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Abstract: Cell nuclei segmentation is a challenging task, especially in real applications, when the
target images significantly differ between them. This task is also challenging for methods based on
convolutional neural networks (CNNs), which have recently boosted the performance of cell nuclei
segmentation systems. However, when training data are scarce or not representative of deployment
scenarios, they may suffer from overfitting to a different extent, and may hardly generalise to
images that differ from the ones used for training. In this work, we focus on real-world, challenging
application scenarios when no annotated images from a given dataset are available, or when few
images (even unlabelled) of the same domain are available to perform domain adaptation. To simulate
this scenario, we performed extensive cross-dataset experiments on several CNN-based state-of-the-art
cell nuclei segmentation methods. Our results show that some of the existing CNN-based approaches
are capable of generalising to target images which resemble the ones used for training. In contrast,
their effectiveness considerably degrades when target and source significantly differ in colours and scale.
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1. Introduction

Cell nuclei segmentation from stained tissue specimens is a useful computer vision functionality
in histopathological image analysis [1,2]. Unlike cell nuclei detection, it provides whole nuclei binary
masks that it can be used not only to extract the number and distribution of the cells but also to extract
detailed information of each nucleus, such as colour, shape and texture features [3–5]. This information
is helpful since it allows to count normal or cancer cells and recognise tissue structures, and because it
is critical in cancer identification, grading, and prognosis [6–9].

The analysis of tissue specimens is performed after a staining procedure that highlights the
interesting components of tissues [10]. The most used stain materials are hematoxylin & eosin
(H&E) [11,12], which impart the blue-purple and pink colour to the nuclei and cytoplasm, respectively.
For more than a century and still today, the interpretation of tissue specimens is performed under a
microscope by human experts [10,13,14]. Nevertheless, this task requires a substantial manual effort
for pathologists, whose results are subjective, as they are influenced by the level of expertise and
tiredness, even though accuracy and efficiency are crucial in this field.

The growing need for objective and efficient automatic techniques has attracted the attention
of many researchers in this field; these researchers have employed computer vision techniques to
create computer-aided diagnosis (CAD) tools [4,15] for improving work efficiency and reducing error
rates for pathologists [16,17]. In this paper, we focus on the nuclei segmentation task—in particular,
on convolutional-neural-networks (CNNs)-based methods, that have recently demonstrated
state-of-the-art performance [18,19]. Indeed, more straightforward approaches, such as thresholding,
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are efficient, but they fail with noisy images or colour variations [2,20], while more advanced
image segmentation methods such as deformable models are complicated and computationally
expensive [2,21].

However, despite the considerable effort spent so far by the research community, and the
performance improvements achieved by current methods based on CNNs on benchmark datasets [22,23],
cell nuclei segmentation remains a challenging task [24–26] due to chromatic stain variability,
non-homogenous background, nuclear overlap and occlusion and differences in cell morphology
and stain density [2,19,27]. This task is even more challenging in real applications where the specimens
could belong to different tissue types. A further variability in optical image quality comes from the
use of various staining protocols and digital microscopes or scanners [1,28].

We focus on this challenging application scenario which was inspired by our work in the recent
HistoDSSP (Histopathology Decision Support Systems for Pathologists, based on whole slide imaging
analysis) project, aimed at the design and implementation of a prototype of decision support system
for pathologists (DSSP) to be integrated into a laboratory information system (LIS).

In particular, we consider fully unsupervised application scenarios in which a system has to be
deployed on a target image database for which it is not possible to collect annotations for training
or fine-tuning. Additionally, the target image database is updated daily with images belonging to
different laboratories. Although considerable progress has been achieved so far and some solutions
based on domain adaptation (DA) or transfer learning have already been proposed [29,30], cell nuclei
segmentation remains a challenging task in the setting mentioned above. In particular, only limited
cross-dataset evaluations of existing methods have been provided in the respective papers, partly due
to the small number and tiny size of publicly available datasets, but mainly because the authors
focused their attention on DA problems similar to other fields of applications, neglecting the real DA
problems that can be present in this field of application.

