in food and urine and 0.02
to 2000 ng/mL in serum. Linearity was performed three times, and each level of concentration was
injected in triplicate. Area, phytoestrogens concentrations and correlation coefficients were obtained
from the generated chromatograms. Peak area of the phytoestrogens and standards were plotted
against the nominal concentrations of the calibration standards. Linear regression analysis generated
calibration curves with the equation:

y = mx + b, (1)

where y is the peak area, x the concentration of the targeted phytoestrogen, m the slope and b the
intercept of the regression line. Linearity was evaluated by observing correlation coefficients (r2) for
the system and method. The limits of detection (LOD) and quantification (LOQ) of the method were
defined as the lowest concentration with a signal-to-noise ratio of 3 and 10, respectively.

2.7.3. Recovery

Recovery (RE%) was performed by comparing the analytical results of spiked samples (food at
100 ng/mL, serum at 16 and 40 ng/mL and urine at 200 ng/mL) before extraction (B) with the standards
(A) which represented 100% recovery using the equation:

RE% = (B/A) × 100, (2)

RE% was performed in independent batches of blank samples due to the heterogeneity of the
samples and was considered acceptable between 60% and 120 %.

2.7.4. Accuracy and Precision

Accuracy and precision were determined by analyzing spiked samples (quality controls for food:
100 ng/mL, serum: 16 and 40 ng/mL and urine: 200 ng/mL) on three different days in independent
batches of blank samples. The relative error (%) corresponded to the accuracy, which is calculated
for each analyte, comparing the calculated mean result to the nominal concentration of the analyte.
Precision was divided into within-run (intra-assay) and between-run (inter-assay). Precision and
accuracy at each concentration level should not exceed 15% of the coefficient of variation (CV).

3. Results and Discussion

3.1. Chromatography and Mass Spectrometry Optimization

In order to optimize the separation and detection of the 16 phytoestrogens of interest, variables such
as column length, column temperature, mobile phase, gradient and flow were evaluated. The final
parameters presented in Section 2.6 Liquid chromatography/mass spectrometry (column description,
column temperature and mobile phase gradient flow) allowed the resolution of the phytoestrogens
by HPLC-MS. Phytoestrogens identification was achieved by retention time, UV and mass spectra
(Figure 1). From the absorption spectra, flavonoids presented their two maximum wavelengths of
absorbance in the range of 305 to 375 nm (band I) and 200 to 280 nm (band II) [24]. The wavelengths
of maximum absorbance for resveratrol were found at 215 and 310 nm, which are characteristic
of its alkene and m-dihydroxibencenalkene [25]. For lignans, the maximum wavelengths were at
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200, 220 and 280 nm, which represent the furan, bencil and phenilaril structures, characteristic of
these compounds [26].

Figure 1. Ultraviolet (UV) spectra, high-performance liquid chromatography (HPLC) and normalised-mass
spectrometry (MS) chromatograms of the four mass-selective detector (MSD) signals of pure
phytoestrogens standards (160 ng/mL) and internal standard (IS) in the injection solvent (methanol and
initial mobile phase; v/v, 40/60). Bio A, biochanin A; Cou, coumestrol; Dai, daidzein; Ediol, enterodiol;
Elac, enterolactone, Eq, equol; For, formononetin; Gen, genistein; Gly, glycitein; Kae, kaempferol;
Lut, luteolin; Mat, matairesinol; Nar, naringenin, Que, quercetin; Sec, secoisolariciresinol; and Res,
resveratrol. The overlapping peaks are due to overlay of the m/z values used in multiple MSD signals
and the different ion types of the phytoestrogens. Distortion of peaks is due to the solvent strength of
the injection solvent. The ion type, m/z and MSD used for quantification are describe in Table 1.
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Table 1. Target ion (m/z), retention time (min) and fragmentor voltage (V) for phytoestrogens quantification
in the four MSD signals.

