
applied
sciences

Article

Artificial Intelligence, Accelerated in Parallel
Computing and Applied to Nonintrusive Appliance
Load Monitoring for Residential Demand-Side
Management in a Smart Grid: A Comparative Study

Yu-Chen Hu 1, Yu-Hsiu Lin 2,* and Chi-Hung Lin 2

1 Department of Computer Science and Information Management, Providence University,
Taichung City 43301, Taiwan; ychu@pu.edu.tw

2 Department of Electrical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan;
m09128012@o365.mcut.edu.tw

* Correspondence: yhlin@mail.mcut.edu.tw

Received: 23 October 2020; Accepted: 13 November 2020; Published: 16 November 2020 ����������
�������

Abstract: A smart grid is a promising use-case of AIoT (AI (artificial intelligence) across IoT (internet
of things)) that enables bidirectional communication among utilities that arises with demand response
(DR) schemes for demand-side management (DSM) and consumers that manage their power demands
according to received DR signals. Disaggregating composite electric energy consumption data from
a single minimal set of plug-panel current and voltage sensors installed at the electric panel in a practical
field of interest, nonintrusive appliance load monitoring (NIALM), a cost-effective load disaggregation
approach for (residential) DSM, is able to discern individual electrical appliances concerned without
accessing each of them by individual plug-load power meters (smart plugs) deployed intrusively.
The most common load disaggregation approaches are based on machine learning algorithms such
as artificial neural networks, while approaches based on evolutionary computing, metaheuristic
algorithms considered as global optimization and search techniques, have recently caught the
attention of researchers. This paper presents a genetic algorithm, developed in consideration of
parallel evolutionary computing, and aims to address NIALM, whereby load disaggregation from
composite electric energy consumption data is declared as a combinatorial optimization problem and
is solved by the algorithm. The algorithm is accelerated in parallel, as it would involve large amounts
of NIALM data disaggregated through evolutionary computing, chromosomes, and/or evolutionary
cycles to dominate its performance in load disaggregation and excessively cost its execution time.
Moreover, the evolutionary computing implementation based on parallel computing, a feed-forward,
multilayer artificial neural network that can learn from training data across all available workers of
a parallel pool on a machine (in parallel computing) addresses the same NIALM/load disaggregation.
Where, a comparative study is made in this paper. The presented methodology is experimentally
validated by and applied on a publicly available reference dataset.

Keywords: artificial intelligence; artificial neural network; demand-side management; evolutionary
computing; non-intrusive appliance load monitoring; parallel computing; smart grid; smart house

1. Introduction

Nonintrusive appliance load monitoring (NIALM), also called nonintrusive load monitoring,
was first investigated by George W. Hart et al. [1] at the Massachusetts Institute of Technology with
funding from the Electric Power Research Institute in the early 1980s. It has been considered as
a cost-effective alternative against intrusive load monitoring approaches that involve the deployment

Appl. Sci. 2020, 10, 8114; doi:10.3390/app10228114 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-1407-2262
http://dx.doi.org/10.3390/app10228114
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/22/8114?type=check_update&version=2

Appl. Sci. 2020, 10, 8114 2 of 24

of plug-load power meters (smart plugs) for individual concerned electrical appliances in a practical
field of interest (it cannot be costed down for the realization of load management) [2], and has
been developed for (residential) demand-side management (DSM) in a smart grid [3,4]. With DSM
implemented in a smart grid, consumers have the opportunity to improve their awareness of what and
when their monitored electrical appliances should operate for use in response to demand response
(DR) schemes [5]. Thus, power utilities coming up with DR schemes plan to address ever-increasing
electric demand in an optimal way [6].

NIALM, load disaggregation by estimating appliance-by-appliance energy consumption from
composite electric energy consumption data, is becoming mature with the improvement of advanced
metering infrastructure for DSM in a smart grid [7,8], where load disaggregation is performed
with/applied on smart meter data.

NIALM can be built upon signal processing [9], machine learning [4,9–20], and deep learning [20–24].
Not much attention has been paid to evolutionary computing, wherein load disaggregation is considered
as a combinatorial optimization problem [1]. As a result, in this paper, load disaggregation is declared
as a combinatorial optimization problem, and is solved by a genetic algorithm (GA) accelerated in
parallel computing. GA used to solve NIALM that is declared as a combinatorial optimization problem
would involve large amounts of electric energy consumption data gathered from smart meters deployed
in practical fields of interest in a smart grid, population-based candidate solutions evaluated, and/or
evolutionary cycles executed from iteration to iteration, which is a highly demanding task in terms of
performance in load disaggregation and computational time in evolutionary computation. Hence, GA
conducted in this paper for NIALM is parallelized during evolution. The GA-based NIALM in this
paper is processed and accelerated in consideration of parallel computing. It has been experimentally
validated by and applied on a publicly-available reference dataset considered in this paper. Besides
the GA-based NIALM, a feed-forward, multilayer artificial neural network (ANN)-based NIALM
against other different types of ANNs (deep NNs)-based NIALM addresses the same NIALM data
from the considered publicly available reference dataset. A comparative study is made in this paper.
ANNs used in this paper to address NIALM can learn from NIALM data across parallel workers on a
machine supporting parallel computing.

The remainder of this paper is structured below. The investigated methodology is presented
in Section 2. Section 3 gives the experimentation and results. Conclusions are drawn in Section 4,
where future work is also anticipated.

2. Methodology

Figure 1 describes a basic (eventless) NIALM process consisting of (1) data acquisition: composite
electric energy consumption data are measured by a single minimal set of plug-panel current and
voltage sensors and digitized for further analysis of load disaggregation; (2) feature extraction: electrical
features are extracted as feature data from digitized composite electric energy consumption data
for concerned electrical appliances; and (3) load recognition: artificial intelligence (AI) is utilized
to recognize extracted electrical features for concerned electrical appliances—their electric demand
based on past trends can be predicted. The NIALM investigated in this paper is an eventless NIALM
approach. AI conducted in the NIALM is parallel computing accelerated evolutionary computing.
The basic NIALM problem can be formulated as follows:

Appl. Sci. 2020, 10, 8114 3 of 24

Appl. Sci. 2020, 10, x FOR PEER REVIEW 3 of 23

(=y(t)) acquired and given with Pbase(t) is known: [x1(t), x2(t), ..., xi(t), ..., xN(t)] = F(y(t)) where F is a

function that returns the best N estimates of xi(t) at time t for concerned individual N electrical

appliances. F above can be any AI algorithm. In this paper, we conduct evolutionary computing, GA,

to metaheuristically search for the optimal load combinations xi(t) of concerned electrical appliances

when acquired total power consumption P(t) with base load Pbase(t) is given at time t (in Equation (1),

profiling concerned electrical appliances to get Pi(t) and statistically computing base load for Pbase(t)

from unmonitored electrical appliances is done prior.

)()()()(
1

tPtPtxtP base

N

i
ii 



(1)

Figure 1. A basic NIALM process (profiling concerned electrical appliances and statistically

computing base load should be done beforehand).

In this paper, NIALM is declared as a combinatorial optimization problem, which is formulated

as the objective metric in Equation (2) and solved by a parallel computing accelerated GA.

   



N

i
iiibase τtPtxPtPterr

1

)()()()(minarg)(t (2)

where
))((tPstdcτ iii 

.

In Equation (2), Pi (=mean(Pi(t))) obtained in advance involves profiling each of concerned

electrical appliances based on historical data. That is, Pi(t), in Equation (1), or Pi, in Equation (2),

accounts for the real power that was absorbed by electrical appliance i and statistically computed for

load disaggregation. Pbase, in Equation (2), from Pbase(t), in Equation (1), is defined in a similar sense,

and its standard deviation can be considered. In Equation (2), τi, a tolerance term for Pi, is considered,

where std(Pi(t)) is a function that returns the standard deviation of its input elements Pi(t) from

historical data and ci is a constant that can be designed as a time-dependent parameter.

Figure 2 illustrates the principle of combinatorial search for load combinations with xi(t) in

Equation (2) for load disaggregation, which aims to optimize load combinations by xi(t). In Figure 2,

Pi(t) represents the assumed power demand of the i-th electrical appliance. xi(t) associated with Pi(t)

Figure 1. A basic NIALM process (profiling concerned electrical appliances and statistically computing
base load should be done beforehand).

