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Abstract: In this study, we estimated drifter tracking over seawater using machine learning and
evolutionary search techniques. The parameters used for the prediction are the hourly position of
the drifter, the wind velocity, and the flow velocity of each drifter position. Our prediction model
was constructed through cross-validation. Trajectories were affected by wind velocity and flow
velocity from the starting points of drifters. Mean absolute error (MAE) and normalized cumulative
Lagrangian separation (NCLS) were used to evaluate various prediction models. Radial basis function
network showed the lowest MAE of 0.0556, an improvement of 35.20% over the numerical model
MOHID. Long short-term memory showed the highest NCLS of 0.8762, an improvement of 6.24%
over MOHID.
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1. Introduction

The worldwide increase of large ships and maritime transportation volume causes a number of
accidents that are beyond the capacity of individual nations. Pollutants released from accidents may
extensively contaminate the marine environment due to ocean currents, weather, and weathering.
Therefore, pollutants released during an accident should be removed as soon and as much as possible.
An accurate prediction of the pollutant movement can help track and address them, as a variety of
studies have proven [1–5]. The prediction model for oil spills generally calculates the movement and
spread of the oil spill using the Lagrangian particle approach [5–7]. This forecasting method uses
physics for critical parameters such as flow velocity, wind velocity, water level, and temperature in the
current state. Parameter optimization using evolutionary computation [8] showed better results than
MOHID [6], a numerical water modelling system. Machine learning and ensemble methods [9,10]
were also used to estimate the movement of drifters.

Predicting the movement of a drifter on the ocean is an essential step in tracking the spread of an
oil spill [11]. While spilled oil may sink or evaporate, most of it floats on the surface. Conventional
numerical models can predict oil spills more accurately if the trajectories of drifting particles can
be predicted accurately. Therefore, we aimed to predict more accurate trajectories by using various
machine learning methods including deep learning, which has attracted much recent attention,
rather than by using evolutionary computation as in our previous study [8]. We integrated artificial
intelligence (AI) technology to predict the future ocean state, utilizing the continuity of parameter data
over time. We expanded the area covered by our previous study [8], which predicted the trajectory of
drifting objects in the ocean and systematically compared a wide range of regression functions and
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artificial neural networks for predicting the movement of drifters. In order to avoid the look-ahead
bias, we used wind and flow forecasts made by the Korea Meteorological Administration and private
technical agencies instead of actual future parameters.

In sum, the contributions of this study are summarized as follows. We applied evolutionary
computation and machine learning to the prediction of drifter trajectories. We extended and improved
our previous study [8] that used evolutionary computation, and we also first predicted the trajectories
using various machine learning techniques. This study was the first time that machine learning
techniques have been applied to the prediction of drifter trajectories—before this study, only numerical
models such as MOHID have been applied to drifter trajectories. Our methods could significantly
improve on the results of the representative numerical model, MOHID.

2. Literature Review

ADIOS [12], developed by the United States in the early 1990s, is one of the widely used
decision-making support systems for spilled oil. These support systems share the characteristics
of simplicity, high performance, open-source programming, and an extensive oil database.
The performance of ADIOS has continued to improve [13] and provides a basis for newly developed
oil weathering models. Unfortunately, it cannot use data on the current state [14] and simulate the
trajectory of the oil spill. The ADIOS model requires information on spilled oil situations, environmental
conditions and prevention strategies, and calculates optimal prediction results by inputting minimum
information obtained or expected in the field.

The prediction models for oil spill movements were developed for accurate and detailed analysis.
Oil companies, consulting sectors, national agencies, and research centers use certain models worldwide,
which enable them to input various marine weather and environmental data to consider oil weathering,
and are thus suitable for planning stages and research scenarios for different types of oil and marine
weather conditions. Related models are GNOME [7], OILMAP [15] OSCAR [16], OSIS, GULFSPILL [17],
MOHID [6], etc. Among them, MOHID [6], which is used as a benchmark measure of performance in
this study, was first developed in 1985 at the Marine and Environmental Technology Research Center
(IST) of the Instituto Superior Técnico (IST), affiliated with the University of Lisbon, Portugal. MOHID
is a multifunctional three-dimensional numerical analysis model that can be applied to coastal and
estuary areas, which basically calculates physical actions in coastal and estuary areas such as tide and
tsunami. It consists of more than 60 modules that can calculate fluid properties (water temperature,
salinity, etc.), Lagrangian movement, turbulence, sediment movement, erosion and sedimentation,
meteorological and wave conditions, water quality and ecology, and oil diffusion.