MSD ESI (-) Analyte Retention Time (min) Ion (m/z) Fragmentor Voltage (V)

1

Resveratrol 3.7 227.1 180
Glycitein 6.9 283.0 160

Naringenin 8.0 271.0 180
Kaempferol 9.5 285.0 200
Biochanin A 12.8 283.1 180

2

Secoisolariciresinol 4.5 361.1 100
Luteolin 7.2 285.1 180

Equol 8.3 241.1 160
Coumetrol 9.7 267.1 200

3

PhP β-glu ‡ 4.7 493.1 100
Daidzein 5.9 253.1 180

Enterodiol § 7.0 253.1 180
Matairesinol 7.8 357.0 130

Genistein 8.6 269.0 180
PhP ‡ 9.2 317.1 100
IS * 10.0 197.1 100

4

4MU ‡ 4.0 175.1 100
Quercetin § 6.6 151.1 200

Enterolactone 9.0 297.1 180
Formononetin 11.3 267.1 200

4MUS ‡ 13.8 293.2 100

* Internal standard (IS); 4-hydroxybenzophenone and ‡ deconjugation standards; 4-methylumbelliferyl sulfate
(4MUS), 4-methylumbelliferone (4MU), phenolphthalein β-D-glucuronide (PhP-β-glu) and phenolphthalein (PhP).
The [M-H]- were chosen for quantification except for § quercetin and enterodiol. ESI, electrospray ionization; MSD,
mass-selective detector.

Different mass parameters, such as fragmentation voltage were tested to increase predominant
ions, to reduce noise and to increase the sensitivity of the method. Spray chamber parameters were set
according to the column flow with a gas temperature of 350 ◦C, nebulizer pressure of 60 psi and drying
gas flow of 11.0 L/min. Phytoestrogens were evaluated in positive and negative ion mode using ESI.
Negative mode was selected due to high sensitivity, minor noise, and lower fragmentation. A scan
analysis was undertaken to all the phytoestrogen standards to identify and confirm each phytoestrogen
chemical structure. The predominant ions were [M-H]-, while fragment ion formation presented a low
relative abundance (by Retro-Diels–Alder, neutral and radical fragmentation). Each ionization pattern
ion was characteristic for each phytoestrogen which has been observed previously, using different
interfaces and masses [17,24,27,28]. The [M-H]- were chosen for quantification in SIM mode (Table 1).
Since quercetin and enterodiol present the similar molar masses (302 g/mol) and a close elution, the ions
with m/z of 151.1 and 253.1 were selected for their quantification, respectively. Phytoestrogens were
analyzed using the four MSD signals.

3.2. Selectivity

Only a few peaks were observed in the reagent blanks and in the matrix blanks but did not
interfere with the analysis (Figure 2). These peaks were due to the enzyme Helix pomatia, which has
been reported to contain levels of some phytoestrogens. The enzyme H1 contained naringenin
(0.47 ng/mg), kaempferol (0.02 ng/mg), biochanin A (0.01 ng/mg), and luteolin (0.517 ng/mg) but
not secoisolariciresinol and genistein (as previously reported for the HP-2 type enzyme [29,30]).
Grace et al. 2006 [30] showed that Helix pomatia could be purified to remove phytoestrogen contamination
by SPE. However, this additional purification step could affect the enzymatic activity, remove or
reduce components involved in the deconjugation process, and lower the levels of free phytoestrogens.
In particular, the concentration of coumestrol has been found to be reduced (by 17%) when the
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purified enzyme was used compared to the crude enzymatic solution. In serum, changing the
enzyme concentration [29] could reduce interferences, however, complete hydrolysis should be
ensured and awaits evaluation. The low content of phytoestrogens in the enzyme were corrected for
the presence of phytoestrogens in each sample analyzed using the reagent blank [31]. Coleution of
secoisolariciresinol with matrix components at the beginning of the gradient can interfere with the
analysis in serum [32]. However, solid-phase extraction and liquid-liquid extraction conditions reduced
endogenous substances in serum, urine and food. Additionally, changes in the chromatographic method
and using single ion monitoring allowed the reduction of interferences and maximized selectivity.

