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Abstract: A new paradigm for machine learning-inspired atmospheric turbulence sensing is developed
and applied to predict the atmospheric turbulence refractive index structure parameter using deep
neural network (DNN)-based processing of short-exposure laser beam intensity scintillation patterns
obtained with both: experimental measurement trials conducted over a 7 km propagation path,
and imitation of these trials using wave-optics numerical simulations. The developed DNN model was
optimized and evaluated in a set of machine learning experiments. The results obtained demonstrate
both good accuracy and high temporal resolution in sensing. The machine learning approach was
also employed to challenge the validity of several eminent atmospheric turbulence theoretical models
and to evaluate them against the experimentally measured data.

Keywords: atmospheric remote sensing; directed energy; free-space laser communication; adaptive optics;
lidars; active imaging; optical surveillance

1. Introduction

Sensing and characterization of atmospheric turbulence effects and analysis of their impact on
laser beam and image propagation are deep-rooted in classical Kolmogorov theory [1,2]. In this
theory the turbulence is described in terms of three dimensional boundless, statistically homogeneous
and isotropic random fields of refractive index fluctuations which obey the Kolmogorov two-thirds
power law. The refractive index structure parameter C2

n represents in this law the sole measure of
atmospheric turbulence strength, thus emphasizing the critical importance of C2

n evaluation for various
atmospheric optics applications [3–6]. Although, the refractive index structure parameter cannot be
directly measured, it can nevertheless be obtained from analysis of experimental data that characterizes
the influence of atmospheric turbulence on optical waves characteristics (e.g., laser beam intensity
fluctuations, focal spot centroid wander, image motion, etc.).

The retrieval of C2
n from measurements is based on analytical (or approximate) expressions that

link C2
n with the statistical characteristics of optical waves propagating in turbulence, which are

derived from the classical turbulence theory. This indirect, C2
n sensing approach is widely used

in conventional instruments such as optical scintillometers [7], differential image motion monitors
(DIMMs) [8], Shack–Hartman sensors [9–11], etc. The legitimacy of this sensing concept is based
on the Kolmogorov notion of atmospheric turbulence local statistical homogeneity and isotropy,
and the ergodicity assumption implying that ensemble-averaged optical characteristics used in the
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mathematical expressions used for C2
n retrieval, can be substituted by the corresponding time-averaged

values computed from the collected measurement data.
To “justify” this substitution it is assumed that all temporal changes that may occur during optical

characteristics sensing are solely caused by wind-induced translation of “frozen” refractive index
inhomogeneities (Taylor’s frozen turbulence hypothesis) [12]. However, even if these basic assumptions
are met, collection of a statistically representative dataset comprised of several thousand uncorrelated
measurements of optical characteristics used for C2

n retrieval, which are required for accurate statistical
estimations based on time-averaging, takes considerable time ∆T. This time, ranging in conventional
C2

n sensors from a few to 10 s minutes defines an unavoidable time delay between subsequent C2
n

measurements characterizing temporal resolution in C2
n sensing.

In the ideal world of the Kolmogorov and Taylor turbulence theoretical framework, an increase
in averaging time ∆T means more data points are available for time averaging resulting in a higher
accuracy in C2

n evaluation, since the turbulence is assumed to be alike between sequential measurements.
In reality, changes in atmospheric turbulence conditions frequently occur at a few seconds time scale.

In these, which are typical for near the ground and slant propagation path sensing scenarios, an increase
in averaging time ∆T may result in inaccurate representation of actual atmospheric turbulence dynamics,
while from the other side, a significant shortening of this time may cause unacceptable errors in C2

n
estimation due to an insufficiently small dataset being used for time averaging.

For the reasons mentioned above, conventional C2
n sensors based on time-averaging cannot

provide sufficiently high temporal resolution for the evaluation of atmospheric turbulence dynamics,
which is required for predictive performance assessment of various electro-optical systems including
directed energy, free-space laser communication, active imaging and optical surveillance.

Another drawback of existing electro-optical C2
n sensors is that they are inherently tied to a very

specific (Kolmogorov) theoretical framework and for this reason cannot effectively contest its validity in
diverse real world environments, as well as assist in deeper understanding of atmospheric turbulence
effects and the development of more advanced theoretical models.

The deep machine learning approach that is applied here for atmospheric turbulence sensing
offers unexplored opportunities for designing a new class of sensors capable of atmospheric turbulence
characterization with high temporal resolution, experimental assessment of turbulence models and
sensor calibration.

In general terms, the machine learning sensing approach described here does not require the
collection of large datasets to perform accurate time-averaging, but rather utilizes real-time extraction
and analysis of data features that are characteristic to specific turbulence conditions and C2

n values.
This extraction and analysis of data features is performed using a preliminary trained deep neural
network (DNN) signal processing system.

In this study deep machine learning is applied to predict C2
n values via DNN processing of

short-exposure laser beam intensity scintillation patterns (images) obtained with both experimental
measurement trials conducted over a L = 7 km near-horizontal propagation path (Section 2), and the
imitation of these trials with wave-optics numerical simulations (Section 3).

In the machine learning experiments reported here we utilized datasets comprised of a large
number (up to 1.2·105) of data instances consisting of C2

n values and laser beam intensity scintillation
images either computed (SIM datasets) or measured during the experimental trials (ATM datasets).

A brief description of the developed DNN architecture (referred to as the Cnˆ2Net model),
major performance characteristics and testing results are outlined in Section 4.

The possibility for DNN to be the core element of a new C2
n sensor type was evaluated in the

machine learning experiments described in Section 5. In these experiments the ATM datasets were
subdivided on two non-overlapping segments (subsets), each containing data representing the full
range of C2

n values observed in the experimental trials. One data sub-set was used for the Cnˆ2Net
training while the second was applied for evaluation of the DNN efficiency in prediction of the true
(measured) C2

n values based on scintillation images that had never been utilized (never “seen”) during
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the DNN training. The obtained results demonstrate high accuracy in C2
n value predictions withing the

entire range of C2
n measurements. This suggests that an optical sensing system with DNN-based signal

processing that is side-by-side trained with a “trusted” scintillometer could further be independently
used as a C2

n sensor (DNN-based scintillometer). It is shown that the Cnˆ2Net-scintillometer provides
capabilities for significantly higher temporal resolution in C2

n sensing.
In other machine learning experiments described in Section 6 we investigated the possibility for

the Cnˆ2Net to challenge validity of several eminent atmospheric turbulence theoretical models and
evaluated them against experimentally measured data.

The Cnˆ2Net was trained using SIM datasets corresponding to spatially homogeneous turbulence
described by the Kolmogorov power spectrum model. The SIM-trained DNN was used to predict the
true (measured with a scintillometer) C2

n values via processing of the scintillation images obtained
during atmospheric sensing trials (images from the ATM dataset). The results show a significantly
larger C2

n prediction error in comparison with what we observed when instances from the same ATM
datasets were used for both Cnˆ2Net training and C2

n prediction.
Prior to making the judgment that during the measurement trials turbulence did not obey the

Kolmogorov two-thirds power law, or that wave-optics numerical simulations used for SIM dataset
generation did not provide a sufficiently accurate representation of the atmospheric measurement trials,
we took into account the potential impact of the laser beacon’s location on a building rooftop exposed
to sunlight leading to a potential turbulence enhancement within a relatively narrow layer near the
laser source. To evaluate this hypothesis, the Cnˆ2Net model was trained with several SIM datasets
corresponding to spatially inhomogeneous (enhanced near the laser beacon) turbulence that still obey
Kolmogorov’s theoretical model. Fine-tuning of the C2

n profile (degree of turbulence enhancement) in
the training SIM datasets allowed significant improvement in DNN prediction of the true (measured)
C2

n values within a wide range of turbulence conditions observed during the experimental trials.
The Cnˆ2Net model was also applied for cross-evaluation of various atmospheric turbulence

models. In the computer simulation experiments described in Section 7 we utilized SIM datasets
corresponding to the classical Kolmogorov turbulence model and its most known modifications
(Von Karman and Andrews models). These models were evaluated in several “cross-dataset” modeling
and simulation experiments in which a DNN trained at one SIM dataset was challenged to predict
the true C2

n values based on scintillation images computed for a different turbulence spectrum model.
The results obtained demonstrated high C2

n prediction accuracy and its relatively weak dependence on
the examined turbulence models and their major parameters (turbulence inner l0 and outer L0 scales),
unless these parameters were artificially altered beyond a range reasonable from a physics viewpoint.
This suggests that intensity scintillation patterns corresponding to the examined turbulence spectrum
models have nearly identical (undistinguished by the DNN) spatial structures.