Recent advancements in operational maritime, weather forecasting, and computing technologies
have allowed for automated prediction in desktop and web environments. Such prediction models
include MOTHY [18], POSEIDON OSM [19], MEDSLICK [20], MEDSLICK II [5], OD3D [21],
LEEWAY [22], OILTRANS [14], BSHmod.L [23], and SEATRACK Web [24]. Some models cannot
process 3D ocean data or consider stokes drift and the vertical movement of droplets. Research is
underway to provide user requirements, convenient and comprehensive user-friendly environments,
and geographic information system (GIS) results to improve the model landscape.

Typical models that predict Lagrangian drifter trajectory are known to be less accurate for large
structures [25]. Therefore, Aksamit et al. [25] used long short-term memory (LSTM) to accurately
predict the velocity of drifters. They used the drifter data obtained from the Gulf of Mexico. Their model
was much more accurate than the model using the Maxey–Riley equation [26] in terms of root mean
square error (RMSE).

3. Data

Our previous study [8] used data obtained from Seosan, located on the west coast of South Korea.
For this work, we added new data obtained from Jeju Island to the previous data. Hourly data from
2015 to 2016 at these locations were used for our study. We used this to predict the hourly locations
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of drifters in this study. Figure 1 shows the observed trajectories from the two locations in 2015,
and Table 1 shows the features related to the start and end points of trajectories of the sample data.
The height of the wind velocity above the ocean was 10 m, and its spatial resolution was 900 m.

Figure 1. Observed trajectory data from Seosan and Jeju in 2015.

Table 1. Attributes of the data (examples).

Location Case
No.

#Data
Start End

Y M D H Lon. Lat. Y M D H Lon. Lat.

Seosan

1 239 2015 11 6 8 125.0795 36.5788 2015 11 16 6 124.4480 36.4438
2 26 2015 11 6 9 125.0858 36.2526 2015 11 7 13 124.8229 36.5638
5 109 2015 11 6 15 125.4192 36.2578 2015 11 11 3 125.5130 36.1293
6 112 2015 11 6 16 125.4081 36.5825 2015 11 11 7 125.1982 36.4487
7 113 2015 11 6 17 125.7388 36.5810 2015 11 11 9 125.4705 36.2202
8 39 2015 11 6 18 125.9147 36.4168 2015 11 8 8 125.5818 36.5624
9 45 2015 11 6 13 125.9123 36.0874 2015 11 8 9 125.5238 36.4135

Jeju

1 82 2016 4 18 23 126.0006 33.1695 2016 4 22 8 126.1397 33.3354
2 106 2016 4 18 23 125.8375 33.1774 2016 4 23 8 126.3886 33.5580
3 106 2016 4 18 22 125.8338 33.0041 2016 4 23 7 126.0698 33.3213
4 87 2016 4 19 0 126.0045 33.0026 2016 4 22 14 126.2295 33.1773
5 60 2016 4 19 0 126.1655 33.9999 2016 4 21 11 126.1255 33.1871
6 93 2016 4 18 20 126.1671 32.8383 2016 4 22 16 126.4106 33.0411
7 94 2016 4 18 21 125.9990 32.8439 2016 4 22 18 12.2667 33.0728
8 93 2016 4 18 21 125.8346 32.8395 2016 4 22 17 126.0957 33.0810

4. Discussion

This study added machine learning (ML) techniques to the methods of our prior work [8]. We used
regression functions for numerical predictions, and also examined various artificial neural networks.

4.1. Numerical Model and Evolutionary Methods

We used MOHID [6] as a numerical model using the Navier-Stokes equations [27], and we also
examined various evolutionary methods from our previous study [8]. The evolutionary methods
include differential evolution (DE) [28], particle swarm optimization (PSO) [29], and the covariance
matrix adaptation evolutionary strategy (CMA-ES) [30].
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4.2. Machine Learning

We used supervised learning to find the mapping between input data (wind velocity and flow
velocity) and output data (drifter location). The performance of the following two regression functions
were examined.