Figure 2. Representative MS chromatogram of the four MSD signals of a reagent blank (A) and a human
blank serum (B) with internal standard.

3.3. Linearity and Sensitivity

Phytoestrogen levels present a wide variation between food and biofluids of individuals.
Phytoestrogens quantification must be ensured below the part per billion, mainly when the method
will be applied to individuals with a low intake of phytoestrogens. When human samples and food
are meant to be analyzed at the same time, a dynamic range is the best way to ensure the flexibility
of the analytical method. Calibration curves showed a linear response for all the 16 phytoestrogens.
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Linearity of the LC-MS system response was tested at a range of 0.16 to 16,000 ng/mL for phytoestrogens
in solution, which showed correlation coefficients of ≥0.98. The analytical method demonstrated
a linear response in the range of 0.02 to 2000 ng/mL for serum, and 0.008 to 1200 ng/mL for food and
urine, with correlation coefficients of >0.97 in the samples, except for enterodiol (r2 = 0.95) in food,
biochanin A (r2 = 0.95) and coumestrol (r2 = 0.96) in urine (Table 2).

Table 2. Limits of detection (LOD), limits of quantification (LOQ), method linearity (r2) and recoveries
(RE%) of phytoestrogens in food, serum and urine.

Food Serum Urine

RE% RE% RE%

Phytoestrogen LOD LOQ r2 100 ng/mL LOD LOQ r2 16 ng/mL 40 ng/mL LOD LOQ r2 200 ng/mL

Resveratrol 0.025 0.084 0.994 44 0.04 0.12 0.992 92 86 0.018 0.06 0.998 50
Biochanin A 0.006 0.022 0.979 74 0.01 0.04 0.977 77 68 0.002 0.008 0.951 97

Secoisolariciresinol 0.023 0.078 0.993 66 0.07 0.25 0.987 99 99 0.008 0.027 0.993 59
Luteolin 0.009 0.033 0.995 20 0.01 0.02 0.998 82 72 0.028 0.096 0.982 80

Coumestrol 0.003 0.117 0.977 88 0.01 0.05 0.971 30 29 0.001 0.003 0.960 101
Formononetin 0.007 0.023 0.998 78 0.04 0.13 0.978 73 65 0.003 0.011 0.970 92

Daidzein 0.011 0.037 0.987 67 0.001 0.003 0.972 102 94 0.042 0.141 0.984 76
Enterodiol 0.043 0.144 0.948 72 0.06 0.20 0.981 98 88 0.039 0.133 0.983 103

Equol 1.061 3.541 0.992 94 0.53 1.77 0.968 104 96 0.068 0.227 0.981 90
Kaempferol 0.008 0.029 0.991 15 0.05 0.16 0.986 76 63 0.003 0.012 0.989 76

Glycitein 0.212 0.709 0.968 92 0.13 0.45 0.980 90 88 0.075 0.251 0.969 111
Matairesinol 0.012 0.041 0.968 87 0.01 0.04 0.984 93 91 0.059 0.198 0.980 98
Naringenin 0.014 0.041 0.988 70 0.01 0.04 0.997 84 71 0.005 0.019 0.985 83
Quercetin 0.011 0.036 0.989 80 0.06 0.21 0.984 83 76 0.061 0.206 0.986 84

Enterolactone 0.002 0.008 0.978 85 0.01 0.03 0.979 80 74 0.001 0.003 0.976 110
Genistein 0.006 0.021 0.981 113 0.003 0.01 0.988 101 89 0.001 0.006 0.975 87

Limits of detection (LOD) and quantification (LOQ) were set as the lowest final concentration in the sample,
with a signal-to-noise ratio of 3 a 10, respectively, expressed in ng/mL. Linearity was performed three times, and each
level of concentration was injected in triplicate. The linearity of the method was evaluated in the range of 0.02 to
2000 ng/mL for serum, and 0.008 to 1200 ng/mL for food and urine. Mean recoveries were calculated as the ratio of
the peak area of phytoestrogen spiked before extraction to the peak area of the standard multiplied by 100 in blank
samples on three different days.