If (1) P(t) stands for used composite power consumption acquired at time t and (2) Pi(t) accounts
for real power absorbed by concerned electrical appliance i (profiling concerned electrical appliances
and base load is done in advance), the total power consumption, P(t) (=y(t)), in an electric power
distribution system can be expressed as Equation (1). In Equation (1), the summation of superimposed
absorptions Σxi(t)Pi(t) with an unmonitored base load Pbase(t) is made. In Equation (1), N is the total
number of concerned electrical appliances and xi(t), a unit value from {0, 1}, is the on/off operational
status of electrical appliance i at time t. NIALM is used to recognize the unknown (possible) operational
status of concerned electrical appliances xi(t)|i = 1, 2, ..., N at time t when P(t) (=y(t)) acquired and
given with Pbase(t) is known: [x1(t), x2(t), ..., xi(t), ..., xN(t)] = F(y(t)) where F is a function that returns
the best N estimates of xi(t) at time t for concerned individual N electrical appliances. F above can
be any AI algorithm. In this paper, we conduct evolutionary computing, GA, to metaheuristically
search for the optimal load combinations xi(t) of concerned electrical appliances when acquired total
power consumption P(t) with base load Pbase(t) is given at time t (in Equation (1), profiling concerned
electrical appliances to get Pi(t) and statistically computing base load for Pbase(t) from unmonitored
electrical appliances is done prior.

P(t) =
N∑

i=1

xi(t)Pi(t) + Pbase(t) (1)

In this paper, NIALM is declared as a combinatorial optimization problem, which is formulated
as the objective metric in Equation (2) and solved by a parallel computing accelerated GA.

err(t) = argmin

∣∣∣∣∣∣∣[P(t) − Pbase(t)] −
N∑

i=1

xi(t)[Pi(t) + τi]

∣∣∣∣∣∣∣ (2)

where τi = ci · std(Pi(t)).

Appl. Sci. 2020, 10, 8114 4 of 24

In Equation (2), Pi (=mean(Pi(t))) obtained in advance involves profiling each of concerned
electrical appliances based on historical data. That is, Pi(t), in Equation (1), or Pi, in Equation (2),
accounts for the real power that was absorbed by electrical appliance i and statistically computed for
load disaggregation. Pbase, in Equation (2), from Pbase(t), in Equation (1), is defined in a similar sense,
and its standard deviation can be considered. In Equation (2), τi, a tolerance term for Pi, is considered,
where std(Pi(t)) is a function that returns the standard deviation of its input elements Pi(t) from
historical data and ci is a constant that can be designed as a time-dependent parameter.

Figure 2 illustrates the principle of combinatorial search for load combinations with xi(t) in
Equation (2) for load disaggregation, which aims to optimize load combinations by xi(t). In Figure 2,
Pi(t) represents the assumed power demand of the i-th electrical appliance. xi(t) associated with Pi(t) is
represented as a binary vector, evolved through metaheuristics, and used to minimize Equation (2) (the
minimal error, err(t), to be obtained for load disaggregation) between the summation of superimposed
absorptions Σxi(t)Pi(t) with an unmonitored base load Pbase(t) and the total load P(t) (P(t) to be
approximated from a pack of Pi(t) with Pbase(t)). A metaheuristic algorithm, GA, is suitable for load
disaggregation formulated in Equation (2) (the objective metric is the metric we are trying to optimize
and the fitness metric is the algorithm’s guide to doing so), where concerned electrical appliances are
recognized by parallel computing accelerated GA for the declared objective metric. Concerned electrical
appliances are constant or time-varying resistive, inductive, or capacitive loads.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 23

is represented as a binary vector, evolved through metaheuristics, and used to minimize Equation (2)

(the minimal error, err(t), to be obtained for load disaggregation) between the summation of

superimposed absorptions Σxi(t)Pi(t) with an unmonitored base load Pbase(t) and the total load P(t)

(P(t) to be approximated from a pack of Pi(t) with Pbase(t)). A metaheuristic algorithm, GA, is suitable

for load disaggregation formulated in Equation (2) (the objective metric is the metric we are trying to

optimize and the fitness metric is the algorithm’s guide to doing so), where concerned electrical

appliances are recognized by parallel computing accelerated GA for the declared objective metric.

Concerned electrical appliances are constant or time-varying resistive, inductive, or capacitive loads.

Figure 2. An illustration of the principle of combinatorial search for load combinations to xi(t) for load

disaggregation in this paper, whereby load combinations by xi(t) are optimized. xi(t) is represented as

a binary vector, evolved through metaheuristics, and used to minimize Equation (2) between the

summation of superimposed absorptions Σxi(t)Pi(t) with an unmonitored base load Pbase(t) and the

total load P(t).

The NIALM investigated in this paper has the main objective of recognizing concerned electrical

appliances for (residential) DSM according to a composition of appliance-level real power

consumption, which is disaggregated from total real power consumption acquired apart for load

disaggregation. That is, with the minimum in Equation (2), acquired total real power consumption is

the total of real power consumption by all individual electrical appliances concerned and operated

where a base load should be considered. To Equation (2), a parallel computing accelerated GA as a

load recognizer for load recognition of the NIALM in this paper is used to recognize the correct xi(t)

to gain the minimum between the acquired total real power consumption and the sum of

superimposed real power consumption by concerned electrical appliances. In this paper, real power

consumption, P, is extracted, as the electrical feature for load recognition in Figure 1, from acquired

total real power consumption, which is disaggregated into appliance-level real power consumption

through the parallel computing accelerated GA-based NIALM of Equation (2). Concerned electrical

appliances to be recognized can be constant or time-varying resistive, inductive, and capacitive loads

[4,25].

Figure 2. An illustration of the principle of combinatorial search for load combinations to xi(t) for load
disaggregation in this paper, whereby load combinations by xi(t) are optimized. xi(t) is represented
as a binary vector, evolved through metaheuristics, and used to minimize Equation (2) between the
summation of superimposed absorptions Σxi(t)Pi(t) with an unmonitored base load Pbase(t) and the
total load P(t).

The NIALM investigated in this paper has the main objective of recognizing concerned electrical
appliances for (residential) DSM according to a composition of appliance-level real power consumption,
which is disaggregated from total real power consumption acquired apart for load disaggregation.
That is, with the minimum in Equation (2), acquired total real power consumption is the total of real
power consumption by all individual electrical appliances concerned and operated where a base load

Appl. Sci. 2020, 10, 8114 5 of 24

should be considered. To Equation (2), a parallel computing accelerated GA as a load recognizer
for load recognition of the NIALM in this paper is used to recognize the correct xi(t) to gain the
minimum between the acquired total real power consumption and the sum of superimposed real power
consumption by concerned electrical appliances. In this paper, real power consumption, P, is extracted,
as the electrical feature for load recognition in Figure 1, from acquired total real power consumption,
which is disaggregated into appliance-level real power consumption through the parallel computing
accelerated GA-based NIALM of Equation (2). Concerned electrical appliances to be recognized can be
constant or time-varying resistive, inductive, and capacitive loads [4,25].

2.1. GA-Based NIALM

GAs are a stochastic, population-based metaheuristic optimization (search) algorithm that can
search for the global (quasi-)optimal solution metaheuristically to both constrained and unconstrained,
NP-hard/NP-complete discrete or continuous optimization problems addressed, through (natural)
selection operations that select current chromosomes for further gene recombination and through
genetic operations involving (1) crossover operations that combine genetic information from selected
parents’ chromosomes to produce new offspring and (2) mutation operations that provide genetic
diversity among population members. The evolutionary cycle is based on the principle of biological
evolution. GAs that operate based on the principle of biological evolution have been proven to be
an effective metaheuristics technique in many optimization problems.

In GAs, genetic operations, comprising crossover and mutation operations, and evolutionary
operations, implementing the driving force of evolution (natural selection/Darwinism), are involved.
See [26] for more details about a standard GA. In a GA addressing an optimization problem, a population
of chromosomes as candidate solutions in a search space is evolved, from generation to generation,
through genetic operations and evolutionary operations towards a global (quasi-)optimal solution.
In an evolutionary cycle in a GA, a proportion of an existing population in its current generation
is reproduced through selection operations and is used through crossover and mutation operations
to breed a new population for the next generation. Selection operations select chromosomes based
on a fitness-based selection procedure where chromosomes as candidate solutions are evaluated by
a fitness function, and chromosomes with relatively high fitness are typically more likely to be selected.
Also, crossover operations exchange subparts of two chromosomes, roughly mimicking the biological
recombination between two haploid organisms. Finally, mutation operations randomly alter genes in
some chromosomes, where an arbitrary bit of a chromosome is changed from its original state. In a GA,
the population size depends on the nature of the problem addressed, but, typically, the population
contains several hundreds or thousands of chromosomes/candidate solutions. Chromosomes are
generated at random in the initial population. The evolutionary cycle is repeated, from generation to
generation, until a termination condition such as a maximum of generations prespecified and reached
has been met.