Support vector regression (SVR): While conventional classifiers minimize error rates during the
training process, support vector machines (SVMs) construct a set of hyperplanes so that the distance
from it to the nearest training data point is maximized. They were considered as alternatives to artificial
neural networks in the 1990s since nonlinear classification became possible through the kernel trick [31].
Support vector regression uses SVM for regression with continuous values as the output [32].

Gaussian process (GP): GP [33] is an ML model that predicts data as the average and variance of
probability distributions. It predicts functions that can represent given data in the defined function
distribution and estimates functions for experimental data based on the arbitrary training data.

4.3. Artificial Neural Networks

Artificial neural networks represent a learning algorithm inspired by the neural networks of
biology. With the recent advancement of deep learning, the use of artificial neural networks has yielded
excellent performance in classification and can be used for regression when a mean-square error (MSE)
is the loss function. Below are the neural network methods we used in this study.

Multi-layer perceptron (MLP) is a basic neural network structure that adds hidden layers into the
perception structure. We built a hierarchical model with four inputs, two outputs, and one hidden layer.

Radial basis function network (RBFN) is a type of neural network that represents the proximity to
the correct answer using Gaussian probability and Euclidian distance [34]. One hidden layer based on
Gaussian probability distribution is used, and the training process is extremely fast.

Deep neural network (DNN) increases training parameters by adding hidden layers in MLP.
Figure 2 shows the settings of the input and output values in the basic DNN structure. It is often
essential to use a rectified linear unit (ReLU) [35] and Dropout [36] to prevent the vanishing gradient
problem [37].

Recurrent neural network (RNN): the connection between units is characterized by a circular
structure [38] and can be used when continuous data is given. RNNs can be used to predict trajectories
since the movement of a drifter is sequential data. The input data for MLP or DNN has a fixed size
of 4, as depicted in Figure 2. However, RNNs should incorporate all the drifter moves in sequence;
thus, the data length can be different. The maximum length that the model can receive as an input
sequence is set, and the remaining data space is padded with zero. For example, if the maximum
length is set to 200 and given data set has 120 h of movement information, the remaining data is filled
with 80 zeros. Figure 3 shows the input and output data structure of the RNN model.

Long short-term memory (LSTM): the RNN model creates the next unit based on product operation
and suffer from the vanishing gradient problem when dealing with long data sequences. LSTM [39],
which has the function of forgetting past information and of remembering current information
by adding a cell-state to the hidden state of RNN, has emerged as one of the most widely used
RNN methods and can effectively solve not only the vanishing gradient problem but the long-term
dependency. This model is expected to remember the movement of a drifter according to the specific
short sequence of wind and flow.
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Figure 2. Data input/output in our deep neural network (DNN) model.

Figure 3. Data input/output in our recurrent neural network (RNN) model.

5. Experiments

5.1. Setting and Environments

We implemented the evolutionary computation methods using DEAP software (https://deap.
readthedocs.io/en/master/) except for PSO. For PSO, we used PySwarms (https://pyswarms.readthedocs.
io/en/latest/), which performed better than DEAP. We used WEKA 3 [40] for MLP, GP, SVR, and RBFN,
and PyTorch [41] for DNN, RNN, and LSTM. Table 2 summarizes software libraries we used.

The previous methods of evolutionary computation evaluated test data by creating a single model
per method. When a single method yields several models, the performance may vary depending on the

https://deap.readthedocs.io/en/master/
https://deap.readthedocs.io/en/master/
https://pyswarms.readthedocs.io/en/latest/
https://pyswarms.readthedocs.io/en/latest/
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random seed. We confirmed that there are considerable performance differences between models using
the same method for deep learning methods. We used the bagging [42] method to analyze each method
by creating 10 models for each method and then measuring the average value, variance, and standard
deviation of the resulting measured values. There might be sharp loss value changes in the process
of solving local minimum problems for deep learning methods. We calculated mean absolute error
(MAE) according to epoch and ended training when the MAE value was low in our experiments.

Table 2. Methods and library resources.