Therefore, the literature is still lacking a thorough evaluation and analysis of the performance
of existing methods under realistic cross-dataset settings. These are, however, necessary steps
towards further development of nuclei segmentation methods that can be effectively deployed in real
application scenarios. Accordingly, this work aims to evaluate the performance gap of state-of-the-art
CNN-based cell nuclei segmentation methods between same-dataset and cross-dataset scenarios,
i.e., where manually annotated images of the target dataset are or are not available for training,
respectively. To this aim, we simulate cross-dataset settings using the available benchmark datasets
and consider several state-of-the-art CNN-based methods, for which the code was made available by
the authors.

The remainder of our paper is organised as follows. In Section 2, we review some related works
dealing with cell nuclei segmentation. In Section 3, we discuss the challenges and the open issues in
this field in detail, focusing on the application scenario mentioned above. The used datasets, the tested
methods and experimental settings are shown in Section 4. In Section 5, we present the obtained
results. Finally, the conclusion and perspectives are drawn in Section 6.

2. Related Works

A variety of standard image analysis methods are based on H&E image analysis in order to extract
cell nuclei [31,32], with some based on detection [33,34] and other based on segmentation [35,36].
For the reasons mentioned above, segmentation-based methods, including segmentation methods
that exploit thresholding, clustering, watershed algorithms, active contours and CNNs, have been
preferred over detection-based ones. A variety of pre- and post-processing techniques have also been
extensively used—in particular, in combination with simpler segmentation techniques [4].

Automatic-thresholding-based methods were the most used cell nuclei segmentation techniques
in the early stage of this research area [2], including single Otsu thresholding [37] or multi-level
Otsu thresholding [38]. In most cases, the segmentation results, obtained by thresholding, were refined
through morphological operations such as morphological reconstruction [20] or multiple morphological
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operations [39]. Even the watershed transformation [40] was used for nuclei segmentation, but mostly
as a post-processing method for overlapping objects segmentation. It was used both in its classical
version, coupled with the distance transform [41], and in its marker-controlled version, where the
markers are extracted with a conditional erosion [23,42].

However, the segmentation results of thresholding-based methods could be heavily affected by
chromatic stain variability and a non-homogenous background. For these reasons, more advanced
image segmentation methods have been proposed over the years. For instance, the active contour
model has been combined with the expectation–maximisation (EM) algorithm [43]. Different level set
methods have been used to delineate the cell boundaries, both by using a multi-phase approach [44]
and exploiting the mean shift clustering as the initialisation points [1]. Even the graph-cut method was
used to segment the cell nuclei coupled with an improved Laplacian-of-Gaussian filter to detect the
seed points [24].

Nevertheless, the methods mentioned above could be complex and too sensitive to the
initialisation and setting parameters. Various machine-learning-based nuclear segmentation
approaches have been investigated to better tackle this issue and the variation over cell morphology
and colour. The former type of machine-learning-based method exploits handcrafted features,
such as filter bank responses, geometric and texture descriptors, that are forwarded to standard
classification algorithms [45,46]. Recently, the great success of deep learning methods gave birth
to a new type of machine-learning-based methods for nuclei segmentation, achieving outstanding
performances [2,19,22,28,47]. In these methods, the images are directly used to feed CNN to label
pixels as nuclear (foreground) or non-nuclear (background). Even with CNN-based methods, some
additional post-processing operations have been used to separate the overlapping or touching
nuclei in the foreground regions by using the shape deformation method [19] or the watershed
transformation [23,28,36]. Other approaches instead added a third class for the nuclei boundary to
define a precise separation between background and foreground regions, especially between touching
nuclei, avoiding the post-processing procedures. The boundary region can be directly used to separate
the touching nuclei into individual ones by removing the boundary from the foreground [47], or it can
be used as a constraint for a growing region that starts from the foreground seed points [22].