A GA used to address optimization problems is innately a parallel algorithm that can be run
on a multicore processor. The workflow depicting the parallel computing accelerated GA used to
solve Equation (2) for load recognition in the NIALM in this paper is shown in Figure 3. In the GA,
function evaluations are farmed out to different processors on a multicore processor; they are executed
in parallel. Figure 4 shows that xi(t) (at time t) in Equation (2) are encoded as a chromosome for
an evolutionary cycle of the GA. To evaluate a chromosome with Equation (2), the GA decodes it
as a computed summation of superimposed absorptions Σxi(t)Pi(t). With an initial population of
randomly generated chromosomes that are started in the parallel computing accelerated GA in Figure 3,
successive generations are constructed through evolution. Fitter chromosomes are more likely to
survive, based on selection, and to participate in genetic operations [27]. Here, (1) a roulette selection
strategy choosing parents by simulating a roulette wheel in which the area of the section of the wheel
corresponding to an individual is proportional to the individual’s expectation associated with its scaled
fitness value is conducted (a ranking method that scales raw fitness values based on the rank of each

Appl. Sci. 2020, 10, 8114 6 of 24

individual rather than its raw fitness value is used for fitness scaling), (2) a single-point crossover
operator is used, (3) a bit-wise mutation operator is utilized, and (4) an elitist strategy guaranteeing
that the solution quality does not decrease during evolution is also conducted.Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 23

Figure 3. A workflow of the parallel computing accelerated GA used to solve Equation (2) for load

recognition in the NIALM in this paper, where the evolutionary cycle is parallelized.

Figure 4. A chromosomal design encoding xi(t) (at time t) in Equation (2).

2.2. Feed-Forward, Multilayer ANN-Based NIALM

A feed-forward, multilayer ANN can be used to learn and distinguish from aggregated,

extracted NIALM feature data for load disaggregation. In this paper, a comparative study where a

feed-forward, multilayer ANN against the GA described in the previous subsection is used to address

the same NIALM/load disaggregation problem, Equation (1), is conducted. As seen in Figure 5, a

feed-forward, multilayer ANN contains an input layer, a number of intermediate hidden layers, and

an output layer. The size of the input layer depends on the number of independent variables

(extracted representative features) of considered feature data to be learned. The number of

intermediate hidden layers with their size (the number of hidden neurons) specified in each hidden

layer, can be determined experimentally through hyperparameter tuning where hyperparameters

including the learning algorithm and the number of epochs for iterative rounds of learning affect how

well the connectionism can represent the considered feature data (the hyperparameters are a set of

parameters whose value is specified and used to control the learning process). The size of the output

layer depends on the number of dependent variables (mutually exclusive classes) of considered

feature data to be fitted.

Figure 3. A workflow of the parallel computing accelerated GA used to solve Equation (2) for load
recognition in the NIALM in this paper, where the evolutionary cycle is parallelized.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 23

Figure 3. A workflow of the parallel computing accelerated GA used to solve Equation (2) for load

recognition in the NIALM in this paper, where the evolutionary cycle is parallelized.

Figure 4. A chromosomal design encoding xi(t) (at time t) in Equation (2).

2.2. Feed-Forward, Multilayer ANN-Based NIALM

A feed-forward, multilayer ANN can be used to learn and distinguish from aggregated,

extracted NIALM feature data for load disaggregation. In this paper, a comparative study where a

feed-forward, multilayer ANN against the GA described in the previous subsection is used to address

the same NIALM/load disaggregation problem, Equation (1), is conducted. As seen in Figure 5, a

feed-forward, multilayer ANN contains an input layer, a number of intermediate hidden layers, and

an output layer. The size of the input layer depends on the number of independent variables

(extracted representative features) of considered feature data to be learned. The number of

intermediate hidden layers with their size (the number of hidden neurons) specified in each hidden

layer, can be determined experimentally through hyperparameter tuning where hyperparameters

including the learning algorithm and the number of epochs for iterative rounds of learning affect how

well the connectionism can represent the considered feature data (the hyperparameters are a set of

parameters whose value is specified and used to control the learning process). The size of the output

layer depends on the number of dependent variables (mutually exclusive classes) of considered

feature data to be fitted.

Figure 4. A chromosomal design encoding xi(t) (at time t) in Equation (2).

2.2. Feed-Forward, Multilayer ANN-Based NIALM

A feed-forward, multilayer ANN can be used to learn and distinguish from aggregated, extracted
NIALM feature data for load disaggregation. In this paper, a comparative study where a feed-forward,
multilayer ANN against the GA described in the previous subsection is used to address the same
NIALM/load disaggregation problem, Equation (1), is conducted. As seen in Figure 5, a feed-forward,
multilayer ANN contains an input layer, a number of intermediate hidden layers, and an output layer.
The size of the input layer depends on the number of independent variables (extracted representative
features) of considered feature data to be learned. The number of intermediate hidden layers with their
size (the number of hidden neurons) specified in each hidden layer, can be determined experimentally
through hyperparameter tuning where hyperparameters including the learning algorithm and the
number of epochs for iterative rounds of learning affect how well the connectionism can represent the
considered feature data (the hyperparameters are a set of parameters whose value is specified and used
to control the learning process). The size of the output layer depends on the number of dependent
variables (mutually exclusive classes) of considered feature data to be fitted.

Appl. Sci. 2020, 10, 8114 7 of 24
Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 23

(a)

(b)

Figure 5. Representative ANNs, connectionisms, mimicking biologic NNs: (a) A connectionism is

fully connected; (b) A connectionism considers dropout—one of the hyperparameters whose

specified value is used to control the learning process of a connectionism—to prevent overfitting [28].

In this paper, F1 score described in detail in the following subsection is conducted and used as

the performance metric to indicate the effectiveness of the two parallel computing-accelerated AI

approaches in load recognition for load disaggregation.

2.3. Performance Evaluation of Load Recognition by F1 Score

In this paper, as shown in Equation (3), F1 score [29] is used to evaluate the performance of the

two parallel computing-accelerated AI approaches in load recognition for load disaggregation.

2


 


Precision Recall
F score

Precision Recall
1 (3)

In Equation (3), precision is a ratio of the total number of correctly recognized positives to the

total number of predicted positives. Recall (i.e., sensitivity or hit rate) is a ratio of the total number of

correctly recognized positives to the total number of actual positives. See ref. [29] for more details

about precision and recall. To summarize, F1 score is the harmonic mean of precision and recall. A

recognizer that produces no false positives has a precision of 1.0. A recognizer that produces no false

negatives has a recall of 1.0. In Equation (3), an F1 score reaches its best value at 1.0 (perfect precision

and recall). The higher the score, the better the recognition performance. Besides F1 score, we also use

Figure 5. Representative ANNs, connectionisms, mimicking biologic NNs: (a) A connectionism is fully
connected; (b) A connectionism considers dropout—one of the hyperparameters whose specified value
is used to control the learning process of a connectionism—to prevent overfitting [28].

In this paper, F1 score described in detail in the following subsection is conducted and used as
the performance metric to indicate the effectiveness of the two parallel computing-accelerated AI
approaches in load recognition for load disaggregation.

2.3. Performance Evaluation of Load Recognition by F1 Score

In this paper, as shown in Equation (3), F1 score [29] is used to evaluate the performance of the
two parallel computing-accelerated AI approaches in load recognition for load disaggregation.

F1score = 2 ·
Precision ·Recall

Precision + Recall
(3)

In Equation (3), precision is a ratio of the total number of correctly recognized positives to the
total number of predicted positives. Recall (i.e., sensitivity or hit rate) is a ratio of the total number of
correctly recognized positives to the total number of actual positives. See ref. [29] for more details
about precision and recall. To summarize, F1 score is the harmonic mean of precision and recall.
A recognizer that produces no false positives has a precision of 1.0. A recognizer that produces no false
negatives has a recall of 1.0. In Equation (3), an F1 score reaches its best value at 1.0 (perfect precision

Appl. Sci. 2020, 10, 8114 8 of 24

and recall). The higher the score, the better the recognition performance. Besides F1 score, we also use
receiver operating characteristic (ROC) curves [29] to evaluate the performance of the two parallel
computing-accelerated AI approaches in load recognition for load disaggregation. An ROC curve
considering false positive rate (FPR) and true positive rate (TPR) is a graph showing the recognition
performance of a recognizer examined at all recognition thresholds (or with different configuration
settings) [29]. In an ROC curve, an error to a trained and validated recognizer can be computed by the
Euclidean distance, from the perfect identification (FPR = 0, TPR = 1) til a resulting (FPR, TPR) [30,31]
where FPR and TPR are defined as Equations (4) and (5), respectively. TPR is referred to as recall.
As seen in Equations (4) and (5), ROC curves [29] are also used to evaluate the performance of the
investigated methodology in load recognition, where TPR (a synonym for recall) defined in Equation (4)
and FPR defined in Equation (5) are considered. See ref. [29] for more details about precision and recall.