Method Library

Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) DEAP
Differential Evolution (DE) DEAP

Particle Swarm Optimization (PSO) PySwarms
Multi-Layer Perceptron MLP WEKA 3

Gaussian Process (GP) WEKA 3
Support Vector Regression (SVR) WEKA 3

Radial Basis Function Network (RBFN) WEKA 3
Deep Neural Network (DNN) PyTorch

Recurrent Neural Network (RNN) PyTorch
Long Short-Term Memory (LSTM) PyTorch

5.2. Evaluation Measures

We used mean absolute error (MAE) and normalized cumulative Lagrangian separation (NCLS).
In prior work [8], we also used the Euclidean distance as an evaluation measure. Since it is calculated
by a mechanism similar to MAE, the average of the error distance was calculated only using MAE.
NCLS, also called the skill score, was calculated by subtracting the error from 1. Lower values,
therefore, represent better results for MAE, whereas higher values close to 1 represent better results for
NCLS. The calculation for MAE can be expressed as the following Equation.

1
m

m∑
i=1

(| pred_Lati − observed_Lati|+ |pred_Loni − observed_Loni|) (1)

where pred_Lon and pred_Lat represent the longitude and latitude of the predicted data. Observed_Lon
and observed_Lat denote the longitude and the latitude of the observed data. Therefore, the difference
between these values can be considered as an error. The denominator m is the number of test datasets.
Therefore, the MAE is the average of the errors.

NCLS is a measurement method that is quite frequently used in trajectory modeling and it is
proposed to solve weaknesses in the Lagrangian separation distance in relation to the continental shelf
and its adjacent deep ocean. The error of each location is calculated in MAE, whereas NCLS calculates
errors by cumulative calculation. Figure 4 shows the calculation process of NCLS. In this process, if s
becomes too large, the skill score may continue to remain zero. If the tolerance threshold n is set high,
this can be solved to some extent. In this study, we set n to 1 since errors sufficient to make s relatively
large did not frequently occur.
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Figure 4. Formula to calculate skill score (ss) of NCLS.

5.3. Results

Previous measurements are available for evolutionary computational methods. In Section 5.3.1,
we verified the performance of the Python-based system by comparing the results with only the
Seosan data. The degree of training is also an essential factor. Prior to experimenting with all the data,
in Section 5.3.2, we measured epoch numbers deemed good enough to end training by measuring MAE
for each epoch in each deep learning method. Lastly, in Section 5.3.3, we trained them using all the
data and described the experimental results that predicted the trajectories of the newly added Jeju data.

5.3.1. Evolutionary Search on Seosan Data

Table 3 compares the results of the previous study (C language) [8] and this study (Python).
CMA-ES showed particularly good performance compared to the previous study. Overall, we could
improve the performance of evolutionary search by using new software libraries.

Table 4 shows the CPU time to build the prediction models for Seosan data. Since inference
time is usually much shorter than training time, actual performance can be more important than
training speed.

Table 3. Parameters of evolutionary computation methods.

Method Evaluation
Case

1 5 6 7

DE
(Previous)

MAE 0.0920 0.0828 0.0392 0.0653
NCLS 0.9026 0.7965 0.9220 0.8826

DE
MAE 0.0587 0.0973 0.0380 0.0568
NCLS 0.9451 0.7686 0.9225 0.8974

PSO
(Previous)

MAE 0.0907 0.0820 0.0385 0.0622
NCLS 0.9044 0.7984 0.9232 0.8878

PSO
MAE 0.0603 0.0973 0.0380 0.0567
NCLS 0.9441 0.7686 0.9226 0.8976

CMA-ES
(Previous)

MAE 0.1303 0.1393 0.0761 0.1304
NCLS 0.8631 0.6513 0.8437 0.7297

CMA-ES
MAE 0.0582 0.0973 0.0380 0.0567
NCLS 0.9457 0.7686 0.9226 0.8976

MOHID model [10] MAE 0.1352 0.1238 0.0656 0.0434
NCLS 0.8633 0.7134 0.8480 0.9229

The lower the mean absolute error (MAE) values, the better. The higher the NCLS values, the better.
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Table 4. Computing time of evolutionary computation methods.