Unfortunately, CNN-based methods require massive amounts of annotated and representative
training data. The amount of the required training data is even larger for a network deployed in a
real application for the segmentation of nuclei from various organs. As a consequence, when training
data is scarce or not representative of deployment scenarios, CNNs may also suffer from overfitting
to a different extent, and may hardly generalise to images coming from various tissues. Moreover,
the performances are bounded by the quality of the annotated images. To solve the problems mentioned
above, CycleGANs [48] have been used to create some additional synthetic training images of different
tissue types [49] and even coupled with a specific loss function to take into account to the quality of
synthesised images [29].

3. Open Issues and Goal of this Work

As previously reported, cell nuclei segmentation in histopathology images has been extensively
studied using a variety of methods. Most work has focused on developing nuclei segmentation
methods for single tissues and specific applications, while others focused on more generic application
by developing nuclei segmentation methods for multiple tissues. However, there is still a lack of
training datasets for certain organs, and even the single-tissue and multi-tissue datasets do not provide
an exhaustive overview of the possible morphological variations of the cells caused by a greater disease
grade. Furthermore, even images belonging to the same organ could present different appearances due
to chromatic stain variability, non-homogenous background and variability in optical image quality
caused by various digital microscopes or scanners [1,28]. An example of such a chromatic issue is
shown in Figure 1.
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Figure 1. Example of chromatic issues on images belonging to the same organ.

Recently, some authors tried to incorporate the benefits of the unsupervised domain adaptation
(UDA) methods to tackle these issues. UDA methods allow adapting a model trained on a source domain
to another target domain by exploiting some target images without annotations [50–54]. Such methods
achieve state-of-the-art performance on UDA on object detection and classification. However, they are
not specifically designed for semantic segmentation; thus, they ignore the domain shift at the semantic
level. Indeed, several researchers exploiting UDA have, in their respective studies, proposed for
semantic segmentation on many medical images using domain-invariant intermediate features [55]
or both pixel- and feature-level adaptations with [29,30,54,56]. Among them, only two methods are
designed for cell nuclei segmentation, providing an adaptation only at a pixel level [29] or at both the
pixel and feature levels [30].

Although some solutions based on domain adaptation (DA) have already been proposed, they are
mainly inspired by other fields of applications, neglecting most of the issues that can be present in this
field, especially in real applications. In particular, they all require representative, although unlabelled,
images of the target domain, which is not feasible in the real application scenario considered in this
work. In this scenario we are dealing with in the HistoDSSP project, a system has to be deployed on
a target image database for which it is not possible to collect annotations for training or fine-tuning;
additionally, the target image database is updated daily with images belonging to various laboratories.
In other words, just a few images of the same domain will be available to perform the adaptation.

Furthermore, only limited cross-dataset evaluations were provided in the respective papers,
and most of the experiments focused on the adaptation from fluorescence microscopy images to H&E
stained histopathology images [30], which is quite far from a real application. A realistic cross-dataset
evaluation for cell nuclei segmentation is, therefore, still lacking in the literature. This is, however,
a fundamental issue which must be addressed in order to be able to develop nuclei segmentation
methods in real applications. Accordingly, this work aims to provide a comprehensive evaluation
on the performance gap of state-of-the-art cell nuclei segmentation methods between same-dataset
and cross-dataset scenarios, i.e., where manually annotated images of the target dataset are or are not
available for training, respectively.

4. Experimental Evaluation

In this section, we evaluate and compare the cell nuclei segmentation performances of
state-of-the-art methods on benchmark datasets on a real application scenario. The goal of our
experiments is to evaluate the effectiveness of existing CNN-based methods for nuclei segmentation on
a real application scenario. To this aim, we carried out the experiments using a representative selection
of five cell nuclei segmentation methods on two benchmark datasets. In the following, we first describe
the methods and datasets we used; then, we describe the experimental set-up.