At the same time, DNN processing of scintillation images obtained using a recently
developed turbulence model with noticeable deviation from the Kolmogorov two-thirds power
law (non-Kolmogorov turbulence [13,14]) resulted in large C2

n prediction errors. Similarly, large errors
were observed when the DNN trained using non-Kolmogorov turbulence models was contested by the
experimental sensing data.

In the concluding Section 8 we discuss deep learning’s unique potentials for the understanding
of atmospheric turbulence dynamics, new DNN-based opportunities for the development of novel
atmospheric sensing systems capable of real-time atmospheric turbulence monitoring and rapid
forecasting of turbulence’s impact on various atmospheric optics remote sensing, imaging, laser
communication and laser beam projection systems.

2. Atmospheric Sensing Trials: Collection of ATM Datasets

A schematic of the experimental setup used for the collection of C2
n values and laser beam intensity

scintillation images for the ATM datasets is shown in Figure 1. Both a laser beacon module and
commercial scintillometer transmitter (Scintec BLS 2000 [15]) were located on the 40 m-high roof
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of the VA Medical Center (VAMC) in Dayton, Ohio. The laser beacon was positioned inside an
instrument shed on the VAMC roof 3 m from the scintillometer transmitter. After propagating over
7 km, the beacon light entered an optical receiver positioned inside the University of Dayton (UD)
Intelligent Optics Laboratory (IOL) located on the 5th floor (~20 m height) of the UD Fitz Hall building.
Both optical and the scintillometer receivers were placed right behind the IOL window (shown by
arrow in Figure 1) approximately 1.5 m from each other. The propagation path in Figure 1 can be
considered as nearly horizontal with a relatively small (~−1.15◦) slant angle.
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Figure 1. Notional schematic of the experimental setting used for collection of short-exposure laser
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parameter C2
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As a light source we used a 1064 nm wavelength laser with ~5 mW output power. The laser
beam was coupled into a single-mode polarization maintaining fiber. The Gaussian-shape laser beam
emitted through the fiber tip was expanded to a diameter of ~25 mm and collimated by a lens with
aperture diameter of 50 mm. The power losses due to laser beam truncation by the collimating lens
aperture was of the order of 0.5%. For the laser beacon beam angular alignment, the end section
(~3cm) of the beam delivery fiber was installed inside a fiber-tip positioner module that provided
piezo-actuator-based controllable fiber tip x- and y-displacements [16]. This angular alignment was
performed remotely from the UD/IOL site through an RF communication link.

The optical receiver of the beacon light was composed of lens L1 and L2 (see Figure 1). Lens L2

was used for re-imaging of the receiver (lens L1) pupil of diameter D onto a CCD camera (12-bit SU320
sensor with 320 × 256 pixels resolution). To prevent the negative impact of ambient light, a narrow
band interference filter was placed in front of the CCD camera.

The camera was synchronized with a scintillometer that provided C2
n values each ∆T = 60 s

(the shortest measurement rate available with the BLS 2000 scintillometer). Between two sequential C2
n

measurements the camera captured N∆T short-exposure intensity scintillation images.
Prior to being included into an ATM dataset, the scintillation images were digitally processed.

Image processing included selection of a 256 × 256 pixel central square area, followed by a reduction
in the selected image section resolution to 128 × 128 pixels by averaging 2 × 2 square pixel areas,
normalization on the maximum value and downscaling from 12- to 8-bit grey scale resolution.

To obtain data that represent a wide range of atmospheric turbulence conditions several
experimental trials were conducted at different times over several days between 9 March and
29 April 2020. The major details of the experimental trials are presented in Table 1.

The first ATM dataset (ATM#1) was composed of the instances (scintillation images and C2
n

measurements) collected during three sensing trials performed on 9 March and 13 March (trials 1A,
1B and 1C). During these trials, an optical receiver with D = 11 cm aperture diameter was used.
The CCD camera frame rate was set to 1.0 frame per second (f/s) which corresponds to N∆T = 60
images captured between two sequential C2

n measurements. The ATM#1 dataset included a total of
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19,336 (≈20.0K) short-exposure scintillation images and 322 corresponding C2
n values ranging from

6·10−17 m−2/3 to 1.7·10−14 m−2/3.

Table 1. ATM dataset collection trials characteristics.

Trial # Date and Time # Frames

1A 09 March 11:44 a.m. to 12:52 p.m. 3.8 K
1B 09 March 05:46 p.m. to 09:15 p.m. 9.2 K
1C 13 March 12:10 p.m. to 02:09 p.m. 7.0 K
2A 27 April 12:54 p.m. to 09:05 p.m. 55 K
2B 28 April 01:16 p.m. to 07:51 p.m. 45 K
2C 29 April 05:29 p.m. to 07:11 p.m. 12 K

To enrich the dataset and better understand the potential impact of optical receiver characteristics
on DNN-based data processing, the second (ATM#2) dataset was collected using an optical receiver
with a larger aperture (D = 14.4 cm). The camera integration time was reduced from 0.05 ms to 0.01 ms,
while the frame rate was increased two-fold (N∆T = 120).

The ATM#2 dataset was composed of data collected during three measurement trials conducted
on 27 April, 28 April and 29 April (trials 2A, 2B and 2C). The dataset included a total of 115,000 (115K)
intensity scintillation images and 958 synchronously captured C2

n values ranging from 5·10−17 m−2/3 to
1.6·10−14 m−2/3. Since the data collection trials were performed at different times and each ATM dataset
included data from different trials, it is more convenient to use the frame number m to identify both
sequentially captured scintillation images and the corresponding C2

n(m) values within each dataset.
To have a matching number of captured scintillation images (frames) and C2

n values, we artificially
included N∆T additional C2

n values between the scintillometer sequential measurements. These “extra”
C2

n values were computed using a simple linear approximation of the C2
n data between each two

sequential measurements. Note that the generation of additional instances from existing data
(data augmentation) is commonly used in machine learning to increase the training set size [17].

The diversity of atmospheric turbulence conditions during the measurement trials and the impact
of turbulence strength (variability of C2

n) on the characteristic spatial structure of acquired scintillation
images are illustrated in Figure 2.Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 28 
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for the measurement trial 1A, 1B, and 1C (ATM#1 dataset) (a) and 2A, 2B, and 2C (ATM#2 dataset) (b).
Each dataset is comprised of intensity scintillation images and C2

n values synchronously measured by
the BLS-2000 scintillometer during the atmospheric sensing trial. Index m corresponds to image frame
number (frame stamp) in each dataset. Grey scale images below represent exemplary (selected from
the ATM#1 dataset) scintillation patterns captured under different atmospheric turbulence conditions
(different C2

n values).
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3. Wave-Optics Numerical Simulations of Atmospheric Sensing Trials: SIM Datasets

In the machine learning experiments described in the proceeding sections we utilized several
auxiliary datasets that were obtained using numerical simulations (SIM datasets). The simulations
were performed using GPU-enhanced WONAT software [18].

A schematic illustration of the numerical simulation setting is illustrated in Figure 3. In the
simulations we mimic the experimental trial propagation geometry and major parameters of the laser
beacon and optical receiver modules.
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Propagation of a monochromatic collimated Gaussian laser beam (beacon beam) over 7 km was
simulated using the conventional split-step operator (also referred to as wave-optics) technique [19,20].
The turbulence-induced refractive index random fluctuations were assumed to be statistically
homogeneous, isotropic and obey one of the following refractive index power spectrum
models (see Appendix A): Kolmogorov, Tatarskii, Von Karman, Andrews and non-Kolmogorov.
The corresponding SIM datasets are referred to as SIM-KO, SIM-TA, SIM-VK, SIM-AN and SIM-NK.
The refractive index structure parameter C2

n was assumed to be constant along the propagation path in
most of the machine learning experiments described.

To match parameters of the experimental measurement trials, the physical pixel size of the
numerical grid (1024 × 1024) was set to either ∆1 = 1.02 mm (SIM#1) or ∆2 = 1.41 mm (SIM#2). These
pixel sizes correspond to the pixel sizes in the scintillation images in the ATM#1 and ATM#2 datasets
collected using optical receivers with two different aperture diameters (D = 11 cm and D = 14.4 cm).