Data Case 1 Case 5 Case 6 Case 7

Computing time
(CPU second)

DE 2120.8 2705.8 2663.2 3066.2
PSO 302.5 345.7 344.9 371.5

CMA-ES 117.5 152.8 152.9 173.9

5.3.2. Deep Learning

The neural network methods use the loss value to calculate how well a model is trained. The loss
value decreases as the model accurately predicts the training data. It is better to use cross-entropy and
softmax in the final layer of neural network-based classifiers [43]. However, we used MSE as the loss
function since we predicted continuous values, not discrete ones.

The loss function measures the difference between the correct answer of the training data and the
value predicted by the model, which may not relate to MSE and NCLS. In order to identify whether
or not loss and MAE are related to each other, we examined several neural network models. Neural
networks learn the values of the weights to reduce loss, and a reduction of MSE can prove worthwhile.
We investigated the loss according to epoch, MAE, and MAE of the test data in the three deep learning
methods, CNN, RNN, and LSTM. From Jeju data, Case 1 was used as the test data, and the rest were
used as training data. Figure 5 shows the results of DNN.

DNN calculates the error between individual data independently. As the training progresses,
the loss value generally decreases. However, the MAE of the training data and test data decreases
sharply only at the beginning, and the performance does not significantly improve thereafter. We looked
for an additional way to solve this problem, since the MAE deviation between each epoch is large
even when the training is complete. We attempted to solve the problem by bagging among the
ensemble techniques. The final epoch of DNN is set to 1500. The MAE of the test data was low in the
100–200 epoch section when training was incomplete, and the MAE deviation between epochs was
large even post-training in the case of DNN. After 1500 epochs, the loss value did not decrease further,
so we set the final epoch of DNN to 1500.

Figure 5. MAE and Loss of DNN.

Figure 6 shows the MAE and loss values of RNN. The data are continuous time-series data of the
movement of a drifter over time. Although the loss value is reduced above 100 epochs, the MAE of the
training and test data did not decrease. We set the final epoch of RNN to 1000. LSTM was similar to
RNN, but there were ups and downs on the MAE graph as learning progressed. The final epoch of the
LSTM was set to 500. Figure 7 shows the MAE and loss values of LSTM.
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Figure 6. MAE and loss values of RNN.

Figure 7. MAE and loss values of LSTM.

5.3.3. Results for Each Case

We describe the performance measurement results of methods beyond the evolutionary
computation mentioned in Section 3. Table 5 shows the main parameter values for each method. Our
prior work [8] measured the error per iteration. The deep leaning method using PyTorch (e.g., DNN,
RNN, and LSTM) is conceptually similar; MAE and loss were measured per epoch. The result based
on the WEKA library could not measure the error according to the iteration since it could not set the
iteration number internally.

Table 6 shows the evaluation of measured values by building models from ML and evolutionary
computation methods. Only the Seosan data was used for training. GP, MLP, RBFN, and SVR based on
WEKA showed outstanding performance. However, the deep learning methods did not perform very
well as the variation in data volume by case was large for the Seosan data. The difference between the
numbers of Cases 1 and 2 was nine times, as shown in Table 1. The data length also has a significant
impact on training because the previous event influences the next event in RNN. Table 7 shows the
CPU time spent building models for each method. Evolutionary computation methods took more time
than GP, MLP, and RFBN using WEKA software.

Table 8 shows the experiment results with the Jeju data. Unlike the result of the Seosan data, the
deep learning methods showed excellent performance. LSTM performed better than the basic RNN
models, and sometimes DNN performed better. In Cases 1, 2, and 3, MLP and RBFN using WEKA
software indicated good performance, whereas the evolutionary computation methods are neither
good nor bad performance. The results of the RNN methods could be improved since the variation of
the number of data by case is small for the Jeju data. Table 9 shows the CPU time for calculation. The
computation time for the Jeju data was not much different from that of the Seosan data.
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Table 5. Parameter values for machine learning (ML) methods.