Limits of detection and quantification are listed in Table 2. A comparative table with relevant methods
is available as supplementary material for food, serum and urine (Supplementary Tables S1–S3). In food,
the LODs and LOQs were lower for enterolactone (0.002 ng/mL and 0.008 ng/mL, respectively) and
higher for equol (1.061 ng/mL and 3.541 ng/mL, respectively). The LODs were lower than the method
reported by Milder et al. (2004) with 2.3 ng/mL (0.2–10 µg/100 g, in bread) [33] and Kuhnle et al. (2007)
with 1 ng/mL (1.5 µg/100 g) [28] but comparable with Vila-Donat et al. (2015) with 0.03–0.3 ng/mL
(legumes, LOQ of 0.01 ng/mL for biochanin A) [34]. The LODs correspond to 0.001 to 0.52 µg/100 g of
food (final concentration depends on humidity), suitable for the analysis of food with low levels of
phytoestrogens, and it is a useful method to develop a food database where phytoestrogens intake is
characterized by a wide variety of food with low phytoestrogen levels. In serum, the LODs ranged from
0.001 to 0.53 ng/mL and LOQs from 0.003 to 1.8 ng/mL. These limits were lower than previous methods
using different detectors, with LODs from 0.01 to 132.6 ng/mL [14,17,27,32,35–37], and comparable
with formononetin (0.02 ng/mL), enterodiol (<0.01–0.06 ng/mL,) and glyciteina (0.01 ng/mL) [38,39].
Therefore, the method presents an advantage for the analysis of serum in the ppb-levels. In urine,
the LODs for the method ranged from 0.001 to 0.075 ng/mL, and LOQs from 0.003 to 0.25 ng/mL.
Previous methods reported LODs between 0.05 and 65.1 ng/mL [14,32,40,41], with similar limits for
enterodiol (0.04 ng/mL), equol (0.06 ng/mL) and glycitein (0.0007 ng/mL) [40,42]. The results indicate
that the liquid-liquid extraction and HPLC-DAD-ESI-MS presented a high sensibility for the analysis
of phytoestrogens in human urine. The sensitivity of the method could be explained by the addition of
formic acid from the mobile phase in the injection solvent that improved the ionization efficiency, as well
as the concentration of the sample during extraction and the injection volume (60% to 10-fold larger).
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3.4. Recovery

Recoveries (REs) of phytoestrogens (Table 2) in food were in the range of 66 to 113%, except for
kaempferol, luteolin and resveratrol (15 to 44%). Previous methods (Supplementary Table S1) have
reported recoveries between 70 to 110% and others as low as 30% [12,28,33,34,43]. Recovery in food
could vary between samples due to the intrinsic composition of the food matrix. Potential interfering
substances, such as proteins, lipids, carbohydrates and fiber could result in decreased hydrolysis
and RE% of phytoestrogens [28]. Also, the matrix effect is challenging to establish in food and could
differ significantly due to the variety of matrices and the lack of quality control for foodstuff samples
(as opposed to single matrix sample like serum) [28].

REs in serum were from 63 to 104% except for coumestrol (30%). Compared to previous
methods (Supplementary Table S2, an improvement in recovery was observed for equol (88%) [37],
coumestrol (20%) [32], and secoisolariciresinol (86–96%) [32,44], while the rest presented comparable
recoveries [14,27,36]. Despite the advances in the method extraction, RE of coumestrol was below 60%.
Coumestrol with a relatively non-polar characteristic may yield low recoveries, which enhances high
retention on the sorbent, low solubility in the elution solvent and low RE% [32]. Although a higher
recovery can be achieved by liquid-liquid extraction (77%) [36], the present method represents an
advance in coumestrol analysis given that other methods excluded its analysis in serum [14,36].
A minor matrix effect was observed in pooled blank serum samples, with ion suppression for biochanin
A, coumestrol and formononetin and enhanced ionization for matairesinol and secoisolariciresinol
(Supplementary Table S4).