Each SIM dataset was composed of MSIM = 15,000 (15K) scintillation images
{
ISIM(ri, j, m)

}
and the

corresponding refractive index structure parameter values {C2
n(m)}, where

{
ri, j
}

(i, j = 1, . . . , 128) are
coordinates of numerical grid pixels, and m =1, . . . , MSIM is the image frame stamp. The scintillation
images were obtained by computing intensity distributions {I(ri, j, m)} (i, j =1, . . . , 1024) at the optical
receiver plane and selecting the central 128 × 128 pixel numerical grid area.

To mimic refractive index structure parameter diurnal variation with a simple model, the following
dependence of C2

n(m) (ground truth curve) on the scintillation frame number m was used:

C2
n(m) = C2

n,0[cos(3πm/MSIM) + 1] + b, (1)

where parameters C2
n,0 = 2.0·10−14 m−2/3 and b = 1.0·10−17 m−2/3 were selected to match the overall

range of C2
n change observed during the experimental trials (see Figure 2).

For each C2
n(m) value the turbulence-induced refractive index variations along the propagation

path were represented by a set of Nϕ = 10 thin, equidistantly distributed along the path, statistically
independent random phase screens

{
ϕl(ri, j, m)

}
, where l = 1, . . . , Nϕ and i, j=1, . . . , 1024. The phase

screens were generated using one or another of the turbulence power spectrum models mentioned
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above. To simplify notations, a single set of Nϕ phase screens
{
ϕl(ri, j, m)

}
is referred to here as the

“m-th turbulence realization.” The phase screens in all MSIM turbulence realizations were statistically
independent. For each frame stamp m and the C2

n(m) value defined by Equation (1), the corresponding
mth turbulence realization

{
ϕl(ri, j, m)

}
was computed. The intensity distribution at the optical receiver

plane I(ri, j, m) was obtained by simulating propagation of the beacon beam through the mth turbulence
realization using the split-step operator technique.

Several scintillation images selected from the SIM-KO and ATM#1 datasets corresponding to
approximately equal C2

n values are compared in Figure 4. From a visual assessment, the spatial
structures of the simulated and experimentally measured scintillation patterns are quite similar under
weak-to-medium turbulence conditions (C2

n ≤ 1.0·10−14 m−2/3), while noticeably different for higher
C2

n values (right row images in Figure 4). As discussed in Section 6, this difference is related with the
inhomogeneity of turbulence strength along the propagation path.Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 28 
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There are many options for configuring such DNNs [23]. A typical DNN designed for spatial
feature extraction from image streams is comprised of a sequence (stack) of convolutional and pooling
image processing layers. Each convolutional layer receives a 2D array of data (an image or feature
map of Nc × Nc pixels) and applies several (Nfilter) trainable spatial filters and bias terms to obtain a
set of Nfilter 2D feature maps of the same size at its output. The kernel size nc × nc of such filters may
vary from layer to layer (e.g., from nc = 7 to nc = 1). A 2D array of data (feature map) processed by the
convolutional layer enters a corresponding pooling layer.
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The major goal of the pooling layers is to reduce the dimension (subsample) of feature maps. In the
so-called max-pooling layers, which are quite popular in CNN-based image processing applications,
only the max value of the pooling kernel of size np × np propagates to the next computational layer,
thus reducing the dimension of the feature map by a factor of n2

p.
In a typical deep CNN, the stack of convolutional and pooling layers succeeds with several layers

of fully connected neurons receiving a 1D array of image features (feature vector) as an input. This
transition from 2D feature map to feature vector (flattening) is commonly performed after the last
pooling layer.

The described general building blocks (details can be found in several prominent publications
in this field [24,25]) were utilized in the DNN topology, referred to here as Cnˆ2Net, designed and
optimized for C2

n prediction based on DNN-based processing of short-exposure intensity scintillation
patterns (images).

4.2. Cnˆ2Net Architecture

The Cnˆ2Net architecture is illustrated in Figure 5, where we also included the major characteristics
of convolutional, max-pooling and fully connected layers.
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Figure 5. Topology of the Cnˆ2Net model used for C2
n prediction based on DNN-processing of

short-exposure intensity scintillation images.

The Cnˆ2Net model has MFEB = 16 feature extraction blocks (FEBs) with identical topology and
trainable weights. The FEBs simultaneously receive MFEB sequential grayscale (8-bit) normalized
scintillation image frames (Nc ×Nc =128× 128 pixels) from a selected dataset (ATM or SIM). The number
of FEBs represents a unique regularization parameter of the Cnˆ2Net, which was chosen in a set of
DNN topology optimization experiments.

Each FEB in Figure 5 is composed of three convolutional and max-pooling layers that succeed
each other, and a single 1D input layer (perceptron layer) composed of nFEB = 20 neurons.

In each convolutional and max-pooling layer Cnˆ2Net utilizes Nfilter = 30 trainable filters of sizes
3 × 3 (nc = np =3) for the first two layers and 2 × 2 (nc = np = 2) for the last layer. After flattening,
Nfilter = 30 output low-resolution (6 × 6) feature maps are sent to the FEB’s perceptron layers. Note
that the weights of all the FEB’s dense (perceptron) layers are shared across all MFEB FEBs. To prevent
DNN overfitting, each FEB’s perceptron layer utilizes dropout regularization [26].

The output feature vectors of all FEBs are merged into a single feature vector that inputs two fully
connected layers comprised of nfc = nFEB ×MFEB = 360 neurons with a 10 % dropout rate each, and an
output layer that reduces the dimension of the resulting feature vector into a scalar. The total number
of Cnˆ2Net trainable parameters reaches 45,000.

4.3. Cnˆ2Net Training, Validation and Performance Evaluation

Development of the Cnˆ2Net model for C2
n prediction based on processing of laser beam intensity

scintillation patterns included:
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• Generation of datasets (see Sections 2 and 3).
• Design and optimization of Cnˆ2Net model architecture.
• Optimization of Cnˆ2Net trainable weights via a cost function minimization performed through

a set of training steps (epochs) performed with Nmodel topologically identical DNN models
processing instances from a training subset of a selected dataset (e.g., SIM, or ATM).

• Validation of the fully trained Cnˆ2Net models through computation of the C2
n prediction error by

applying a subset of training data (validation data subset) that has never been used for training
(never “seen” by DNN).

• Cross-dataset performance evaluation of the fully trained Cnˆ2Net through computation of
C2

n prediction error for a dataset (inference dataset) that has never been used for training and
validation (e.g., SIM-KO for training and SIM-TA or ATM#1 for prediction).

During Cnˆ2Net training the data were supplied by batches containing MB = 32 instances
(scintillation images and the corresponding C2

n values). After processing the m-th set of MFEB
scintillation images (the Cnˆ2Net sliding input data window) from a selected training data subset{
I(ri, j, m + l)

}
, (i, j =1, . . . , 128, l = 0, . . . , MFEB-1), the Cnˆ2Net receives another MFEB = 16 frames{

I(ri, j, m + mshi f t + l)
}
, where mshift is a parameter (sliding window shift) defining the number of

incrementally updated scintillation images inside the sliding window. With 1 ≤ mshi f t ≤MFEB a single
image frame is reprocessed by the DNN multiple (MFEB/mshift) times. This multiple reappearance of
the same image frame at the DNN input was used for several reasons: to enrich the dataset, reduce C2

n
prediction error, and furthermore to stabilize the training process. From this viewpoint the sliding
window shift mshift can be considered as an additional (along with MFEB and dropouts number) DNN
fine-tuning parameter. In Cnˆ2Net the sliding window shift of mshift = 4 was chosen through a set of
DNN model performance optimizations using the ATM and SIM datasets.

In the machine learning experiments we typically trained Nmodel = 20 identical Cnˆ2Net models
with different initial values of trainable parameters. The results obtained in all model outputs were
averaged (averaging over DNN models).