TPR =
TP

TP + FN
(4)

FPR =
FP

FP + TN
(5)

In Equations (4) and (5), TP (true positives) means the data instances are recognized, and fit with
reality. TN (true negatives) means the data instances are recognized, and the nonexistence fits with
reality. FP (false positives) means the data instances are erroneously recognized as positives. Finally,
FN (false negatives) means the data instances are incorrectly recognized as negatives.

3. Experimentation and Results

In this section, experiments are carried out to verify the validity of the investigated NIALM, by
a publicly available UK-DALE (UK Domestic Appliance-Level Electricity) dataset [32]. The UK-DALE
dataset contains records of power consumption measured and collected from five different households
in the UK. In each house, the authors in [32] recorded both whole-house power consumption
(power demand) from the mains every 6 s and power consumption by concerned individual electrical
appliances every 6 s. Figure 6 shows the considered historical power demand on two typical days
(Sunday 7 December 2014 (Figure 6a,b) and Thursday 4 December 2014 (Figure 6c,d)) in House
1 from the UK-DALE dataset, which is considered, parsed, and used to experimentally validate
the performance of the investigated methodology in load recognition. The summarization of the
UK-DALE dataset can be found in [32]. In Figure 6a,c, we show the total power demand in the mains.
Also, we show the power demand by the concerned individual electrical appliances and all other
submeters [32] considered together and treated as a single individual in power absorptions for load
disaggregation. As shown in Figure 6b,d, the thin white gap between the power demand in the mains
and the summed-up power demand illustrates the amount of power demand, base load, which is
not concerned/metered. The concerned electrical appliances, including the considered submeters as
a single individual in power absorptions to Pi in Equation (2), are listed in Table 1; their power demand
is shown in Figure 6 and the base load, Pbase in Equation (2), is assumed to have a constant value of
150.0 watts for simplicity’s sake. Figure 7 shows the power demand of the several individual electrical
appliances targeted in this paper and listed in Table 1. The behavior of the power demand by the
electrical appliances can be found in [32]. For example, Figure 7a shows the power demand by the
fridge running and doing its respective job of compressor on (state 1: its mean power consumption is
~90.0 watts with a standard deviation of ~44.0) or defrost (state 2: its mean power consumption is
~245.0 watts with a standard deviation of ~16.0). In this paper, the load classes considered from the
targeted electrical appliances in Table 1 and recognized are shown in Table 2.

Appl. Sci. 2020, 10, 8114 9 of 24
Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 23

(a)

(b)

(c)

Figure 6. Cont.

Appl. Sci. 2020, 10, 8114 10 of 24
Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 23

(d)

Figure 6. Considered historical power demand on two typical days in House 1 from the UK-DALE

dataset parsed in this paper. The thin blue line in (a,c) shows the total (whole-house) power demand

in the mains; the stacked, filled, and colored blocks show the power demand by the concerned

individual electrical appliances and all other submeters [32] considered together and treated as a

single individual in the power absorptions also concerned in load disaggregation. Base load in (b,d)

exists in the house.

Table 1. Electrical appliances concerned and considered for load disaggregation in this paper.

Electrical

Appliance
State 1 State 2 3 State 3 State 4

Mean

1

Standard

Deviation 2
Mean

Standard

Deviation
Mean

Standard

Deviation
Mean

Standard

Deviation

fridge 88.8 43.7 245.5 16.4 - - - -

htpc

(home

theatre PC)

68.5 6.2 - - - - - -

washer dryer 182.2 131.6 1833.1 152.9 - - - -

dishwasher 116.0 15.1 2309.3 27.3 - - - -

kettle 2323.7 132.6 - - - - - -

other

submeters
17.1 22.2 67.9 152.7 457.7 72.2 280.6 37.4

1 Pi (= mean(Pi(t)): statistically computed, for the mean values, from the historical power demand data

and stored in the database in Figure 1, where an eventless NIALM approach, the presented

methodology, is shown; 2 τi: ci∙std(Pi(t)); 3 In the GA, the multistate transitions from the same types of

the concerned electrical appliances are mutually exclusive; illegal offspring are assigned an objective

value of 1000 to Equation (2) (an illegal chromosome cannot be decoded to/as a solution; that is, such

an illegal chromosome cannot be evaluated).

Figure 6. Considered historical power demand on two typical days in House 1 from the UK-DALE
dataset parsed in this paper. The thin blue line in (a,c) shows the total (whole-house) power demand in
the mains; the stacked, filled, and colored blocks show the power demand by the concerned individual
electrical appliances and all other submeters [32] considered together and treated as a single individual
in the power absorptions also concerned in load disaggregation. Base load in (b,d) exists in the house.

Table 1. Electrical appliances concerned and considered for load disaggregation in this paper.

Electrical
Appliance State 1 State 2 3 State 3 State 4

Mean 1 Standard
Deviation 2 Mean Standard

Deviation Mean Standard
Deviation Mean Standard

Deviation

fridge 88.8 43.7 245.5 16.4 - - - -

htpc
(home
theatre

PC)

68.5 6.2 - - - - - -

washer
dryer 182.2 131.6 1833.1 152.9 - - - -

dishwasher 116.0 15.1 2309.3 27.3 - - - -

kettle 2323.7 132.6 - - - - - -

other
submeters 17.1 22.2 67.9 152.7 457.7 72.2 280.6 37.4

1 Pi (= mean(Pi(t)): statistically computed, for the mean values, from the historical power demand data and
stored in the database in Figure 1, where an eventless NIALM approach, the presented methodology, is shown;
2 τi: ci·std(Pi(t)); 3 In the GA, the multistate transitions from the same types of the concerned electrical appliances are
mutually exclusive; illegal offspring are assigned an objective value of 1000 to Equation (2) (an illegal chromosome
cannot be decoded to/as a solution; that is, such an illegal chromosome cannot be evaluated).

Appl. Sci. 2020, 10, 8114 11 of 24

Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 23

(a)

Figure 7. Cont.

Appl. Sci. 2020, 10, 8114 12 of 24

Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 23

(b)

Figure 7. Cont.

Appl. Sci. 2020, 10, 8114 13 of 24

Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 23

(c)

Figure 7. Cont.

Appl. Sci. 2020, 10, 8114 14 of 24

Appl. Sci. 2020, 10, x FOR PEER REVIEW 15 of 23

(d)

Figure 7. Shown power demand of most of the electrical appliances: (a) fridge; (b) htpc; (c) washer

dryer; (d) other submeters.
Figure 7. Shown power demand of most of the electrical appliances: (a) fridge; (b) htpc; (c) washer
dryer; (d) other submeters.

Appl. Sci. 2020, 10, 8114 15 of 24

Table 2. Twelve load classes considered from the targeted electrical appliances in Table 1 and recognized.