For urine, liquid-liquid extraction presented REs within the expected levels. The REs of the
spiked samples were between 76 to 111%, except for resveratrol (50%) and secoisolariciresinol
(59%). Acceptable recoveries of phytoestrogens in urine have been observed in previous methods
(Supplementary Table S3) but these have focused mainly on isoflavones (65–110%) [14,32,37,40,41,44].
Matrix effect was not considered as urine could be described as a relatively “clean” sample (as opposed
to serum) [29].

Acceptable RE% for all compounds is a difficult task when a wide variety of phytoestrogens are
being analyzed per chromatographic run. The pretreatment of the sample and the washing solution
used in the solid-phase extraction resulted in an overall improvement in recovery of kaempferol,
biochanin A and luteolin (increasing up to 30–50%, data not shown). The recoveries of equol and
glycitein were lower when using 100% methanol as the injection solvent (data not shown). In the same
way, REs decreased for some of the phytoestrogens when changing the solvent to the mobile phase.
The injection solvent was varied to increases the solubility of the phytoestrogens while maintaining the
strength of the mobile phase from methanol to methanol/initial mobile phase (v/v, 40/60). Increasing the
methanol percentage in the injection solvent and maintaining a percentage of mobile phase allowed
acceptable recoveries (60–110%). Cao et al. (2010) and Prasain et al. (2010) presented high RE (65–105%)
using methanol/mobile phase as the injection solvent [35,36]. Although aqueous injection solvent
could be used [14,17], it should be mentioned that the present study analyzes a wide variety of
phytoestrogens, with different polarities.

3.5. Accuracy

Accuracy (Table 3) was determined by using quality control samples in replicates at different levels
(16 and, 40 ng/mL) for serum and one level for food (100 ng/mL) and urine (200 ng/mL). Relative errors
were between 1.0 to 13% for food, 0.3 to 15% for serum and 2 to 10% for urine. Only the accuracy of
enterodiol in food was above the value recommended by the Food and Drug Administration (FDA)
(<15% CV other than lower LOQ [45]) with 18%. Previous methods (Supplementary Tables S1–S3) have
presented similar acceptable accuracy levels for food (bread [44]), serum [32,36,37,44] and urine [32,40,44].
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Table 3. Accuracy * (%), inter- a and intra- b precision (%) of phytoestrogens in blank serums on three
different days.

Food Serum Urine

100 ng/mL 16 ng/mL 40 ng/mL 200 ng/mL

Phytoestrogen Accuracy Inter-
Assay

Intra-
Assay Accuracy Inter-

Assay
Intra-
Assay Accuracy Inter-

Assay
Intra-
Assay Accuracy Inter-

Assay
Intra-
Assay

Resveratrol 4 8.36 7.11 5 9.43 6.67 11 12.27 1.88 10 15.71 5.82
Biochanin A 7 3.13 1.97 11 8.50 3.87 9 14.30 3.57 2 8.01 2.19

Secoisolariciresinol 6 1.50 2.90 4 3.73 2.05 3 3.54 4.39 5 4.63 4.70
Luteolin 5 5.53 11.56 6 10.55 5.92 0.6 6.87 6.86 5 12.99 3.65

Coumestrol 10 9.83 5.99 13 14.46 2.33 1 4.87 3.65 2 3.74 1.97
Formononetin 1 7.24 4.08 12 11.03 3.20 5 6.57 5.30 2 10.24 1.89