Appl. Sci. 2020, 10, 7982 5 of 15

4.1. Nuclei Segmentation Methods

In order to make a fair comparison, the CNN-based methods tested in this work were
selected from among the ones whose source code was publicly available. These constraints greatly
facilitated the research and allowed us to select five representative methods based on different
CNN architectures. The first one exploits a fully convolutional network (FCN) for semantic
segmentation [57] (implemented in the Python programming language https://github.com/appiek/
Nuclei_Segmentation_Experiments_Demo) in order to deal with the large appearance variations of the
nuclei. Indeed, in this architecture, the fully connected layers are replaced with convolutional ones
that are able to produce a pixel-wise prediction on arbitrary-sized images. The second one is based on
the holistically-nested edge detector (HED) [58] (implemented in the Python programming language
https://github.com/appiek/Nuclei_Segmentation_Experiments_Demo), which is a learning-based
end-to-end edge detection system that uses a common CNN to predict a rich hierarchical edge map
to image at multiple scales by fusing the output of all convolutional layers. Thus, the HED model
is naturally multi-scale. The third method is based on a UNet architecture [59], which is one of
the most used for cell nuclei segmentation, even combined with other architectures or other UNets;
however, in this case, we used a single UNet (implemented in the Python programming language
https://github.com/limingwu8/UNet-pytorch). The UNet is a particular type of FCN that owes its
name to its symmetric shape, which is different from other FCN variants. The fourth approach is
based on the mask-regional CNN (Mask R-CNN) [60] that, differently from the previously mentioned
approaches, as it is an extension of object detection CNNS, performs an instance segmentation. Thus,
Mask R-CNNs should be able to individuate and separate single cells [61] (implemented in the Python
programming language https://github.com/hwejin23/histopathology_segmentation). The last methods
exploit a specific architecture for nuclei segmentation called Deep Interval-Marker-Aware Network
(DIMAN) [23] (implemented in the Python programming language https://github.com/appiek/
Nuclei_Segmentation_Experiments_Demo), which learns multi-scale feature maps that are stacked as a
feature pyramid by skip connections. Unlike the other methods that predict just the foreground regions,
this architecture predicts the foreground, the interval regions and the marker of nuclei simultaneously.
Thus, it has been designed to facilitate and simplify further post-processing operations.

4.2. Datasets

In our experiments, we evaluate the performance of nuclei segmentation methods on two
public histopathology image datasets that are two of the most used for cell nuclei detection and
segmentation. MIC17 (available at http://miccai.cloudapp.net/competitions/) is the dataset provided

for the MICCAI 2017 Digital Pathology Challenge. It includes 32 annotated squared image patches
of sizes 500 × 500 or 600 × 600 that were manually cropped from H&E-stained histopathology
Whole Slide Images (WSIs) of four various types of cancer, namely glioblastoma (GBM), lower grade
glioma (LGG), head and neck squamous cell carcinoma (HNSC) and lung squamous cell carcinoma
(LUSC). The first row of Figure 2 shows an image example for each type of cancer present in
the dataset. During our experiments, we used the same partitions already used in [23] that
consist of a training set composed by 24 randomly selected images (six for each cancer type)
and a testing set composed by the remaining images (two for each cancer type). BNS (available
at https://peterjacknaylor.github.io/PeterJackNaylor.github.io/2017/01/15/Isbi/), presented by
Naylor et al. [28], contains 33 manually annotated images that were obtained by randomly cropping
the patches with a fixed size of 512 × 512 from the original H&E-stained histopathology WSIs.
The third row of Figure 2 shows some images present in the dataset. Even in this case, we used
the same partitions proposed in [23] that consist of a training set composed of 23 randomly selected
samples and a testing set composed by the remaining images.

Both datasets present H&E images in PNG format, and each image is associated with a file
containing the ground truth of the manual segmentation performed by expert pathologists. As can be
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observed in the second and fourth lines of Figure 2, the ground truth images contain different labels for
each cell, meaning that they can be used to evaluate both the segmentation and counting performances.