Class Load

1 fridge, state 1

2 fridge, state 2

3 htpc, state 1

4 washer dryer, state 1

5 washer dryer, state 2

6 dishwasher, state 1

7 dishwasher, state 2

8 kettle, state 1

9 other submeters, state 1

10 other submeters, state 2

11 other submeters, state 3

12 other submeters, state 4

We used the UK-DALE dataset [32] as our reference dataset to experimentally validate the
performance of the investigated methodology in load recognition; note that, in the dataset, data that
were recorded from House 1 in the UK were considered in this experiment. In this experiment, a total of
4096 (=2N(=12)) load combinations need to be recognized by the parallel computing accelerated GA in
this paper (the total number of meters installed and used as ground truth in the house environment is
54 [32]), where a total of 208 composite power consumption (NIALM) data instances are disaggregated
according to Equation (2). For each data instance acquired at time t and disaggregated, the parallel
computing accelerated GA indicates the electrical appliances whose operation is active or inactive.
In this experiment, the parallel computing accelerated GA is implemented in MATLAB® and run on
an Acer Predator G3-710 Intel® CoreTM i7-6700 CPU (3.40 GHz) (RAM: 16 GB) personal computer (PC),
where for parallel computing the total number of available workers, n, on the machine is four. Note that
running the parallel computing accelerated GA requires Global Optimization Toolbox™ [33] required
with Parallel Computing Toolbox™ [34] for parallel computing. In this experiment, for simplicity,
ci in Equation (2) is set to 1.5, which can be determined through an exhaustive search for the house
environment. Also, Pbase assumed and estimated according to Figure 6b,d is 150.0 watts. Parameters
for the parallel computing accelerated GA are specified below. The population size, pop_size, is 250.
The initial population is created randomly in bit strings, where the total length of each chromosome
is 12. The roulette selection strategy is used, and for this proportional selection procedure raw fitness
values based on the rank of evaluated chromosomes, rather than their raw fitness value, are scaled.
The single-point crossover operator is conducted; the crossover fraction of the population to be evolved
is 0.55. The bit-wise mutation operator is used; the mutation rate is 0.01. An elitist strategy that
guarantees a total of top (0.05 × pop_size) chromosomes to survive from their current population to the
next population is also used. The maximum number of generations is 50. Finally, the fitness function is
clarified as —E, where E is the declared objective function shown in Equation (2).

Figure 8 shows the evolutionary trajectory of the parallel computing accelerated GA to a
disaggregated NIALM data instance. The resulting objective value obtained is 0.7. To the total
208 NIALM data instances where they are run over for load disaggregation, the parallel computing
accelerated GA compared to a standard GA achieves, in terms of computation time, an acceleration of
up to 3.49 × (=19.57 s/5.60 s).

Appl. Sci. 2020, 10, 8114 16 of 24

Appl. Sci. 2020, 10, x FOR PEER REVIEW 16 of 23

Figure 8. Obtained evolutionary trajectory by the parallel computing accelerated GA in this

experiment.

In order to evaluate the performance of the parallel computing accelerated GA in load

recognition, we examined the ROC curves, TPR and FPR in Equations (3) and (4), where their Area

under ROC (AUC) is shown. Table 3 tabulates the load recognition results obtained by the parallel

computing accelerated GA applied on the class-imbalanced data, where the F1 score is shown to each

load class. Table 4 also tabulates the load recognition results obtained by the parallel computing

accelerated GA, where TPR vs. FPR is also shown to each load class. As shown in Table 4, the

presented methodology got good load recognition results (against random guesses with AUCs of 0.5)

for the fridge, kettle, and dishwasher, where activities of daily living (ADLs) [35] can be inferred from

them for occupants in the house. The experimental results reported in this paper have shown the

validity of the parallel computing accelerated GA-based NIALM for load disaggregation. In addition,

the NIALM’s achieved acceleration of up to 3.49× has been shown. The parallel computing

accelerated GA can exploit parallel computing and, thus, reduce computation time. Computation

time will increase exponentially when a large amount(s) of NIALM data is run over for load

disaggregation (Equation (2)) in a large-scale evaluation of NIALM. Parallel computing will be

exploited massively and the computation time will, thus, be reduced drastically. As shown in Tables

3 and 4, the performance of the presented methodology in load recognition needs a significant

improvement, where the presented methodology suffers from similar P where the concerned

electrical appliances or the load combinations of the concerned electrical appliances are identical. It

will be improved. The improvement is shown below.

The performance of the parallel computing accelerated GA in load recognition needs a

significant improvement, although the algorithm is capable of recognizing the fridge/freezer, kettle,

and dishwasher in the house environment for ADLs. A comparative study is conducted below, where

a feed-forward, multilayer ANN as neurocomputing against evolutionary computing is used for the

addressed NIALM problem. A network configuration of 1-15-12 of a feed-forward, multilayer ANN

in Figure 5a is constructed, specified, and used, in this experiment, to address the same 208 NIALM

data instances used before. The feed-forward, multilayer ANN was trained on 135 randomly sampled

training data instances (~65% of the whole dataset) and tested on the remaining 73 test data instances.

The training trajectory of the constructed, specified and used feed-forward, multilayer ANN is shown

in Figure 9. The resulting mean squared error (MSE) is 0.055 (its initial MSE is 0.891). Table 5 tabulates

the load recognition results obtained by the feed-forward, multilayer ANN, which has been well

trained and validated on the class-imbalanced training data. In Table 5, the F1 score is shown to each

load class. Table 6 also tabulates the load recognition results obtained by the well-trained and -tested

Figure 8. Obtained evolutionary trajectory by the parallel computing accelerated GA in this experiment.

In order to evaluate the performance of the parallel computing accelerated GA in load recognition,
we examined the ROC curves, TPR and FPR in Equations (3) and (4), where their Area under ROC
(AUC) is shown. Table 3 tabulates the load recognition results obtained by the parallel computing
accelerated GA applied on the class-imbalanced data, where the F1 score is shown to each load class.
Table 4 also tabulates the load recognition results obtained by the parallel computing accelerated GA,
where TPR vs. FPR is also shown to each load class. As shown in Table 4, the presented methodology
got good load recognition results (against random guesses with AUCs of 0.5) for the fridge, kettle,
and dishwasher, where activities of daily living (ADLs) [35] can be inferred from them for occupants
in the house. The experimental results reported in this paper have shown the validity of the parallel
computing accelerated GA-based NIALM for load disaggregation. In addition, the NIALM’s achieved
acceleration of up to 3.49× has been shown. The parallel computing accelerated GA can exploit parallel
computing and, thus, reduce computation time. Computation time will increase exponentially when
a large amount(s) of NIALM data is run over for load disaggregation (Equation (2)) in a large-scale
evaluation of NIALM. Parallel computing will be exploited massively and the computation time will,
thus, be reduced drastically. As shown in Tables 3 and 4, the performance of the presented methodology
in load recognition needs a significant improvement, where the presented methodology suffers from
similar P where the concerned electrical appliances or the load combinations of the concerned electrical
appliances are identical. It will be improved. The improvement is shown below.

Appl. Sci. 2020, 10, 8114 17 of 24

Table 3. Load recognition results obtained by the parallel computing accelerated GA.

Class Precision Recall F1 Score 1 Number of Appliance Instances

1 0.36 0.81 0.50 58
2 0.00 0.00 0.00 25
3 0.39 0.47 0.42 88
4 0.05 0.04 0.04 26
5 0.00 0.00 0.00 68
6 0.57 0.14 0.22 87
7 0.12 0.36 0.18 11
8 0.14 1.00 0.24 4
9 0.48 0.57 0.52 97
10 0.28 0.29 0.29 51
11 0.00 0.00 0.00 7
12 0.25 0.14 0.18 35

Avg./total 0.32 0.33 0.29 557
1 F1 score is the harmonic mean of precision and recall, which is commonly used to evaluate a class-imbalanced
problem addressed by a recognizer with a class-imbalanced dataset to be learned.

Table 4. Obtained TPRs vs. FPRs, for ROC curves, by the parallel computing accelerated GA, where for
the 12 classes the AUCs obtained are also shown.

Class FPR TPR AUC

1 0.56 0.81 0.63
2 0.11 0.00 0.45
3 0.54 0.47 0.46
4 0.11 0.04 0.46
5 0.15 0.00 0.43
6 0.07 0.14 0.53
7 0.15 0.36 0.61
8 0.12 1.00 0.94
9 0.53 0.57 0.52
10 0.24 0.29 0.53
11 0.10 0.00 0.45
12 0.09 0.14 0.53

The performance of the parallel computing accelerated GA in load recognition needs a significant
improvement, although the algorithm is capable of recognizing the fridge/freezer, kettle, and dishwasher
in the house environment for ADLs. A comparative study is conducted below, where a feed-forward,
multilayer ANN as neurocomputing against evolutionary computing is used for the addressed NIALM
problem. A network configuration of 1-15-12 of a feed-forward, multilayer ANN in Figure 5a is
constructed, specified, and used, in this experiment, to address the same 208 NIALM data instances
used before. The feed-forward, multilayer ANN was trained on 135 randomly sampled training data
instances (~65% of the whole dataset) and tested on the remaining 73 test data instances. The training
trajectory of the constructed, specified and used feed-forward, multilayer ANN is shown in Figure 9.
The resulting mean squared error (MSE) is 0.055 (its initial MSE is 0.891). Table 5 tabulates the load
recognition results obtained by the feed-forward, multilayer ANN, which has been well trained and
validated on the class-imbalanced training data. In Table 5, the F1 score is shown to each load class.
Table 6 also tabulates the load recognition results obtained by the well-trained and -tested feed-forward,
multilayer ANN applied on the class-imbalanced test data. In Table 6, TPR vs. FPR is also shown
to each load class. The authors of [24] used the benchmark implementations, from NILMTK in [36],
of the combinatorial optimization (CO) approach, which was developed in [1], as a load recognizer to
perform load disaggregation for the UK-DALE dataset. A comparison among the CO, the parallel
computing accelerated GA, and the feed-forward, multilayer ANN for load recognition is shown in
Table 7. As shown in Tables 3–7, the feed-forward, multilayer ANN outperforms, in terms of load

Appl. Sci. 2020, 10, 8114 18 of 24

recognition, the parallel computing accelerated GA that is slightly superior in load recognition to
the CO.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 18 of 23

feed-forward, multilayer ANN where it has been well-trained and -validated. In Table 8, the F1 score

is shown to each load class. Table 9 also tabulates the load recognition results obtained by the well-

trained and -validated feed-forward, multilayer ANN applied on class-imbalanced test data. In Table

9, TPR vs. FPR is also shown for each load class.