Daidzein 12 2.86 6.93 0.3 11.79 11.31 8 12.48 13.32 6 3.31 6.61
Enterodiol 18 3.12 5.96 9 6.09 3.73 7 14.73 3.45 6 1.32 5.22

Equol 6 8.47 6.34 1 4.11 0.88 1 6.17 7.41 7 3.28 4.07
Kaempferol 9 11.16 13.16 10 14.25 3.90 5 1.46 2.96 3 11.49 3.98

Glycitein 9 10.91 6.94 12 14.84 2.72 3 9.10 2.95 4 2.43 4.25
Matairesinol 13 11.21 5.61 1 4.14 1.27 6 10.30 2.84 3 11.59 3.33
Naringenin 10 4.06 9.19 2 12.21 4.75 1 2.22 4.12 5 5.18 4.41
Quercetin 8 10.08 11.21 15 14.87 3.18 6 14.19 7.25 5 8.10 2.38

Enterolactone 8 2.72 5.70 0.5 6.08 5.61 3 8.49 4.73 4 3.47 3.54
Genistein 8 0.44 4.44 2 14.05 3.74 10 14.29 6.78 4 6.25 2.88

* Value expressed as the observed mean concentration to the nominal concentration of each analyte. Precision is
presented as a inter-assay (between-runs) and b intra-assay (within-runs). Accuracy and precision at each level
should not exceed 15% of the coefficient of variation.

3.6. Precision

Inter-assay precision (Table 3) in food was between 0.44 (genistein) and 11.21% (matairesinol),
and intra-assay precision between 1.97 (biochanin A) and 13.16% (kaempferol). Serum inter-assay
precision was between 1.46 (kaempferol at 40 ng/mL) and 14.87% (quercetin at 16 ng/mL). The intra-assay
precision for serum did not exceed 15% and was found between 0.85 and 13.32%, with the highest
values for daidzein (11.31% at 16 ng/mL and 13.32% at 40 ng/mL). While urine inter-assay precision
was within acceptable levels (1.32–13%), except for resveratrol with 15.71%. Intra-assay precision for
urine was below 7%. Acceptable values have been previously reported (Supplementary Tables S1–S3)
for food [12,28], serum [32,36,37,44] and urine [17,32,37,41,44].

Accuracy and precision values indicate that the HPLC-DAD-ESI-MS method is useful for the
analysis of the 16 phytoestrogens and proved to be exact, reproducible and reliable at the evaluated
levels. As only one quality control level for urine and food, and two levels for serum were included in
the analysis, this could be considered as a limitation of the study. Nonetheless, analytical controls such
as glassware blank, reagent blank, matrix blank, and phytoestrogens solution were included in every
run to ensure the quality of the analytical test.

3.7. Analysis of Phytoestrogens in Food, Serum and Urine

As part of the validation process, regional commercial food (n = 6, Table 4), urine (12 h) and
serum samples from healthy women (n = 10, Table 5) were analyzed. The CVs of samples processed in
duplicate ranged from 2–13% for food, 2–8% for serum and 1–13% for urine (except for resveratrol with
20%), thus the proposed method presents adequate repeatability. A representative MS chromatogram
of a commercial food sample (turkey ham), serum and urine from a healthy woman is illustrated in
Figure 3.