As a cost function (also commonly known as a loss function) for Cnˆ2Net model training we used
the mean square error (MSE):

MSE =
1

MB

MB∑
m = 1

[
c2

n(m) − c̃2
n(m)

]2
, (2)

where MB is the number of instances in the input data batch, and c2
n(m) and c̃2

n(m) are correspondingly
normalized by the factor C2

n,0 = 1·10−14m−2/3 true and predicted by Cnˆ2Net values of the refractive
index structure parameter (c2

n = C2
n/C2

n,0).
The Cnˆ2Net model training and validation results are illustrated in Figure 6a. In this example we

used the SIM-KO dataset composed of 15,000 computer simulated scintillation images corresponding
to the cosine-type C2

n(m) dependence described by Equation (1) and shown in Figure 6a as the
ground truth curve. The SIM-KO dataset was subdivided into training (SIM-KO-T) and validation
(SIM-KO-V) data subsets correspondingly containing 10,000 and 5000 instances. Cnˆ2Net performance
for C2

n prediction was evaluated separately on training and validation data subsets using averaged
over Nmodel DNN models normalized root mean square errors (RMSE) σtr(c2

n) = εtr(c2
n)/c2

n and
σval(c2

n) = εval(c2
n)/c2

n, where

ε2
tr/val(c

2
n) = N−1

model

Nmodel∑
n = 1

[c2
n(n) − c̃2

n(n)]
2
. (3)
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Figure 6. Selected results of the Cnˆ2Net model training and validation: (a) comparison of C2
n true

(solid curve) and predicted values (dots) computed for training (solid dots) and validation (circles) data
subsets of the SIM-KO dataset; (b) prediction error standard deviations σtr and σval for DNN training
and validation performed on the SIM-KO data subsets; (c) DNN learning curves for three different
datasets. The results are averaged over Nmodel = 20 Cnˆ2Net models in (a,c) and Nmodel =50 in (b). Index
m corresponds to the image frame stamp in each dataset.
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Predicted (averaged over Nmodel = 20 DNN models) and true C2
n values corresponding to both

training and validation SIM-KO data subsets are compared in Figure 6a by the ground truth vs.
prediction plots. The prediction accuracy within the entire range of C2

n change in the SIM-KO dataset is
illustrated in Figure 6b) by the normalized RMSE values σtr(c2

n) and σval(c2
n) characterizing prediction

error standard deviations for DNN training and validation data subsets. Note that the prediction error
standard deviation σval on the validation data subset is about 3-fold higher than σtr.

As can be seen from Figure 6b, σtr for the training data subset is of the order of 1–3% or even less
for C2

n > 0.3C2
n,0 and rapidly increases when the turbulence strength declines. The characteristic size

of turbulence-induced speckles under weak turbulence conditions approaches the image frame size.
In this case the scintillation images are lacking in diversity of the spatial features that are required for
efficient DNN training.

The efficiency of DNN training is commonly characterized by so-called learning curves that show
how sequential learning steps nepoch (epochs) effect the RMSE prediction error computed on the entire
training data subset and averaged over DNN models. The Cnˆ2Net learning curves are presented in
Figure 6c for three different datasets. For all datasets, the prediction error rapidly decreased during
first 4-5 epochs and continued declining at a much smaller rate with further nepoch increase. In most
DNN experiments considered we terminated Cnˆ2Net training after the first 20 epochs.

Cnˆ2Net model topology optimization, training, validation and C2
n predictions were performed

using a high-performance ASUS laptop computer. The DNN model was implemented with a Python
3.6 and Keras 2.2.4 [27] machine learning framework using TensorFlow 1.14 [28] backend.

Training of Nmodel = 20 DNN models on a SIM dataset comprised of 15,000 scintillation frames and
required approximately 60 min of computational time, while prediction of a single C2

n value based on
the processing of MFEB =16 scintillation images by a fully trained 20 Cnˆ2Net models was performed
in approximately 0.14 s.

5. DNN-Inspired Atmospheric Turbulence Characterization: Cnˆ2Net Scintillometer

The ability of Cnˆ2Net to operate with experimentally captured data (ATM datasets) was evaluated
in a set of machine learning experiments. Prior to DNN-based data processing, each ATM dataset was
subdivided into two subsets composed of scintillation images and C2

n measurements representing the
full range of C2

n values observed during the atmospheric trials as described in Section 2. This subdivision
was performed by assigning odd and even scintillation image frames to correspondingly training
(ATM-T) and validation (ATM-V) data subsets. Recall that during collection of the ATM datasets,
the camera of the optical receiver was capturing N∆T short exposure scintillation images (N∆T = 60
for ATM#1 and N∆T = 120 for ATM#2) between each two subsequent C2

n measurements. Half of
these images were used for Cnˆ2Net model training while the remaining images were utilized for C2

n
prediction (validation). Note that the validation data subsets (ATM#1-V and ATM#2-V) were composed
of images never seen during the Cnˆ2Net model training.

The results of DNN processing using the preliminary trained Cnˆ2Net models (Nmodel =20) are
presented in Figure 7. The C2

n “measurement-vs.-prediction” plots in Figure 7a,c provide a comparison
of measured and predicted C2

n values for the entire range of turbulence conditions observed during
the experimental trials. The prediction error standard deviations σval(c2

n) = εval(c2
n)/c2

n for both
ATM#1-V and ATM#2-V datasets are shown in Figure 7b,d as functions of the normalized refractive
index structure parameter c2

n = C2
n/C2

n,0.
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Figure 7. Results of the C2
n prediction with deep machine learning performed for ATM#1-V (validation)

(a,b) and ATM#2-V (c,d) datasets using preliminary trained Cnˆ2Net models (Nmodel = 20). The plots (a)
and (c) compare measured (solid lines) and predicted (dots) C2

n values dependent on the frame stamp
number m in the corresponding datasets. The scatter plots in (b,d) characterize the standard deviation
of prediction error for the entire range of C2

n values in the corresponding ATM datasets (c2
n = C2

n/C2
n,0

and C2
n,0 = 1·10−14m−2/3).

For each C2
n measurement, the Cnˆ2Net processed N∆T/2 images and computed equal number of

the averaged over DNN models C2
n predictions that are shown in Figure 7 by dots (prediction dots).

The density of the prediction dots is noticeably higher for the ATM#2 dataset (Figure 7c,d) that has
twice as many scintillation images per each C2

n measurement and almost three times more C2
n data

points compared with the ATM#1 dataset. The density of prediction dots in Figure 7b,d reflects the
frequency of C2

n data point occurrence in the corresponding dataset.
Note that the prediction error standard deviation σval is significantly higher for relatively weak

turbulence (C2
n < 0.2·C2

n,0). Under these conditions the characteristic size of turbulence-induced
speckles approaches or even exceeds the optical receiver aperture size (see Figure 4, 1eft column)
leading to a reduction in spatial features manifold of the scintillation images processed by DNN and
resulting in σval increase. A similar effect was observed with DNN processing of the SIM dataset
(see Figure 6b).

The prediction error standard deviation inside the weak turbulence region can in principal be
reduced by increasing the optical receiver aperture size. However, under weak turbulence and/or for
relatively short propagation distances (even in strong turbulence), intensity scintillations diminish and
hence cannot be utilized for accurate characterization of turbulence strength.

The intensity scintillation level is commonly characterized by the Rytov variance
σ2

R = 1.23C2
nk7/6L11/6, where k = 2π/λ [29]. For the experimental setting used for ATM dataset

collection (see Section 2), σ2
R = 10.9c2

n. The results in Figure 7b,d suggest that accurate (within 10–15%)
C2

n prediction using Cnˆ2Net can only be achieved under conditions of relatively strong scintillations
with Rytov variance ranging from σ2

R ∼ 1 to σ2
R ∼ 20. Note that this physics-imposed limitation can be

overcome by utilizing for DNN-based data processing optical sensing characteristics that are more
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affected by atmospheric turbulence under weak scintillation conditions, such as short-exposure focal
plane intensity patterns, turbulence-degraded images and wavefront sensing data.

However, under strong scintillations (σ2
R > 1) an optical system (similar to as in Figure 1) composed

of a remotely located laser beacon and optical receiver equipped with a camera capturing short-exposure
intensity scintillation patterns, and DNN-based data processing hardware, can be utilized as a
C2

n sensor for atmospheric turbulence characterization, similarly to conventional scintillometers.
For convenience, such an optical system with DNN processing of scintillation images is referred to
here as a Cnˆ2Net scintillometer.

Prior to measurements (C2
n prediction based on captured scintillation images), the Cnˆ2Net

scintillometer should be side-by-side trained and validated with a calibrated (“trusted”) conventional
C2

n sensor. This DNN training-validation phase also provides estimation of C2
n prediction error and

defines the range of turbulence conditions for operation with an acceptable C2
n prediction accuracy.

Besides solely economic motivations (the Cnˆ2Net scintillometer may cost a fraction of the cost
of current commercial instruments), this DNN-based C2

n sensor could also provide important new
capabilities for atmospheric turbulence characterization.

To further explore both capabilities and limitations of atmospheric turbulence characterization
with DNN processing of intensity scintillation images, we compared the defined by Equation (3) root
mean square errors (RMSE) εval(c2

n) for the datasets obtained in numerical simulations (SIM-KO-V) and
atmospheric trials (ATM#1-V and ATM#2-V). The corresponding scatter plots are shown in Figure 8.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 28 

 

 

 

Figure 8. 2
nC prediction errors 2( )val ncε  (Equation (3)) obtained with Cn^2Net processing of SIM-

KO-V (a), ATM #1-V (b) and ATM #2-V (c) data subsets ( 2 14 2 /3
,0 1 10 mnC

− −= ⋅ ). 