Figure 9. Training trajectory of the feed-forward, multilayer (1-15-12) ANN.

Table 5. Load recognition results obtained by the feed-forward ANN where it has been well trained

and validated on the class-imbalanced training data.

Class Precision Recall F1 Score Number of Appliance Instances

1 0.87 0.77 0.82 52

2 0.38 0.75 0.50 4

3 0.80 0.74 0.77 38

4 0.75 0.67 0.71 9

5 0.88 1.00 0.93 7

6 0.25 0.33 0.29 3

7 0.69 0.92 0.79 12

8 0.92 0.79 0.85 14

9 0.78 0.94 0.85 33

10 0.96 0.85 0.90 26

11 0.75 0.67 0.71 9

12 0.50 0.25 0.33 4

Avg./total 0.81 0.79 0.79 211

Figure 9. Training trajectory of the feed-forward, multilayer (1-15-12) ANN.

Table 5. Load recognition results obtained by the feed-forward ANN where it has been well trained
and validated on the class-imbalanced training data.

Class Precision Recall F1 Score Number of Appliance Instances

1 0.87 0.77 0.82 52
2 0.38 0.75 0.50 4
3 0.80 0.74 0.77 38
4 0.75 0.67 0.71 9
5 0.88 1.00 0.93 7
6 0.25 0.33 0.29 3
7 0.69 0.92 0.79 12
8 0.92 0.79 0.85 14
9 0.78 0.94 0.85 33
10 0.96 0.85 0.90 26
11 0.75 0.67 0.71 9
12 0.50 0.25 0.33 4

Avg./total 0.81 0.79 0.79 211

Appl. Sci. 2020, 10, 8114 19 of 24

Table 6. Obtained TPRs vs. FPRs, for ROC curves, from the well trained and tested feed-forward,
multilayer ANN applied on the class-imbalanced test data; for the 12 classes the AUCs obtained are
also shown.

Class FPR TPR AUC

1 0.29 0.77 0.74

2 0.07 0.75 0.84

3 0.20 0.74 0.77

4 0.03 0.67 0.82

5 0.02 1.00 0.99

6 0.04 0.33 0.65

7 0.08 0.92 0.92

8 0.02 0.79 0.88

9 0.23 0.94 0.86

10 0.02 0.85 0.91

11 0.03 0.67 0.82

12 0.01 0.25 0.62

Table 7. Comparison among the CO, the parallel computing accelerated GA and the feed-forward,
multilayer ANN for load recognition.

Electrical
Appliance

CO 1 [1]
The Presented GA-Based

NIALM
The Presented ANN-Based

NIALM

Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

fridge 0.30 0.41 0.35 0.18 0.41 0.25 2 0.63 0.76 0.68 2

dishwasher 0.06 0.67 0.11 0.35 0.25 0.2 2 0.47 0.63 0.54 2

kettle 0.23 0.46 0.31 0.14 1.00 0.24 0.92 0.79 0.85

Avg. 0.20 0.51 0.26 0.22 0.55 0.23 0.67 0.73 0.69
1 Combinatorial optimization-based NIALM, which was implemented as a widget in the NILMTK developed for
the purpose of performing preliminary work for NIALM data preparation and providing a few load recognition
approaches for load disaggregation. 2 Across its all states.

In this experiment, more NIALM data instances, a total of 989 NIALM data instances, are sampled
from the house environment and used to experimentally verify the performance of a feed-forward,
multilayer ANN (Figure 5a) in terms of load recognition. A network configuration of 1-23-12 of a
feed-forward, multilayer ANN was constructed, specified, and used. Also, the feed-forward, multilayer
ANN was trained on 643 randomly sampled training data instances (~65% of the whole dataset) and
tested on the remaining 346 test data instances. The training trajectory of the feed-forward, multilayer
ANN is shown in Figure 10. The resulting MSE was 0.044 (the initial MSE was 1.110). The feed-forward,
multilayer ANN can learn from the training data instances across all available CPU workers on the
PC used. Table 8 tabulates the load recognition results obtained by the feed-forward, multilayer
ANN where it has been well-trained and -validated. In Table 8, the F1 score is shown to each load
class. Table 9 also tabulates the load recognition results obtained by the well-trained and -validated
feed-forward, multilayer ANN applied on class-imbalanced test data. In Table 9, TPR vs. FPR is also
shown for each load class.

Appl. Sci. 2020, 10, 8114 20 of 24

Appl. Sci. 2020, 10, x FOR PEER REVIEW 19 of 23

Table 6. Obtained TPRs vs. FPRs, for ROC curves, from the well trained and tested feed-forward,

multilayer ANN applied on the class-imbalanced test data; for the 12 classes the AUCs obtained are

also shown.

Class FPR TPR AUC

1 0.29 0.77 0.74

2 0.07 0.75 0.84

3 0.20 0.74 0.77

4 0.03 0.67 0.82

5 0.02 1.00 0.99

6 0.04 0.33 0.65

7 0.08 0.92 0.92

8 0.02 0.79 0.88

9 0.23 0.94 0.86

10 0.02 0.85 0.91

11 0.03 0.67 0.82

12 0.01 0.25 0.62

Table 7. Comparison among the CO, the parallel computing accelerated GA and the feed-forward,

multilayer ANN for load recognition.

Electrical

Appliance

CO 1 [1]
the Presented GA-based

NIALM

the Presented ANN-based

NIALM

Precision Recall
F1

Score

Precisi

on
Recall

F1

Score
Precision Recall

F1

Score

fridge 0.30 0.41 0.35 0.18 0.41 0.25 2 0.63 0.76 0.68 2

dishwasher 0.06 0.67 0.11 0.35 0.25 0.2 2 0.47 0.63 0.54 2

kettle 0.23 0.46 0.31 0.14 1.00 0.24 0.92 0.79 0.85

Avg. 0.20 0.51 0.26 0.22 0.55 0.23 0.67 0.73 0.69

1 Combinatorial optimization-based NIALM, which was implemented as a widget in the NILMTK

developed for the purpose of performing preliminary work for NIALM data preparation and

providing a few load recognition approaches for load disaggregation. 2 Across its all states.

Figure 10. Training trajectory of the feed-forward, multilayer (1-23-12) ANN.

Table 8. Load recognition results obtained by the feed-forward ANN where it has been well trained

and validated on the class-imbalanced training data.

Figure 10. Training trajectory of the feed-forward, multilayer (1-23-12) ANN.

Table 8. Load recognition results obtained by the feed-forward ANN where it has been well trained
and validated on the class-imbalanced training data.

Class Precision Recall F1 Score Number of Appliance Instances

1 0.88 0.82 0.85 210

2 0.88 0.98 0.93 45

3 0.63 0.62 0.62 105

4 0.67 0.91 0.77 11

5 0.86 0.84 0.85 122

6 1.00 0.90 0.95 89

7 0.78 0.82 0.80 51

8 0.33 0.60 0.43 5

9 0.94 0.93 0.93 208

10 0.67 0.71 0.69 17

11 0.90 0.82 0.86 126

12 0.00 0.00 0.00 0

Avg./total 0.86 0.84 0.85 989

Appl. Sci. 2020, 10, 8114 21 of 24

Table 9. Obtained TPRs vs. FPRs, for ROC curves, from the well trained and tested feed-forward,
multilayer ANN applied on the class-imbalanced test data; for the 12 classes the AUCs obtained are
also shown.