Phytoestrogens concentrations were below the LOD for most of the foodstuff. However, daidzein,
kaempferol, naringenin and genistein content in turkey ham, beans, mandarins and tomatoes products
were high. Although some selected types of foodstuff have been analyzed previously, only a few
phytoestrogens have been included in the analysis (mostly daidzein, quercetin, genistein and some
lignans). Comparable levels were observed with previous studies (Supplementary Table S5) [22,28,46,47]
for tomato products (<0.01–14 µg/100 g) and lettuce (not detected–1.63 µg/100 g), except for naringenin
in tomato (27.1 µg/100 g [46]). These comparable levels highlight the suitability for the method to
quantify phytoestrogens in food. Higher phytoestrogens content was observed for citrus and beans
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compared to previous studies (0.02–10.02 µg/100 g [22,46] and not detected–66 µg/100 g [22,28,46],
respectively). The high levels of naringenin in beans could be explained by the use of chili, onion,
tomato and other vegetables as condiments. The high levels in turkey ham could be explained by
the use of soy as an additive to reduce the price of processed food while adjusting protein levels,
with isoflavones content similar to soy-based meat products (465–4430 µg/100 g) [48,49]. The Mexican
consumer ombudsman has recently published notifications that some ham products in Mexico do not
comply with the percentage of meat advertised, omit the added soy on their labels, and could represent
a risk as allergens for consumers [50]. Our study reported the first comprehensive phytoestrogens
content of highly consumed Mexican food items that are a source of wide types of phytoestrogen.

Table 4. Phytoestrogen content (µg/100 g of wet weight) of regional food from North Mexico.

Lettuce,
Raw

Beefsteak
Tomato, Cooked

Tomato,
Puree

Mandarin,
Raw

Pinto Beans,
Cooked Turkey Ham

Resveratrol - - - - - -
Biochanin A - - - 0.06 0.04 -

Secoisolariciresionol 0.64 - - 2.51 14.24 -
Luteolin - 0.15 0.6 0.1 - -

Coumestrol - 0.18 0.05 0.02 0.59 -
Formononetin - 0.41 0.36 0.04 - -

Daidzein 0.04 - 0.7 - 3.5 395.24
Enterodiol 0.21 - - 4.87 - -

Equol - - - 11.6 - -
Kaempferol 0.01 0.07 1.95 - 406.41 0.64

Glycitein - - - 0.53 - 172.39
Matairesinol - 1.32 1.91 0.02 - -
Naringenin 0.06 140.6 322.39 83.9 81.97 13.17
Quercetin 0.02 0.33 16.5 0.99 1 -

Enterolactone - - 0.02 0.03 - 0.09
Genistein 0.03 0.24 0.89 - 1.96 356.24

Table 5. Serum and urinary levels in Northern Mexican women (n = 10).

Phytoestrogen Serum (ng/mL)
Urine

(ng/mL) (ng/mmol Creatinine)

Resveratrol 0.28 ± 0.36 1.53 ± 1.63 0.20 ± 0.21
Biochanin A 0.53 ± 0.38 1.15 ± 0.75 0.15 ± 0.10

Secoisolarisiresinol <LOD 1.81 ± 1.96 0.24 ± 0.26
Luteolin 7.08 ± 1.54 2.51 ± 1.59 0.33 ± 0.21

Coumestrol 0.65 ± 0.44 1.01 ± 1.54 0.13 ± 0.20
Formononetin 0.03 ± 0.09 1.74 ±1.87 0.23 ± 0.24

Daidzein 4.50 ± 4.80 148.77 ± 193.00 19.51 ± 25.31
Enterodiol 0.07 ± 0.20 0.91 ± 2.04 0.04 ± 0.08

Equol 8.51 ± 4.55 36.38 ± 37.60 4.77 ± 4.93
Kaempferol 20.14 ± 6.43 48.61 ± 97.48 6.37 ± 12.78

Glycitein 0.56 ± 1.44 52.71 ± 71.2 6.91 ± 9.35
Matairesinol <LOD 1.58 ± 4.15 0.21 ± 0.54
Naringenin 1.76 ± 0.68 78.43 ± 89.57 10.28 ± 11.75
Quercetin 5.53 ± 3.29 1.40 ± 1.17 0.18 ± 0.15

Eneterolactone 0.61 ± 0.47 36.03 ± 27.31 4.72 ± 3.58
Genistein 4.85 ± 5.12 56.52 ± 76.27 7.41 ± 10.00