The prediction errors averaged across the entire 2
nC  range valε  and their standard deviations 

εσ  computed using the data in Figure 8 are presented in Table 2. 
Both valε  and εσ  are the smallest for the SIM-KO dataset. The prediction error valε for this 

dataset is correspondingly 2.7-fold and 1.25-fold smaller in comparison with the ATM#1 and ATM#2 
datasets. The fact that 2

nC prediction was more accurate for the ATM#2 dataset than the ATM#1 
dataset is not surprising since the ATM#2 dataset contains significantly more instances (both 2

nC
values and scintillation images) used for Cn^2Net training than does the ATM#1 dataset. 

A different question is why Cn^2Net training using a relatively small (10K) SIM-KO dataset 
resulted in a prediction RMSE that is 1.25-fold smaller in comparison with training on the ATM#2-T 
dataset that has a significantly larger number (56.4 K) of scintillation images? 

 

Figure 8. C2
n prediction errors εval(c2

n) (Equation (3)) obtained with Cnˆ2Net processing of SIM-KO-V
(a), ATM #1-V (b) and ATM #2-V (c) data subsets (C2

n,0 = 1·10−14m−2/3).



Appl. Sci. 2020, 10, 8136 14 of 26

The prediction errors averaged across the entire C2
n range εval and their standard deviations σε

computed using the data in Figure 8 are presented in Table 2.

Table 2. Averaged prediction error εval and its standard deviation σε for the Cnˆ2Net trained using
different datasets.

DNN Training Dataset ¯
εval σε # C2

n Values # Frames

SIM-KO-T 0.072 0.06 10,000 10,000
ATM#1-T 0.194 0.14 322 9668
ATM#2-T 0.09 0.08 940 56,443

Both εval and σε are the smallest for the SIM-KO dataset. The prediction error εval for this dataset
is correspondingly 2.7-fold and 1.25-fold smaller in comparison with the ATM#1 and ATM#2 datasets.
The fact that C2

n prediction was more accurate for the ATM#2 dataset than the ATM#1 dataset is
not surprising since the ATM#2 dataset contains significantly more instances (both C2

n values and
scintillation images) used for Cnˆ2Net training than does the ATM#1 dataset.

A different question is why Cnˆ2Net training using a relatively small (10K) SIM-KO dataset
resulted in a prediction RMSE that is 1.25-fold smaller in comparison with training on the ATM#2-T
dataset that has a significantly larger number (56.4 K) of scintillation images?

To address this question first notice that a single scintillation image of the SIM-KO dataset
corresponds to a single C2

n value, while in the ATM#1 and ATM#2 datasets a single measured C2
n value

corresponds, respectively, to 30 and 60 scintillation images that were captured between sequential
C2

n measurements.
This difference would not explain the observed increase in the prediction error in DNN processing

of the experimental data if the statistical properties of all of these (corresponding to each single
measured C2

n value) scintillation images are alike. On the contrary, we would expect a quite opposite
effect: smaller prediction errors since more scintillation images were utilized for DNN training per a
single C2

n value.
The observed prediction error increase with DNN processing of the ATM datasets could most

likely be explained by the nonstationarity of atmospheric turbulence dynamics during the ∆T = 60 s.
time interval between sequential C2

n measurements by the scintillometer.
During this time, the characteristic spatial features of turbulence-induced speckles in the

scintillation images captured by the camera (e.g., characteristic size and contrast of speckles)
could considerably evolve. Cnˆ2Net, which is trained based on analysis of these spatial features,
would respond to these changes by predicting C2

n values that are different from those that were
measured by the scintillometer. Since C2

n sensing with a conventional scintillometer is based on
time-averaging of data acquired during the time interval between sequential measurements, this
instrument principally cannot detect changes in turbulence that may occur during the averaging time.

On the other hand, the C2
n sensing rate of the scintillometer cannot be increased to match the

camera frame rate without sacrificing the accuracy required for obtaining statistical characteristics
based on time-averaging.

From this view point, the Cnˆ2Net scintillometer could provide significantly higher temporal
resolution in C2

n sensing, which is highly desired for better understanding and prediction of atmospheric
turbulence effects.

As an illustration consider Figure 9, which shows an eight-minute long (“time zoom”) extraction
from the “measurement-vs.-prediction” plot in Figure 7, where the solid line and dots correspondingly
show the measured by the scintillometer and predicted by the Cnˆ2Net C2

n values based on processing
of the ATM#2 dataset. The dotted curve in this figure clearly displays changes in turbulence (in spatial
features of turbulence-induced speckles) occurring between sequential C2

n measurements by the
scintillometer. These changes in spatial features of speckles can be easily seen in the exemplary
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short exposure scintillation images in Figure 9 which were recorded during ∆t = 20 s. between two
subsequent C2

n measurements.Appl. Sci. 2020, 10, x FOR PEER REVIEW 16 of 28 
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Figure 9. Eight minute segment of the C2
n “measurement-vs.-prediction” plot in Figure 7c obtained

with the Cnˆ2Net processing of the ATM #2-V data subset (top), and exemplary scintillation images
captured during ∆t = 20 s time interval (bottom).

This example outlines the principal difficulties with Cnˆ2Net training by utilizing C2
n data recorded

with a conventional (“trusted”) scintillometer as the “ground truth”. Such training could be “confusing”
for the DNN when turbulence strength and, hence, spatial features of the scintillation images used in
such training are rapidly changing between sequential C2

n measurements with conventional instruments
having a relative low temporal resolution (from one to several minutes per single C2

n data point).
An indication of such “misleading” DNN training is the significant increase in prediction errors under
strong turbulence conditions (C2

n > C2
n,0), as seen in Figure 8b,c. Note that under these conditions the

scintillometer recordings exhibit strong fluctuations (see Figure 7a,c) caused by non-stationarity of the
turbulence dynamics at the time scale of the C2

n measurements.
The machine learning experiments with the ATM datasets described raise a question about the

“right” dataset for DNN training, which could provide full advantage of the Cnˆ2Net scintillometer
capabilities for real-time turbulence characterization. Such new capabilities in C2

n sensing are important
for the development of a wide range of atmospheric optics systems including free-space optical
communications, adaptive optics, directed energy, lidars etc.

6. Cnˆ2Net Scintillometer Training with SIM Datasets: Machine Learning-Based Turbulence Profiling

Assume that wave-optics numerical simulations could provide accurate modelling of laser
beam propagation over any selected turbulence characterization site and, thus, can be utilized for
the generation of sufficiently large SIM datasets for DNN training. A DNN that is trained at this
SIM dataset (SIM-trained DNN) can then be further used for real-time processing of scintillation
images and C2

n prediction at the selected site. In the case of Cnˆ2Net training using such SIM dataset,
a “trusted” scintillometer for collection of the training data (ATM dataset) is not required. Furthermore,
the SIM-trained Cnˆ2Net scintillometer could be further utilized at different propagation sites by
simply computing a new SIM dataset specific for this site with corresponding Cnˆ2Net retraining.

There are, nevertheless, several potential issues with such Cnˆ2Net scintillometer training using
SIM datasets. First, it is not always clear how accurately we can mimic laser beam propagation at any
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given turbulence characterization site in our numerical simulations. In other words, could we trust
SIM datasets more than ATM datasets obtained using side-by-side C2

n measurements with a “trusted”
scintillometer? Second, since there are several well-known atmospheric turbulence models, it is unclear
which model to use for SIM datasets generation.

Third, there could be one more potential issue associated with frequently observed inhomogeneities
of the refractive index structure parameter along the propagation path. This C2

n inhomogeneity is
commonly accounted for in numerical simulations by applying one or another model to describe
refractive index structure parameter dependence on the propagation distance 0 ≤ z ≤ L (C2

n-profile):
C2

n(z) [30,31]. In the most known C2
n-profile models (e.g., Hufnagel–Valley [32], SLC [33], Gurvich [34],

etc.) the structure parameter is considered as a function dependent solely on propagation path elevation
(C2

n vertical profile).
However, at propagation sites with complicated terrain features, the refractive index structure

parameter could be inhomogeneous along all three geographical coordinates (elevation, longitude
and altitude), which makes generation of SIM datasets a challenging problem. Some progress in
the modeling of refraction index and C2

n fields dependent on 3D geographical coordinates and time
has recently been made using numerical weather prediction (NWP) simulations [35–37]. The NWP
approach could potentially be applied for generation of more accurate SIM datasets for DNN training.