Class FPR TPR AUC

1 0.17 0.82 0.83

2 0.02 0.98 0.98

3 0.16 0.62 0.73

4 0.01 0.91 0.95

5 0.08 0.84 0.88

6 0.00 0.90 0.95

7 0.04 0.82 0.89

8 0.02 0.60 0.79

9 0.10 0.93 0.92

10 0.02 0.71 0.84

11 0.05 0.82 0.88

12 0.02 nan nan

As seen in Table 8, the 989 NIALM data instances make up a class-imbalanced dataset.
Accuracy alone is not sufficient for evaluating a recognizer trained from class-imbalanced data,
where in each class there may exist a significant disparity between positives (status: On) and negatives
(status: Off). As a result, F1 score, the harmonic mean of precision and recall, is conducted and
used to address the class-imbalanced problem (in order to fully evaluate the performance of the
feed-forward ANN in terms of load recognition). Various metrics in addition to F1 score have been
developed. Table 9 shows TPRs vs. FPRs, for ROC curves, obtained by the well trained and tested
feed-forward, multilayer ANN applied on the class-imbalanced test data for NIALM, where one ROC
curve can be shown per class (the maximum AUC is 1, which corresponds to a perfect recognizer as all
positives above all negatives—100% sensitivity of no false negatives and 100% specificity of no false
positives—are ranked). The authors of [24] used two different types of ANNs, deep NNs by autoencoder
and long short-term memory (LSTM), as load recognizers to perform load disaggregation for the
UK-DALE dataset. Comparison among the autoencoder, the LSTM and the presented feed-forward,
multilayer ANN for load recognition is shown in Table 10. As shown in Tables 8–10, the feed-forward,
multilayer ANN that gives similar performance, in load recognition, against autoencoder outperforms
the LSTM. The load recognizer of the presented NIALM is a shallow neural network, not a deep neural
work. As reported in this section, the presented feed-forward, multilayer ANN is able to discriminate
the targeted electrical appliances from the house environment well.

Table 10. Comparison among the autoencoder, the LSTM and the presented feed-forward, multilayer
ANN for load recognition.

Electrical
Appliance

The Presented ANN-Based
NIALM

A Deep ANN-Based Load
Disaggregation by
Autoencoder [24]

A Deep ANN-Based Load
Disaggregation by LSTM [24]

Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

fridge 0.88 0.90 0.89 1 0.85 0.88 0.87 0.72 0.77 0.74

dishwasher 0.89 0.86 0.88 1 0.29 0.99 0.44 0.04 0.87 0.08

kettle 0.33 0.60 0.43 1.00 0.87 0.93 0.96 0.91 0.93

Avg. 0.70 0.79 0.73 0.71 0.91 0.75 0.57 0.85 0.58
1 Across its all states.

Appl. Sci. 2020, 10, 8114 22 of 24

4. Conclusions

A smart grid is a promising use-case of AIoT (AI across IoT) that enables bidirectional
communication among utilities that come up with DR schemes for DSM and consumers who manage
their power demands according to received DR signals. NIALM, a cost-effective load disaggregation
approach for (residential) DSM, is able to disaggregate measured total power consumption into
appliance-level power consumption based on unique electrical characteristics (features) extracted from
electrical appliances concerned. In this paper, we have presented a parallel computing accelerated
GA-based NIALM approach, where the presented methodology has been experimentally validated by
the publicly available UK-DALE dataset as a reference. It is necessary to parallelize and thus accelerate
metaheuristics by exploiting parallel computing, as metaheuristics such as GAs would require very
high computational requirements due to its large amounts of data optimized, population-based
candidate solutions evaluated as routines, and/or algorithmic iterations executed repeatedly. Besides
the parallel computing accelerated GA-based NIALM approach, a feed-forward, multilayer ANN that
can learn from training data instances across all available workers of a parallel pool on a machine in
parallel computing addresses the same NIALM problem. Therefore, we performed a comparative
study. Where, different load recognition approaches in the literature were compared. Comparison
among the CO, the parallel computing accelerated GA and the feed-forward, multilayer ANN was
shown. The feed-forward, multilayer ANN outperformed, in load recognition, the parallel computing
accelerated GA that was slightly superior in load recognition to the CO. Moreover, a comparison among
the autoencoder, LSTM, and feed-forward, multilayer ANN was shown. The feed-forward, multilayer
ANN that gave similar performance, in load recognition, against the autoencoder outperformed the
LSTM. As reported in this paper, the presented NIALM methodology whose performance in load
recognition has been improved and compared is able to recognize the targeted/concerned electrical
appliances from the house environment well for a future research direction of NIALM in ADLs.
In this paper, AI speeded up in parallel computing has been developed and suited for NIALM. In the
future, an additional electrical feature or more features will be considered for load disaggregation
(Equation (2)). Moreover, high-performance distributed computing harnessing graphics processing
units (GPUs) will be developed for the presented methodology in NIALM (batch load disaggregation)
for its large-scale evaluation.

Author Contributions: Y.-C.H. conceived, designed, and performed the experiments as well as contributed related
experimental tools/materials to analyze the experimental data. Y.-H.L. conceived, designed, and performed the
experiments as well as contributed related experimental tools/materials to analyze the experimental data. Y.-H.L.
also wrote the paper. C.-H.L. conceived, designed, and performed the experiments as well as contributed related
experimental tools/materials to analyze the experimental data. All authors have read and agreed to the published
version of the manuscript.

Funding: The Ministry of Science and Technology, Taiwan, under grant nos. MOST 109-3116-F-006-017-CC2 and
MOST 109-2221-E-131-006-MY2 partly supported the work that has been done in this paper. First International
Computer, Inc. (FIC), Taiwan, under the Industry-Academia Collaboration Project with grant no. O01109E048
partly supported the work as well.

Acknowledgments: The authors would like to sincerely thank the reviewers and editor for their valuable
comments and suggestions on this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hart, G.W. Nonintrusive appliance load monitoring. Proc. IEEE 1992, 80, 1870–1891. [CrossRef]
2. Yu, J.; Gao, Y.; Wu, Y.; Jiao, D.; Su, C.; Wu, X. Non-intrusive load disaggregation by linear classifier group

considering multi-feature integration. Appl. Sci. 2019, 9, 3558. [CrossRef]
3. Hosseini, S.S.; Agbossou, K.; Kelouwani, S.; Cardenas, A. Non-intrusive load monitoring through home

energy management systems: A comprehensive review. Renew. Sustain. Energy Rev. 2017, 79, 1266–1274.
[CrossRef]

http://dx.doi.org/10.1109/5.192069
http://dx.doi.org/10.3390/app9173558
http://dx.doi.org/10.1016/j.rser.2017.05.096

Appl. Sci. 2020, 10, 8114 23 of 24

4. He, H.; Lin, X.; Xiao, Y.; Qian, B.; Zhou, H. Optimal strategy to select load identification features by using a
particle resampling algorithm. Appl. Sci. 2019, 9, 2622. [CrossRef]

5. Batra, N.; Singh, A.; Whitehouse, K. If you measure it, can you improve it? Exploring the value of energy
disaggregation. In Proceedings of the 2nd ACM International Conference on Embedded Systems for
Energy-Efficient Built Environments/ACM BuildSys’15, Seoul, Korea, 4–5 November 2015; pp. 191–200.