Appl. Sci. 2020, 10, 8147 13 of 17

Figure 3. Representative MS chromatogram of the four MSD signals of real serum (A) and urine
(B) samples from a healthy woman, and commercial food (C, turkey ham) with internal standard.
4MU, 4-methylumbelliferone; 4MUS, 4-methylumbelliferyl sulfate; Bio A, biochanin A; Cou, coumestrol;
Dai, daidzein; Elac, enterolactone, Eq, equol; For, formononetin; Gen, genistein; IS, 4-hydroxybenzophenone
(internal standard); Gly, glycitein; Kae, kaempferol; Lut, luteolin; Nar, naringenin, PhP, phenolphthalein;
Sec, secoisolariciresinol; and Res, resveratrol.

For biofluids, phytoestrogens mean concentrations were below the LOD to 20.14 ng/mL for serum
and 0.91 to 148.77 ng/mL for urine. Higher levels of flavonoids in serum and urine could be related to the
sampling period (winter and spring), characterized by an increased intake of fruits and vegetables [51].
The lower levels for isoflavones, resveratrol, coumestrol and lignans could be due to the limited intake
of wine/grapes, soy products and cereals in the North region of Mexico. These phytoestrogens levels
are consistent with the daily median intake of (poly)phenols in adult Mexican women from the Mexican
Teachers’ Cohort (MTC), with flavonoids as a main dietary source (33.5%) and stilbenes and lignans as
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minor sources (0.1%) of (poly)phenols. Fruit (oranges, mandarins and orange juice) contributed to
~26% of (poly)phenols intake in the MTC, followed by cereals and tubercules with 10% and vegetables
and legumes with 9% [52]. Serum and urinary levels of equol were higher compared to Asian infants
(11.36 ng/mL urine) [20] and adults (<0.54–0.63 ng/mL urine) [41], and adults supplemented with
isoflavones (not detected plasma levels after 123 mg soy supplementation) [53].

4. Conclusions

We described a comprehensive HPLC-MS validated method for phytoestrogen analysis in
human samples and foodstuffs, which represents an advance in the quantification of phytoestrogens.
The method allowed the simultaneous quantification of 16 phytoestrogens, expanding the number
of phytoestrogens analyzed by chromatographic run in a short time. The evaluated parameters
demonstrated that linearity, selectivity, accuracy, precision and recovery are within the acceptable range,
with high sensitivity in the lower ppb-level. The method was successfully applied to food, urine and
serum samples. Therefore, this method is flexible and suitable for phytoestrogens quantification that
could be used to analyze human samples in large-scale epidemiological studies investigating the
association between phytoestrogen exposure and human health. The method described here could be
used to determine phytoestrogens’ content in regional food and create a phytoestrogens database in
(North) Mexico.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/10/22/8147/s1,
Supplementary Table S1. Comparison of relevant methods for the quantification of phytoestrogens in food,
including matrix (g), system (injection volume), extraction (reconstitution) used, phytoestrogens analyzed, limits of
detection/limits of quantification (LOD/LOQ, ng/mL), recoveries (RE%), accuracy (%), and inter/intra- precision
(%). Supplementary Table S2. Comparison of relevant methods for the quantification of phytoestrogens in
serum, including matrix (g), system (injection volume), extraction (reconstitution) used, phytoestrogens analyzed,
limits of detection/limits of quantification (LOD/LOQ, ng/mL), recoveries (RE%), accuracy (%), and inter/intra-
precision (%). Supplementary Table S3. Comparison of relevant methods for the quantification of phytoestrogens
in urine, including matrix (g), system (injection volume), extraction (reconstitution) used, phytoestrogens analyzed,
limits of detection/limits of quantification (LOD/LOQ, ng/mL), recoveries (RE%), accuracy (%), and inter/intra-
precision (%). Supplementary Table S4. Matrix Effect (%) at low and high quality control level in four different
blank serums. Supplementary Table S5. Comparison of phytoestrogens content (µg/100 g) found in this study
with relevant previously studies and public databases.
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