In another approach considered here, the deep machine learning paradigm is applied to fine-tune
a model-based C2

n- profile to a selected turbulence characterization site by utilizing atmospheric sensing
data acquired at this site (inference ATM dataset). In this case, DNN is initially trained on a SIM
dataset corresponding to a specified C2

n profile model (e.g., uniform, or HV-21 C2
n-altitude profile).

The SIM-trained DNN is further applied for prediction (inference) of the experimentally measured
C2

n values based on processing of scintillation images from the inference ATM dataset. The initial
(model-based) C2

n-profile is further modified to decrease prediction error obtained during the DNN
inference phase.

This modification can be performed by adjusting a few tunable parameters that could be selected
based on various factors including availability of additional information about terrain features and/or
specific propagation site characteristics, weather conditions, etc. The modified C2

n profile can be
further applied for generation of a new training dataset, DNN retraining and subsequent analysis of
the C2

n prediction performance using the inference ATM dataset. This process of tunable parameter
modification, DNN retraining and prediction performance evaluation could be repeated to achieve
better matching of DNN prediction with actual (measured with a conventional scintillometer) C2

n data.
This general approach for C2

n-profile tuning was analyzed in several cross-dataset machine
learning experiments. For initial Cnˆ2Net training we used the SIM-KO-U dataset corresponding to
the Kolmogorov turbulence model with C2

n values that were independent of propagation distance
(uniform). Performance of the SIM-trained Cnˆ2Net was evaluated via processing of the scintillation
images from the ATM#1 and ATM#2 datasets (inference datasets).

The results obtained for both inference datasets are presented in Table 3 and illustrated in Figure 10
(for the ATM#2 dataset only). The measurement-vs.-prediction and prediction RMSE εval(c2

n) plots in
Figure 10a,b clearly indicate that training with the initial SIM-KO-U dataset provided poor performance
in C2

n prediction. The prediction error (εval ≈ 0.56) in this case was approximately 6.4-fold higher in
comparison with the corresponding error obtained when the ATM#2 dataset was utilized for both DNN
training and C2

n prediction (see Table 3). Similarly, high prediction error (εval ≈ 0.54) was observed
when the SIM-KO-U-trained Cnˆ2Net was used to predict C2

n values using the ATM#1 inference dataset.
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Table 3. Averaged C2
n prediction error εval and its standard deviation σε for Cnˆ2Net models trained

using simulated datasets corresponding to the Kolmogorov turbulence model with uniform (SIM-KO-U)
and unevenly distributed (profiled) along the propagation path (SIM-KO-P) refractive index structure
parameter. Predictions of the C2

n values measured with a scintillometer were performed in cross-dataset
machine learning experiments using scintillation images from ATM#1 and ATM#2 inference datasets
collected during the atmospheric sensing trials (see Section 2).

DNN Training/Inference (Validation) Dataset εval σε # C2
n Values # Frames

SIM-KO-U/
SIM-KO-U 0.072 0.06 10,000/

10,000
10,000/
10,000

SIM-KO-U/
SIM-KO-P 0.65 0.1 10,000/

10,000
10,000/
10,000

SIM-KO-U/
ATM#1 0.541 0.232 10,000/

322
10,000/
19,336

SIM-KO-P/
ATM#1 0.130 0.03 10,000/

322
10,000/
19,336

SIM-KO-U/
ATM#2 0.557 0.391 10,000

940
10,000

112,866
SIM-KO-P/

ATM#2 0.140 0.013 10,000
940

10,000
112,866Appl. Sci. 2020, 10, x FOR PEER REVIEW 18 of 28 
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Figure 10. Results of C2
n profiling via deep machine learning: (a,c) measurement-vs.-prediction plots,

and (b,d) corresponding scatter plots characterizing standard deviation of prediction error for the
Cnˆ2Net models trained at the SIM-KO-uniform (U) (a,b) and SIM-KO-profiled (P) (c,d) datasets
computed, respectively, for uniform (κ = 1) and inhomogeneous (κ = 2.5) refractive index structure
parameter along the propagation. In both cases the measurements from the ATM#2 inference dataset
were used for the C2

n prediction (C2
n,0 = 1·10−14m−2/3).

Such poor Cnˆ2Net performance during the inference phase can be explained by either
inconsistency between the experimentally measured data and the SIM-KO-U data computed based on
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the Kolmogorov turbulence model, or by the possible impact of turbulence inhomogeneities along the
propagation path in Figure 1, or by both.

First, we assumed that turbulence inhomogeneities rather than deviations from the Kolmogorov
classical model were the reason for the Cnˆ2Net poor performance. This notion was motivated by the
visible comparison between the computer simulated scintillation patterns and those captured during
the atmospheric trials, as shown in Figure 4. In this figure the spatial structures of scintillation speckles
from the SIM-KO-U and ATM#2 datasets are quite similar under the weak-to-medium turbulence
conditions typical for measurements during early morning hours, but noticeably different under the
strong turbulence conditions observed for data collection during a sunny afternoon (see right row in
Figure 4). This mismatch between simulations and measurements under strong turbulence could be
explained by turbulence enhancement in the vicinity of the laser beacon that was located on the flat
rooftop surface of the VAMC building (see Figure 1).

The heated air flows generated on the roof surface are especially strong during sunny afternoon
measurements (strong turbulence conditions), which may cause the turbulence enhancement for
the propagation path region near the laser beacon and thus explain the observed mismatch in
speckle structures.

To verify this hypothesis, we introduced a simple modification into the uniform C2
n profile that

was originally used for SIM-KO-U dataset generation. In the wave-optics computer simulations of
laser beacon beam propagation (see Section 3), we intentionally increased the strength of the two
computer generated phase screens closest to the laser beacon by a factor of κ ≥ 1 (C2

n profiling factor),
while preserving the path-integrated C2

n values through an equivalent decrease in C2
n strength for

the remaining eight phase screens. Note that the SIM-KO-U dataset corresponds to κ = κ0 = 1
(uniform profile).

The initially uniform C2
n profile was modified through a set of Cnˆ2Net training-inference iterative

steps. Each nth iteration of the C2
n profile modification included: (a) generation of a SIM-KO-P dataset

corresponding to a profiling factor κn = κ0 + n∆κ, where ∆κ = 0.25 is a selected profiling factor
increment; (b) Cnˆ2Net training using a SIM-KO-P dataset computed at the nth iteration; (c) evaluation
of the trained DNN at ATM inference datasets; and (d) comparison of averaged prediction errors
εval(κn) with the corresponding errors obtained during the previous training-inference step. The steps
(a)–(d) were repeated until the smallest prediction error εval(κn) was obtained.

The C2
n profile tuning results are illustrated in Figure 10c,d. Both the measurement-vs.-prediction

and prediction RMSE εval(c2
n) plots indicate a significant improvement in C2

n prediction accuracy,
which was achieved with the Cnˆ2Net training using the SIM-KO-P dataset obtained with the optimal
profiling factor κ = 2.5.

The averaged prediction errors εval and their standard deviations σε obtained in the described
cross-dataset machine learning experiments are summarized in Table 3. For both inference datasets
examined, the smallest prediction errors (εval = 0.13 for ATM#1 and εval = 0.14 for ATM#2) were achieved
with the profiling factor κ = 2.5. These errors (see Table 3) are comparable with the corresponding
errors obtained when both training and validation of the Cnˆ2Net were performed using subsets of the
same dataset: either SIM-KO-U or ATM#1 or ATM#2 datasets. Note that tunable parameters of the C2

n
profile could potentially be included into a set of DNN trainable parameters and be defined during the
DNN training-validation phase.

To understand how the machine learning-based C2
n profiling described here affects the

characteristic spatial features of scintillations, compare the scintillation images shown in Figure 11
resulting from different DNN training (SIM-KO-U vs. SIM-KO-P) and inference (ATM#2) datasets.
Under weak-to-medium turbulence conditions the spatial structures of scintillation speckles (two left
column images in Figure 11) are similar for all three datasets. At the same time, under strong
turbulence (images in the right two columns) one can easily observe a noticeable difference in the
characteristic size of speckles between images captured during the experimental trial (ATM#2 dataset)
and computed using a uniform (SIM-KO-U) C2

n profile (κ = 1.0). This difference practically vanishes in
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scintillation images taken from the SIM-KO-P (κ = 2.5) dataset which were obtained during machine
learning-based C2

n profiling. The spatial structures of speckles in images belonging to the ATM#2 and
SIM-KO-P datasets (two bottom rows in Figure 11) are alike under all turbulence conditions observed
in experiments and mimicked in wave-optics numerical simulations.
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The turbulence profiling example described here illustrates the potentials for application of the
deep machine learning concept to atmospheric turbulence sensing and characterization.