6. Froehlich, J.; Larson, E.; Gupta, S.; Cohn, G.; Reynolds, M.; Patel, S. Disaggregated end-use energy sensing
for the smart grid. IEEE Pervasive Comput. 2011, 10, 28–39. [CrossRef]

7. Kong, X.; Zhu, S.; Huo, X.; Li, S.; Li, Y.; Zhang, S. A household energy efficiency index assessment method
based on non-intrusive load monitoring data. Appl. Sci. 2020, 10, 3820. [CrossRef]

8. Massidda, L.; Marrocu, M.; Manca, S. Non-intrusive load disaggregation by convolutional neural network
and multilabel classification. Appl. Sci. 2020, 10, 1454. [CrossRef]

9. Zhao, B.; Stankovic, L.; Stankovic, V. On a training-less solution for non-intrusive appliance load monitoring
using graph signal processing. IEEE Access 2016, 4, 1784–1799. [CrossRef]

10. Guillén-García, E.L.; Morales-Velazquez, A.L.; Zorita-Lamadrid, O.; Duque-Perez, R.A.; Osornio-Rios, R.;
de Romero-Troncoso, J. Identification of the electrical load by C-means from non-intrusive monitoring of
electrical signals in non-residential buildings. Int. J. Electr. Power Energy Syst. 2019, 104, 21–28. [CrossRef]

11. Lin, Y.H.; Tsai, M.S. An advanced home energy management system facilitated by nonintrusive load
monitoring with automated multiobjective power scheduling. IEEE Trans. Smart Grid 2015, 6, 1839–1851.
[CrossRef]

12. Mueller, J.A.; Kimball, J.W. Accurate energy use estimation for nonintrusive load monitoring in systems of
known devices. IEEE Trans. Smart Grid 2018, 9, 2797–2808. [CrossRef]

13. Kong, W.; Dong, Z.Y.; Ma, J.; Hill, D.J.; Zhao, J.; Luo, F. An extensible approach for non-intrusive load
disaggregation with smart meter data. IEEE Trans. Smart Grid 2018, 9, 3362–3372. [CrossRef]

14. Lin, Y.H. Design and implementation of an IoT-oriented energy management system based on non-intrusive
and self-organizing neuro-fuzzy classification as an electrical energy audit in smart homes. Appl. Sci.
2018, 8, 2337. [CrossRef]

15. Wu, X.; Gao, Y.; Jiao, D. Multi-label classification based on random forest algorithm for non-intrusive load
monitoring system. Processes 2019, 7, 337. [CrossRef]

16. Lin, Y.H.; Hu, Y.C. Electrical energy management based on a hybrid artificial neural network-particle swarm
optimization-integrated two-stage non-intrusive load monitoring process in smart homes. Processes 2018,
6, 236. [CrossRef]

17. Lin, Y.H.; Hu, Y.C. Residential consumer-centric demand-side management based on energy
disaggregation-piloting constrained swarm intelligence: Towards edge computing. Sensors 2018, 18, 1365.
[CrossRef]

18. Qi, B.; Liu, L.; Wu, X. Low-rate non-intrusive load disaggregation with graph shift quadratic form constraint.
Appl. Sci. 2018, 8, 554. [CrossRef]

19. Zheng, Z.; Chen, H.; Luo, X. A supervised event-based non-intrusive load monitoring for non-linear
appliances. Sustainability 2018, 10, 1001. [CrossRef]

20. Schirmer, P.A.; Mporas, I. Statistical and electrical features evaluation for electrical appliances energy
disaggregation. Sustainability 2019, 11, 3222. [CrossRef]

21. De Baets, L.; Develder, C.; Dhaene, T.; Deschrijver, D. Detection of unidentified appliances in non-intrusive
load monitoring using siamese neural networks. Int. J. Electr. Power Energy Syst. 2019, 104, 645–653.
[CrossRef]

22. Fagiani, M.; Bonfigli, R.; Principi, E.; Squartini, S.; Mandolini, L. A non-intrusive load monitoring algorithm
based on non-uniform sampling of power data and deep neural networks. Energies 2019, 12, 1371. [CrossRef]

23. Çavdar, İ.H.; Faryad, V. New design of a supervised energy disaggregation model based on the deep neural
network for a smart grid. Energies 2019, 12, 1217. [CrossRef]

24. Kelly, J.; Knottenbelt, W. Neural NILM: Deep neural networks applied to energy disaggregation.
In Proceedings of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient
Built Environments (ACM BuildSys’15), Seoul, Korea, 4–5 November 2015; pp. 55–64.

25. Yang, C.C.; Soh, C.S.; Yap, V.V. A systematic approach to on-off event detection and clustering analysis of
non-intrusive appliance load monitoring. Front. Energy 2015, 9, 231–237. [CrossRef]

http://dx.doi.org/10.3390/app9132622
http://dx.doi.org/10.1109/MPRV.2010.74
http://dx.doi.org/10.3390/app10113820
http://dx.doi.org/10.3390/app10041454
http://dx.doi.org/10.1109/ACCESS.2016.2557460
http://dx.doi.org/10.1016/j.ijepes.2018.06.040
http://dx.doi.org/10.1109/TSG.2015.2388492
http://dx.doi.org/10.1109/TSG.2016.2620120
http://dx.doi.org/10.1109/TSG.2016.2631238
http://dx.doi.org/10.3390/app8122337
http://dx.doi.org/10.3390/pr7060337
http://dx.doi.org/10.3390/pr6120236
http://dx.doi.org/10.3390/s18051365
http://dx.doi.org/10.3390/app8040554
http://dx.doi.org/10.3390/su10041001
http://dx.doi.org/10.3390/su11113222
http://dx.doi.org/10.1016/j.ijepes.2018.07.026
http://dx.doi.org/10.3390/en12071371
http://dx.doi.org/10.3390/en12071217
http://dx.doi.org/10.1007/s11708-015-0358-6

Appl. Sci. 2020, 10, 8114 24 of 24

26. Lin, C.T.; Lee George, C.S. Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent Systems; International
Edition; Prentice Hall (Pearson Education Taiwan Ltd.): Taipei, Taiwan, 2003; pp. 382–406.

27. Genetic Algorithm—MATLAB & Simulink3-MathWorks. Available online: https://www.mathworks.com/

help/gads/genetic-algorithm.html; https://www.mathworks.com/help/gads/ga.html (accessed on 17 July 2020).
28. Hatcher, W.G.; Yu, W. A survey of deep learning: Platforms, applications and emerging research trends.

IEEE Access 2018, 6, 24411–24432. [CrossRef]
29. Machine Learning Crash Course | Google Developers. Available online: https://developers.google.com/

machine-learning/crash-course/classification/true-false-positive-negative; https://developers.google.com/

machine-learning/crash-course/classification/precision-and-recall; https://developers.google.com/machine-
learning/crash-course/classification/roc-and-auc (accessed on 29 April 2020).

30. Taveira, P.R.Z.; de Moraes, C.H.V.; Lambert-Torres, G. Non-intrusive identification of loads by random forest
and fireworks optimization. IEEE Access 2020, 8, 75060–75072. [CrossRef]

31. Lu, M.; Li, Z. A hybrid event detection approach for non-intrusive load monitoring. IEEE Trans. Smart Grid
2020, 11, 528–540. [CrossRef]

32. Kelly, J.; Knottenbelt, W. The UK-DALE dataset, domestic appliance-level electricity demand and whole-house
demand from five UK homes. Sci. Data 2015, 2, 150007. [CrossRef]

33. Global Optimization Toolbox—MATLAB-MathWorks. Available online: https://www.mathworks.com/

products/global-optimization.html (accessed on 18 May 2020).
34. Parallel Computing Toolbox—MATLAB-MathWorks. Available online: https://www.mathworks.com/

products/parallel-computing.html (accessed on 18 May 2020).
35. Devlin, M.A.; Hayes, B.P. Non-intrusive load monitoring and classification of activities of daily living using

residential smart meter data. IEEE Trans. Consum. Electron. 2019, 65, 339–348. [CrossRef]
36. Batra, N.; Kelly, J.; Parson, O.; Dutta, H.; Knottenbelt, W.; Rogers, A.; Singh, A.; Srivastava, M. NILMTK:

An open source toolkit for non-intrusive load monitoring. In Proceedings of the Fifth International Conference
on Future Energy Systems (ACM e-Energy), Cambridge, UK, 11–13 June 2014; pp. 265–276. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.mathworks.com/help/gads/genetic-algorithm.html
https://www.mathworks.com/help/gads/genetic-algorithm.html
https://www.mathworks.com/help/gads/ga.html
http://dx.doi.org/10.1109/ACCESS.2018.2830661
https://developers.google.com/machine-learning/crash-course/classification/true-false-positive-negative
https://developers.google.com/machine-learning/crash-course/classification/true-false-positive-negative
https://developers.google.com/machine-learning/crash-course/classification/precision-and-recall
https://developers.google.com/machine-learning/crash-course/classification/precision-and-recall
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
http://dx.doi.org/10.1109/ACCESS.2020.2988366
http://dx.doi.org/10.1109/TSG.2019.2924862
http://dx.doi.org/10.1038/sdata.2015.7
https://www.mathworks.com/products/global-optimization.html
https://www.mathworks.com/products/global-optimization.html
https://www.mathworks.com/products/parallel-computing.html
https://www.mathworks.com/products/parallel-computing.html
http://dx.doi.org/10.1109/TCE.2019.2918922
http://dx.doi.org/10.1145/2602044.2602051
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methodology
	GA-Based NIALM
	Feed-Forward, Multilayer ANN-Based NIALM
	Performance Evaluation of Load Recognition by F1 Score

	Experimentation and Results
	Conclusions
	References