Method Parameter Value

GP
(WEKA 3)

Filter type Standardized training data
Level of Gaussian noise 1.0

Decimal places 2

MLP
(WEKA 3)

Activation function Approximate sigmoid
Loss function Square error

Decimal places 2
Number of hidden units 1

Ridge 0.01
Tolerance 1.0 × 10−6

RBFN
(WEKA 3)

Decimal places 2
Number of basis functions 2

Ridge 2
Scale optimization Use scale per unit

Tolerance 1.0 × 10−6

SVR
(WEKA 3)

Complexity constant 3.0
Filter type Standardized training data

Kernel Polynomial kernel
Decimal places 2

DNN
(PyTorch)

Loss function Mean square error
Activation function ReLU
Number of epochs 1500

Number of hidden layers 8
Number of units per a layer 256

RNN
(PyTorch)

Loss function Mean square error
Number of hidden units 256

Number of epochs 1000

LSTM
(PyTorch)

Loss function Mean square error
Number of hidden units 256

Number of epochs 500

Table 6. Results for Seosan data.

Method Evaluation
Case

1 5 6 7

DE
MAE 0.0743 0.0286 0.0906 0.0417
NCLS 0.9308 0.7377 0.7769 0.9172

PSO
MAE 0.1238 0.0318 0.1050 0.0758
NCLS 0.8724 0.7183 0.7557 0.8375

CMA-ES
MAE 0.0743 0.0286 0.0909 0.0418
NCLS 0.9308 0.7378 0.7763 0.9170

GP
MAE 0.0945 0.0290 0.0974 0.0360
NCLS 0.9113 0.7431 0.7583 0.9282

MLP
MAE 0.0957 0.0285 0.1012 0.0320
NCLS 0.9030 0.7541 0.7474 0.9353

RBFN
MAE 0.1064 0.0278 0.0986 0.0297
NCLS 0.8992 0.7626 0.7508 0.9399

SVR
MAE 0.0700 0.0301 0.0939 0.0394
NCLS 0.9355 0.7402 0.7711 0.9204

DNN
MAE 0.1557 0.0192 0.1305 0.0571
NCLS 0.8493 0.8383 0.6879 0.8848

RNN
MAE 0.1369 0.0270 0.1335 0.0494
NCLS 0.8555 0.7699 0.6809 0.8910

LSTM
MAE 0.0744 0.0295 0.1153 0.0301
NCLS 0.9201 0.7413 0.7075 0.9408

MOHID
MAE 0.1352 0.1238 0.0656 0.0434
NCLS 0.8633 0.7134 0.8480 0.9229

The lower the MAE values, the better. The higher the NCLS values, the better.
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Table 7. Computing time for Seosan data.

Data Case 1 Case 5 Case 6 Case 7

Computing time
(CPU second)

DE 2120.78 2705.83 2663.18 3066.16
PSO 302.53 345.69 344.87 371.54

CMA-ES 117.53 152.80 152.93 173.92
GP 9.12 13.62 14.78 13.82

MLP 4.45 4.33 4.50 4.60
RBFN 3.69 3.72 3.77 3.86
SVR 9.57 15.00 13.89 14.37

DNN 153.36 182.26 174.52 178.29
RNN 45.93 47.58 44.56 48.27
LSTM 34.47 45.59 44.32 46.46

Table 8. Results for Jeju data.

Method Evaluation
Case

1 2 3 4 5 6 7 8

DE
MAE 0.0497 0.0703 0.0500 0.0576 0.0337 0.0460 0.0495 0.0638
NCLS 0.8685 0.8698 0.8930 0.8675 0.8770 0.8763 0.8805 0.8594

PSO
MAE 0.0491 0.0699 0.0501 0.0578 0.0331 0.0461 0.0480 0.0646
NCLS 0.8702 0.8700 0.8927 0.8671 0.8785 0.8760 0.8855 0.8576

CMA-ES
MAE 0.0491 0.0702 0.0502 0.0575 0.0338 0.0461 0.0494 0.0640
NCLS 0.8700 0.8699 0.8927 0.8677 0.8767 0.8761 0.8807 0.8589

GP
MAE 0.0447 0.0468 0.0450 0.0701 0.0273 0.0583 0.0676 0.0836
NCLS 0.8912 0.9096 0.9115 0.8420 0.8981 0.8466 0.8439 0.8202

MLP
MAE 0.0345 0.0571 0.0398 0.0586 0.0271 0.0599 0.0669 0.0816
NCLS 0.9145 0.8883 0.9191 0.8663 0.8988 0.8488 0.8482 0.8224