7. Turbulence Models Evaluation via Machine Learning

In the training-inference machine learning experiments discussed in Section 6 we only used the
Kolmogorov power spectrum model for SIM dataset generation. Could we improve performance
of the SIM-trained Cnˆ2Net by utilizing a different atmospheric turbulence model for SIM dataset
generation? A broader question to ask is if the machine learning framework could be applied for
theoretical models assessment, evaluation of their accuracy and applicability to diverse atmospheric
propagation environments?

Since we already evaluated performance of the SIM-KO-trained Cnˆ2Net in prediction of C2
n values

using ATM#1 and ATM#2 inference datasets, and since, as discussed in Section 5, C2
n measurements do

not always reflect in-situ changes in atmospheric turbulence dynamics, it would be rational to compare
different power spectrum models in cross-dataset training-inference machine learning experiments
using the SIM-KO-trained Cnˆ2Net as a reference.

In the analysis presented in this section, both training and inference datasets were generated using
the split-step operator technique described in Section 3. Turbulence-induced refractive index random
fluctuations were represented by sets of statistically homogeneous, isotropic thin phase screens obeying
one of the following well-known power spectrum models (see Appendix A): Kolmogorov [1], Tatarskii,
Von Karman and Andrews [2,29]. The corresponding SIM datasets are referred to as SIM-KO, SIM-TA,
SIM-VK and SIM-AN. The refractive index structure parameter C2

n was assumed to be constant along
the propagation path (uniform C2

n profile). The Kolmogorov SIM-KO dataset was used for Cnˆ2Net
training, and the other datasets for inference. Note that the inner l0 and outer L0 scale parameters for
the Von Karman and Tatarskii power spectrum models (see Appendix A) were equal to the numerical
grid pixel size (l0= 1 mm) and overall grid dimension (L0 = 1.0 m), respectively.
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We also considered two additional inference datasets generated for the so-called non-Kolmogorov
power spectrum model (SIM-NK datasets).

The results of the Cnˆ2Net cross-dataset training-inference experiments with different inference
SIM datasets are presented in Table 4 and illustrated in Figure 12. In all cases the datasets were
composed of 15,000 computer simulated scintillation images corresponding to the cosine-type C2

n(m)

dependence described by Equation (1) and shown in Figure 12 as the ground truth curve. DNN
performance was evaluated using prediction errors εval averaged across the entire C2

n range and their
standard deviations σε.

Table 4. Averaged prediction errors εval and their standard deviations σε computed in the cross-dataset
Cnˆ2Net training-inference experiments with SIM-KO dataset used for training, and SIM-Tatarskii (TA),
SIM-Von Karman (VK), SIM-Andrews (AN) and SIM-NK datasets for inference (C2

n prediction).

Inference Dataset SIM-TA SIM-VK SIM-AN SIM-NK
α = 3.2/α = 3.9

εval 0.077 0.091 0.093 1.16/0.45
σε 0.079 0.083 0.091 0.54/0.31
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Figure 12. Comparison of C2
n ground truth vs. prediction in the cross-dataset training-inference machine

learning experiments with the Cnˆ2Net training performed using the SIM-KO dataset corresponding
to the Kolmogorov turbulence model and inference (C2

n prediction) using the SIM- non-Kolmogorov
(NK) dataset obtained for the non-Kolmogorov power spectrum model with α = 3.2 (a) and α = 3.9 (b).
Grey-scale images in (b) illustrate exemplary scintillation patterns corresponding to C2

n = 1·10−14m−2/3.
Index m corresponds to scintillation frame stamp number m in the datasets.

To evaluate the DNN ability to distinguish between scintillation images generated using
different power spectrum models, compare the prediction errors presented in Table 4 obtained
in the cross-dataset training-inference experiments with the corresponding value εval = 0.072 computed
in training-validation simulations when non-overlapping subsets of the SIM-KO dataset were used for
both Cnˆ2Net training and C2

n prediction (validation). The observed relatively small (<3%) difference
in the prediction errors and their standard deviations suggests that scintillation images corresponding
to the Kolmogorov, Tatarskii, Von Karman and Andrews turbulence models have nearly identical
(undistinguished by the Cnˆ2Net) spatial features, and from this viewpoint are alike.
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At the same time, DNN processing of scintillation images corresponding to the non-Kolmogorov
turbulence power spectrum model (images from SIM-NK inference datasets) resulted in enormously
large (>600%) errors. This mismatch between the ground truth and predicted C2

n values based on
processing of the SIM-NK inference datasets is clearly seen in Figure 12.

The representative scintillation images in Figure 12 additionally demonstrate the clearly visible
distinction in speckle pattern structures in the scintillation images corresponding to the Kolmogorov
(α = 11/3 ≈ 3.66) and non-Kolmogorov (α = 3.2 and α = 3.9) power spectrum models.

In addition to comparison and evaluation of different atmospheric turbulence models, the machine
learning concept can also be applied to analyze the impact of the parameters upon which these models
may depend.

Consider as an example DNN-based analysis of the turbulence inner scale impact on the spatial
features of speckles in the scintillation images. The turbulence inner l0 and outer L0 scales are key
parameters for the Von Karman and Andrews turbulence models (see Appendix A). For this analysis
we generated a set of SIM-VK datasets corresponding to the Von Karman turbulence model with varied
inner scale values ranging from l0 = 1.0 mm to l0 = 16.0 mm, and a fixed outer scale parameter
L0 = 1.0 m. Cnˆ2Net was trained using the SIM-KO dataset while the generated SIM-VK datasets with
different l0 were used for the C2

n true value predictions (inference).
Results of the corresponding machine learning experiments are summarized in Table 5 by averaged

prediction errors εval. As expected, the smallest difference between ground-truth and predicted C2
n

values was achieved with the SIM-VK inference dataset computed for the smallest turbulence inner
scale l0 = 1.0 mm corresponding to the numerical grid pixel size. This result is not a surprise
since the DNN was trained with the SIM-KO dataset, while both the Von Karman and Kolmogorov
spectra coincide for l0 = 0 and L0 = ∞ (first row in Table 5). When l0 was increased, the accuracy
in C2

n prediction declined and the corresponding averaged prediction error εval increased. The rate
in prediction error increase characterizes the sensitivity of spatial features in scintillations to the
turbulence inner scale. Variations in l0 within a few millimeters (from l0 = 1.0 mm to l0 = 4.0 mm)
only marginally effected DNN performance and, hence, spatial features of the scintillation patterns
utilized by Cnˆ2Net for C2

n prediction. With further turbulence inner scale l0 increase (l0 = 8.0 mm
and l0 = 16.0 mm), discrepancy between the true and predicted C2

n values was quite obvious.

Table 5. Evaluation of turbulence inner l0 and outer L0 scales impact on averaged C2
n prediction

error εval in the cross-dataset training-inference machine learning experiments with Cnˆ2Net training
performed using the SIM-KO dataset (Kolmogorov turbulence model) and inference (C2

n prediction)
using the SIM-VK datasets (Von Karman power spectrum model). The first row corresponds to the
deep neural network (DNN) training and prediction using SIM-KO datasets.

l0(mm) L0(m) ¯
εval

0 Infinity 0.072
1.0 1.0 0.091
4.0 1.0 0.094
8.0 1.0 0.170
16.0 1.0 0.380
1.0 0.25 0.10
1.0 0.5 0.09
1.0 2.0 0.08
1.0 4.0 0.074

Similar machine learning experiments were performed to estimate the impact of the turbulence
outer scale L0 in the Von Karman power spectrum model on scintillation patterns. In this study the
turbulence outer scale L0 was varied from L0= 0.25 m to L0 = 4 m. The obtained results (see Table 5)
demonstrated minor change in the C2

n prediction error that increased to about 5% with decrease in outer
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scale up to 0.25 m. These results indicate that outer scale variation within a reasonable (from physics
viewpoint) range does not significantly affect spatial features of speckles in the scintillation images.

8. Concluding Remarks and Forthcoming Research Directions

In this paper, a deep machine learning computational framework is applied for prediction of
the atmospheric turbulence refractive index structure parameter C2

n based on DNN processing of
short exposure images of turbulence-induced laser beam intensity scintillations. To support the
DNN model development and machine learning experiments, several datasets composed of large
numbers of instances (scintillation images and the corresponding C2

n values) were collected during
several atmospheric measurement trials over a 7 km propagation path, and computer-generated using
wave-optics numerical simulations to imitate the experimental trials.