Figure 2. Example of the images present in the used datasets: on top, the images belonging to MIC17
(GBM, LGG, HNSC and LUSC, respectively), and on bottom, the images belonging to BNS.

In addition, we also used images that were expressly collected for the HistoDSSP project,
and therefore cannot yet be shared publicly. The original WSIs were acquired with an Aperio AT2
scanner with a magnification of ×20, which was lower than the magnification used to acquire the
public image datasets, which was 40×. Then, from the H&E-stained histopathology WSIs, a series of
semiautomated crops with a fixed size of 512 × 512 were selected. Some images present in the dataset
are shown in Figure 1. Unfortunately, for matters of time and resources, we could not get the manual
annotations. Still, this set of images was constructive to visually evaluate the performances of the
segmentation methods on images with a different scale from the training images.

4.3. Experimental Set-Up

All experiments were conducted under the same conditions. Considering that CNN-based
methods need a large number of image data and that the number of training data were minimal for
both datasets, to avoid overfitting, data augmentation methods were used to expand the training data.
To this aim, we used random cropping, vertical and horizontal flipping (already implemented in the
MATLAB programming language and available at https://github.com/appiek/Nuclei_Segmentation_
Experiments_Demo). The random cropping procedure extracted 20 random crops of size 224 that were
flipped vertically and horizontally with a probability of 50%. This procedure increased the original
training sets by twenty times, so the total numbers of training images for MIC17 and BNS were 480 and
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460, respectively. The training processes were carried out for 300 epochs with a learning rate of 0.0002,
decreased by a factor of 0.8 per epoch. For the DIMAN loss function, we used the parameters suggested
by the same authors [23]. For fairness, we did not exploited the post-processing procedures provided
in the respective papers, since they could have significantly influenced the result by benefitting specific
methods and not benefitting others. We conducted all the experiments on a single machine with the
following hardware configuration: Intel(R) Core(TM) i9-8950HK @ 2.90 GHz CPU with 32 GB RAM
and NVIDIA GTX1050 Ti 4 GB GPU.

To evaluate the performances on nuclei segmentation, we used the same evaluation metrics provided
by the gland segmentation challenge contest (already implemented in the MATLAB programming
language and available at https://warwick.ac.uk/fac/sci/dcs/research/tia/glascontest/evaluation/);
they were F1-score (F1), precision (P), recall (R), object-level Dice index (ODI) and object-level
Hausdorff distance (OHD). The first three metrics were used to evaluate the counting and object-level
nuclei segmentation performances. F1 is the average harmonic mean between the P and R for each
object, where P and R gives information on the number of correctly segmented cells; in particular,
P penalises oversegmentation (the lower the P value, the higher the oversegmentation) and R penalises
undersegmentation (the lower the R value, the higher the undersegmentation). F1, P and R values
range over the interval [0, 1] and are computed following Equations (1)–(3):

F =
2RP

R + P
(1)

P =
TP

TP + FP
(2)

R =
TP

TP + FN
(3)

where TP (true positive) indicates the number of segmented cells that are present in the ground truth
image, FP (false positive) provides the number of segmented cells that are not present in the ground
truth image and FN (false negative) gives the number of ground truth cells that are not present in the
segmented image.