RBFN
MAE 0.0468 0.0418 0.0382 0.0632 0.0268 0.0493 0.0564 0.0723
NCLS 0.8871 0.9192 0.9249 0.8583 0.8996 0.8727 0.8737 0.8438

SVR
MAE 0.0378 0.0542 0.0442 0.0581 0.0335 0.0507 0.0495 0.0721
NCLS 0.9073 0.8970 0.9099 0.8683 0.8769 0.8607 0.8801 0.8432

DNN
MAE 0.0453 0.0931 0.0384 0.0487 0.0364 0.0459 0.0352 0.0436
NCLS 0.8850 0.8193 0.9218 0.8823 0.8629 0.8849 0.9164 0.9007

RNN
MAE 0.0483 0.0635 0.0554 0.0595 0.0506 0.0661 0.0414 0.0647
NCLS 0.8787 0.8710 0.8840 0.8510 0.8226 0.8346 0.8935 0.8504

LSTM
MAE 0.0478 0.0608 0.0526 0.0445 0.0338 0.0362 0.0411 0.0451
NCLS 0.8841 0.8812 0.8907 0.8953 0.8793 0.9071 0.9076 0.9012

MOHID
MAE 0.0622 0.0630 0.0883 0.1043 0.0236 0.0724 0.0864 0.1116
NCLS 0.8361 0.8792 0.8271 0.7559 0.9140 0.8324 0.8007 0.7585

Table 9. Computing time for Jeju data.

Data Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

Computing time
(CPU second)

DE 3004.0 2879.6 2900.4 2956.5 3098.1 2966.9 2978.2 2958.7
PSO 366.6 361.0 360.8 365.5 374.6 363.9 362.9 365.6

CMA-ES 165.9 158.9 160.8 165.2 171.5 162.0 161.2 162.9
GP 7.04 6.47 6.49 6.93 7.64 6.75 6.79 6.86

MLP 1.61 1.63 1.59 1.59 1.63 1.62 1.53 1.58
RFBN 1.56 1.58 1.51 1.50 1.52 1.61 1.53 1.53
SVR 3.36 3.45 3.22 3.28 3.66 3.35 3.56 3.25

DNN 172.12 174.94 170.06 169.84 174.01 168.76 169.10 164.17
RNN 45.75 50.57 46.14 49.22 52.09 49.34 49.45 47.43
LSTM 55.30 49.49 53.18 46.52 51.44 48.17 47.93 45.26

5.3.4. Weighted Average Results

We compared evolutionary algorithms and ML using the Seosan and Jeju data. However, it was
not easy to find out which method was better overall. We used the weight-averaged results and
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trajectory plots of predicted and actual points. The weighted average provides an advantage when the
number of data for each case is different. Experiments with more data are considered more important;
thus weights are based on the number of data. The weighted average is calculated as follows:∑n

i=1
diri

/ ∑n

i=1
di, (2)

where di refers to the number of data of the ith case and ri refers to the evaluation result of the ith case.
One of the indicators covered in this section is the standard deviation. As described in Section 4.1,
this experiment uses the method of building ten models, evaluating each of them, and then obtaining
the average. The performance of each model may vary for each run. For practical use, we need to
determine whether or not the performance deviation of each model is large.

Table 10 shows the overall performance of each method. In this context, CMA-ES showed the
highest performance on the Seosan data and LSTM on the Jeju data. The performance of DNN and
RNN on the Jeju data was good. The amount of data has to be equalized in each case of using neural
networks. Rankings were calculated separately for each method in terms of MAE and NCLS. RBFN
was the best for MAE, and LSTM was the best for NCLS. Since NCLS is more popular measure for
predictions of drifter trajectory than MAE, LSTM was the best method for this study. As expected,
LSTM was superior to RNN. There is past information to be forgotten and current information to
be remembered according to the direction of the drifters. The performance of DNN and RNN was
good for Jeju, so if we get more data in the future, it will be possible improve their performance.
Evolutionary methods showed good performance on both Seosan and Jeju data. Especially for Seosan,
where the number of data in each case was large, these methods showed better performance than the
other methods.

Table 10. Results of weighted average and standard deviation values.