A deep convolutional neural network model (Cnˆ2Net) containing about 45,000 trainable
parameters was developed and optimized via minimization of the C2

n prediction error for the entire
range of turbulence strength variations observed during the measurement trials. Prediction of a single
C2

n data point by a fully trained Cnˆ2Net model required about 0.14 sec, which provides capabilities for
high temporal resolution (about seven or more data points per second) C2

n measurements.
The developed Cnˆ2Net model was applied for:

• prediction of the data obtained in the atmospheric measurement trials by processing of
experimentally captured scintillation images never used for the Cnˆ2Net training;

• prediction of values recorded in the experimental trials by the Cnˆ2Net model trained on
computer-generated scintillation images;

• turbulence profiling by iterative adjustments of a model-based profile by utilizing the
measured data;

• comparison of the most prominent atmospheric turbulence models, and the analysis of their
parameters impact (inner and outer scales) on scintillations.

In this study we show that an optical system comprised of a remotely located laser beacon and
an optical receiver acquiring short-exposure intensity scintillation patterns digitally processed with a
specially designed and trained DNN, can be utilized as a sensor (Cnˆ2Net scintillometer) for in-situ
atmospheric turbulence characterization. Such a DNN-based C2

n sensor could be especially efficient for
turbulence characterization over relatively long atmospheric propagation paths that are characterized
by strong scintillations (Rytov variance σ2

R > 1). Note that conventional instruments for C2
n monitoring

do not provide accurate measurements in strong (saturated) scintillation regimes.
The Cnˆ2Net scintillometer is less effective when scintillations are relatively weak (low C2

n and/or
short propagation path length). In this case, intensity distributions at an optical receiver pupil are
relatively weakly effected by the turbulence-induced wavefront aberrations due to an insufficiently
long propagation (diffraction) distance and/or too weak turbulence. For the same reason, the Cnˆ2Net
scintillometer has low sensitivity to turbulence layers located near the optical receiver and, hence,
cannot provide accurate turbulence profiling along the entire propagation path.

However, the machine learning based atmospheric sensing concept proposed here can be equally
applied to optical systems whose performance is strongly affected by turbulence layers located near
the optical receiver (e.g., wavefront sensors, directed energy, power beaming, imaging and free-space
laser communication systems). At the same time, the measured output optical characteristics in these
systems can be insufficiently sensitive to remotely located turbulence layers and for this reason cannot
be efficient for turbulence characterization in strong scintillation conditions.

One of the major attractions of the machine learning approach for atmospheric turbulence
characterization is that it offers a wide range of capabilities for real-time fusion of data flows coming
from various optical and meteorological sensors [38,39]. To better reveal the complexity of atmospheric
turbulence dynamics, the sensor outputs should be differently affected by atmospheric turbulence;
e.g., have enhanced sensitivity to the location of turbulence layers, or to specific spatial and/or temporal
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characteristics of atmospheric refractive index inhomogeneities, or changes in atmospheric refractivity,
visibility, etc. From this viewpoint diversity in sensing data that enter a DNN-based signal processing
system is highly desired.

Although in this paper we focused solely on sensing of the refractive index structure
parameter C2

n, machine learning-inspired atmospheric sensors could also selectively target different
atmospheric turbulence characteristics (e.g., Fried, or Rytov parameters, Strehl ratio, image sharpness,
received signal fading duration, etc. [29,40]) that more directly characterize the performance of one
or another electro-optical system. This eliminates the need for computing these characteristics
(performance metrics) using theoretical expressions that link performance metrics with the
characteristics of the propagation path, optical system parameters and characterized by C2

n turbulence
conditions. Note that in many cases such expressions derived from the theory either do not exist or
can only be obtained under assumptions that are not always fulfilled.

These arguments emphasize another major advantage of the machine learning-enhanced
atmospheric sensing approach: it provides assumption-free prediction (with a properly trained
DNN) of specific performance metrics and/or those most important for various types of optical systems.

Since machine-learning-inspired atmospheric sensing is based on extraction of spatial or temporal
(or both) features from the incoming sensing data, rather than on time-averaging of data acquired
during the time interval between sequential measurements as in conventional instruments used for
turbulence characterization, DNN-enhanced sensors can potentially provide much higher temporal
resolution and be capable of real-time detection of the changes occurring in atmosphere under different
turbulence conditions.

This capability is especially important for prediction and in-situ adjustment of electro-optical
systems parameters based on atmospheric sensing information. For example, prediction of coming
deep signal fading in a free-space laser communication system could be used to minimize losses in
the throughput data. In adaptive optics systems, in-situ prediction of turbulence conditions that may
occur within the time scale of a few seconds may provide opportunities to correspondingly adjust
wavefront sensing and control system parameters for optimal system performance.

Machine learning-enhanced atmospheric sensing may also transform wave-optics numerical
modeling and simulation tools from its current supporting role of electro-optical systems performance
assessment under various environments into a key role of being an integrated part of the sensing
system responsible for the DNN topology, parameter optimization and training.

Another important role machine learning could play for a wide range of atmospheric sensing
applications is related to calibration of different sensors. “Agreement” between different sensor
types, for example for C2

n measurements, is currently difficult to achieve even if these sensors operate
side-by-side to simultaneously take measurements at the same atmospheric propagation site. This is
not a surprise, as the operational principles of different sensors are commonly based on different
assumptions and formulas that are derived from atmospheric turbulence theory and link C2

n with
the statistical characteristics of measured signals. With the machine learning-enhanced atmospheric
sensing approach that is based on extraction of spatial and temporal features of inputting DNN sensory
information, rather than obtaining the “right” statistically averaged characteristics, it would be more
straightforward to calibrate different sensors against a “reference” machine learning-based sensing
system utilizing a “standard” topology DNN with identical parameters and training datasets.
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Appendix A

Here we provide a brief synopsis of the most well-known refractive index power spectral density
models that are used here for generation of computer simulated (SIM) datasets in the atmospheric
turbulence machine learning studies described.

The seminal Kolmogorov two-thirds power law corresponds to the refractive index spatial
spectrum model known as the Kolmogorov turbulence spectrum [1]

ΦKO
n (κ) = 0.033·C2

n·κ
−11/3. (A1)

Expression (A1) is defined within the spatial spectrum wavenumber κ range 2π/L0 << κ < l0
associated with the inertial subrange bounded by the outer L0 and inner l0 turbulent scales, where the
inner scale is associated with the smallest scale refractive index inhomogeneities (on the order of
millimeters near the ground [41]), and the outer scale L0 is defined by the largest turbulent scale.
For heights of the order of tens of meters above the Earth’s surface the turbulent outer scale is roughly
on the order of the height above ground [2]. To preserve spectrum model (A1) continuity over the
entire range of wavenumbers several models for the refractive index power spectral density have been
suggested [2,42,43].

The Von Karman ΦVK
n (κ) and Tatarskii ΦTA

n (κ) models are defined over the entire spectral range
(0 ≤ κ < ∞) and are among the most popular refractive index power spectral density models:

ΦVK
n (κ) = 0.033·C2

n· exp(−κ2/κ2
m)(κ

2 + κ2
L)
−11/6,

ΦTA
n (κ) = 0.033·C2

n·κ
−11/3 exp(−κ2/κ2

m),
(A2)

where κL = 2π/L0 and κm = 5.92/l0.
Other atmospheric spectral models have been proposed that account for the “bump” at large

wavenumbers near κ ≈ 1/l0 that were first observed in measurements of temperature data [44,45].
The most commonly used model of this sort is the Andrews power spectral density model [43]:

ΦAN
n (κ) = ΦVK

n (κ)[1 + 1.802(κ/κm) − 0.254(κ/κm)
7/6]. (A3)

There has recently been emerging interest in analysis of the so-called non-Kolmogorov turbulence
power spectrum models [13,14], generated by formal replacement of the -11/3 power law in Equation (A1)
by a power factor 3 < α < 4:

ΦNK
n (κ,α) = 0.25π−2Γ(α− 1) cos(απ/2)β·C2

n·κ
−α, (A4)

where β is a dimensional constant with unit
[
m11/3−α

]
, and Γ(x) denotes the Gamma function.

The Kolmogorov power spectrum model corresponds to α = 11/3 ≈ 3.66, in which case Equation (A4)
reduces to Equation (A1).
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