The last two metrics instead were used to evaluate not only the object-level but also the pixel-level
nuclei segmentation performances. The usual Dice index measures the similarity between the set of
pixels belonging to the ground truth image G and the set of pixels belonging to the segmented image S
as follows:

Dice(G, S) =
2|G ∩ S|
|G|+ |S| (4)

Instead, the ODI also takes into account the information of individual cells. Considering nG
and nS , the number of cells in the ground truth and the segmented images, respectively, the ODI is
defined as

ODI =
1
2

[
nG

∑
i=1

γiDice(Gi, Si) +
nS

∑
j=1

σjDice(Gj, Sj)

]
, (5)

where

γi = |Gi|/
nG

∑
p=1
|Gp|, σj = |Sj|/

nS

∑
q=1
|Sq| (6)

Equation (5) present two summation terms that are weighted by the relative area of the cell,
the first summation term reflects how well each ground truth cell overlaps its segmented cell, and the
second summation term reflects how well each segmented cell overlaps its ground truth cell. The ODI
value ranges over the interval [0, 1], where the value of 1 means perfect segmentation. The OHD
measures the boundary-based segmentation accuracy between the segmented cells and the ground
truth cells. Differently from the other metrics that compute a score or a similarity value, OHD computes
a distance value; the lower the OHD value, the better the segmentation accuracy, thus OHD = 0 means

https://warwick.ac.uk/fac/sci/dcs/research/tia/glascontest/evaluation/
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perfect segmentation. The usual definition of a Hausdorff distance between ground truth object G and
segmented object S is

H(G, S) = max{sup
x∈G

inf
y∈S

d(x, y), sup
y∈S

inf
x∈G

d(x, y)} (7)

where d(x, y) denotes the Euclidean distance. Similarly to ODI, the OHD takes into account also the
information of individual cells, and is defined as:

OHD =
1
2

[
nG

∑
i=1

γiH(Gi, Si) +
nS

∑
j=1

σjH(Gj, Sj)

]
, (8)

Finally, to simulate a real application scenario, we performed several cross-dataset experiments
using training images taken from one source dataset and testing the resulting model on images taken
from a different (target) dataset. As a baseline to evaluate the performance gap between a laboratory
scenario and real application scenario, for each model, we also include the same-dataset results,
obtained using training and testing samples from the same dataset.

5. Results

Table 1 show the results of the cross-dataset and same-dataset experiments on the
above-mentioned datasets with the selected nuclei segmentation methods. For ease of comparison,
for each target dataset, the same-dataset performance is highlighted in grey.

Table 1. Same-dataset (highlighted in grey) and cross-dataset performances of FCN, HED, UNet,
Mask R-CNN and DIMAN nuclei segmentation methods. The best cross-dataset result for each target
(test) dataset is reported in bold.

Method Target

Source

MIC17 BNS

F1 P R ODI OHD F1 P R ODI OHD

FCN MIC17 0.74 0.76 0.73 0.69 15.60 0.58 0.49 0.73 0.63 12.90
BNS 0.52 0.60 0.46 0.54 23.16 0.73 0.73 0.74 0.69 14.75

HED MIC17 0.79 0.85 0.74 0.71 16.03 0.73 0.70 0.77 0.70 15.30
BNS 0.52 0.70 0.42 0.55 26.40 0.77 0.83 0.73 0.71 17.13

UNet MIC17 0.73 0.72 0.75 0.70 15.95 0.66 0.58 0.80 0.71 13.70
BNS 0.48 0.59 0.41 0.52 28.32 0.70 0.73 0.71 0.69 18.84

Mask R-CNN MIC17 0.69 0.66 0.75 0.71 15.63 0.57 0.48 0.77 0.68 15.06
BNS 0.53 0.57 0.50 0.56 21.52 0.68 0.66 0.72 0.68 18.96