Method Evaluation
Seosan Jeju Integration

Weighted
Average

Standard
Deviation

Weighted
Average

Standard
Deviation

Weighted
Average

Standard
Deviation Rank

DE
MAE 0.0660 0.0001 0.0528 0.0000 0.0567 0.0001 3
NCLS 0.8634 0.0001 0.8712 0.0001 0.8717 0.0002 5

PSO
MAE 0.0979 0.0293 0.0642 0.0068 0.0569 0.0010 4
NCLS 0.8069 0.0386 0.8418 0.0234 0.8717 0.0024 6

CMA-ES
MAE 0.0660 0.0002 0.0529 0.0001 0.0567 0.0000 2
NCLS 0.8635 0.0004 0.8709 0.0004 0.8718 0.0000 4

GP
MAE 0.0743 0.0000 0.0554 0.0000 0.0589 0.0000 8
NCLS 0.8541 0.0000 0.8682 0.0000 0.8675 0.0000 8

MLP
MAE 0.0747 0.0033 0.0530 0.0013 0.0584 0.0007 7
NCLS 0.8515 0.0042 0.8741 0.0036 0.8686 0.0010 7

RBFN
MAE 0.0793 0.0062 0.0435 0.0012 0.0556 0.0018 1
NCLS 0.8493 0.0062 0.8989 0.0027 0.8753 0.0037 2

SVR
MAE 0.0662 0.0000 0.0527 0.0000 0.0576 0.0000 5
NCLS 0.8613 0.0000 0.8724 0.0000 0.8731 0.0000 3

DNN
MAE 0.1100 0.0175 0.0465 0.0057 0.0733 0.0121 9
NCLS 0.7986 0.0250 0.8915 0.0141 0.8487 0.0192 9

RNN
MAE 0.0993 0.0223 0.0416 0.0052 0.0958 0.0326 10
NCLS 0.8083 0.0259 0.9008 0.0143 0.8065 0.0516 10

LSTM
MAE 0.0702 0.0007 0.0411 0.0004 0.0579 0.0035 6
NCLS 0.8506 0.0017 0.9040 0.0010 0.8762 0.0059 1

MOHID
MAE 0.0932 − 0.0789 − 0.0861 − −

NCLS 0.8201 − 0.8228 − 0.8215 − −

Figure 8 shows the trajectory of a drifter predicted by CMA-ES, which showed the best performance
for Seosan. Figure 9 exhibits the trajectory of a drifter predicted by LSTM, which had the best
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performance for Jeju. Finally, Figure 10 presents the trajectory of a drifter predicted by RBFN with
the best performance for MAE. Both ML and evolutionary search optimize the parameters. There is a
slight difference in accuracy, but all of them predict similar paths.

Except for the RNN series (RNN and LSTM), only the data at that point were used to predict
the trajectory of a drifter at a point in hourly time. However, there is a difference in that RNN uses
hidden layer neurons, which were used for prediction in previous instances, and LSTM showed the
best performance as a measure of NCLS. It is believed that this is because the RNN series take into
account the inertia of the drifter.

Figure 8. Comparison of trajectory predicted by our CMA-ES model, trajectory predicted by an existing
numerical model (MOHID), and observed trajectory for four major drifters.
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Figure 9. Comparison of trajectory predicted by our LSTM model, trajectory predicted by an existing
numerical model (MOHID), and observed trajectory for four major drifters.

Figure 10. Comparison of trajectory predicted by our RBFN model, trajectory predicted by an existing
numerical model (MOHID), and observed trajectory for four major drifters.
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6. Conclusions

We extended and improved our previous study [8] which predicted the trajectories of drifters
using evolutionary computation, and we also predicted the trajectories of drifters using various
machine learning techniques [44–49]. To the best of the authors’ knowledge, this was the first trial in
which machine learning has been applied to the prediction of drifter trajectories, and it significantly
improved upon the representative numerical model, MOHID.

In terms of MAE, RBFN using the WEKA library showed the best performance, an improvement
of 35.20% over the numerical model MOHID. LSTM using PyTorch showed the best performance
regarding NCLS, an improvement of 6.24% over MOHID. These neural network-based methods did
not take a long time to construct a model. In the future, we plan to experiment with other representative
variants of RNNs such as gated recurrent units [50], and we will design more models that increase the
performance of DNNs or basic RNNs by adding more training data.
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