DIMAN MIC17 0.71 0.69 0.77 0.72 16.91 0.67 0.60 0.82 0.74 14.30
BNS 0.61 0.66 0.60 0.62 19.56 0.73 0.73 0.76 0.72 16.75

As can be seen, the same-dataset performances of the various methods are quite aligned with
each other, with a slight advantage for the HED method in both datasets and on almost all metrics.
Obviously, these results represent ideal performances since both the training and test images come
from the same dataset. The most interesting results instead came from the cross-dataset comparison,
which simulated the behaviour of the segmentation methods in a real application. As expected,
the performances decreased significantly when the target dataset was different from the source dataset.
The most evident drop in performance was observed when the target dataset was BNS. In this case,
the only method with satisfactory results was DIMAN, while when the target dataset was MIC17,
the drop in performance was less evident and both DIMAN and HED performed well. In general, in
cross-dataset experiments, the most remarkable drop occurred in the R value, when the target dataset
was BNS, and in the P value, when the target dataset was MIC17. In other words, it means that in
the first case, the models tended to underestimate the number of cell nuclei (many false negatives),
while in the second case they tended to overestimate the number of cell nuclei (many false positives).
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Both errors could have a significant influence in a real application that relies on the cellularity value to
identify or grade the presence of pathology. To test the significance of our results, we used the Wilcoxon
test [62], which is the statistical test recommended for this scenario [63]. This test demonstrated that
the drop in performances between same-dataset and cross-dataset is statistically significant (p-value
< 0.05) in almost all the used metrics except the OHD. To better highlight the statistical differences
between the same-dataset and cross-dataset performances, we reported in Figure 3 the bar charts of
the p-value obtained with the Wilcoxon test. We evaluated the null hypothesis for precision and recall
obtained with the same-dataset and cross-dataset for all the nuclei segmentation methods trained with
the MIC17 dataset (in red) and the BNS dataset (in blue).

Figure 3. Bar charts showing the p-value for the Wilcoxon test on precision (left) and recall (right)
obtained with the same-dataset and cross-dataset for all the nuclei segmentation methods trained with
the MIC17 dataset (in red) and the BNS dataset (in blue).

As can be observed, the two charts were complementary; indeed, for all the methods and the BNS
dataset, the statistical difference was evident (low p value) in precision, while for the MIC17 dataset the
statistical difference was evident in recall, as we already pointed out previously. In order to carry out a
more detailed analysis and understand the generalisation power reached by the CNN-based methods,
we performed further experiments involving the models previously trained with the MIC17 and BNS
datasets, but using as target sets the individual subsets of the different types of cancer included in the
MIC17 dataset. The results of these experiments are reported in Table 2.

As expected, the results were much better when the source dataset was MIC17, since images of
the same domain were used both for training and testing the models. Even for this reason, it was not
expected to see such a low generalisation capacity of these models that were instead overfitted on a
single image subset. All the nuclei segmentation methods performed well with GBM target images.
At the same time, they had a noticeable drop for the other target images—in particular, for LCC,
where both Mask R-CNN and DIMAN showed the most critical drops. The HED method was the one
that showed a more constant trend with the MIC17 source dataset, and the best performances with
the BNS source dataset, even if the performance gap between the various subsets was not negligible.
Indeed, even when the source dataset was BNS, all the nuclei segmentation methods performed well
with GBM target images. In some cases, their performances were even better (for HED and UNet) than
the corresponding performances when the source dataset was MIC17. Even in this case, we tested
the significance of our results with the Wilcoxon test; that demonstrated that the gap in performances
inside the individuals subsets was statistically significant (p value < 0.05) in almost all the used
metrics. This gap in the performances obtained with the individual subsets was mainly due to the
visual differences that their images present. To highlight these differences, we have reported in Table 3
some chromatic statistics both for the whole images and for the nuclei regions only.
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Table 2. Generalisation ability of FCN, HED, UNet, Mask R-CNN and DIMAN nuclei segmentation
methods trained on MIC17 and BNS datasets and tested using the single MIC17 subsets, which were
GBM, LGG, HNSC and LUSC.

Method Target

Source

MIC17 BNS

F1 P R ODI OHD F1 P R ODI OHD

FCN

GBM 0.79 0.83 0.75 0.68 13.53 0.77 0.75 0.79 0.69 12.01
HNSC 0.76 0.78 0.76 0.71 13.96 0.54 0.42 0.77 0.64 12.45
LCC 0.70 0.64 0.77 0.70 13.32 0.49 0.39 0.66 0.60 11.89
LUSC 0.71 0.78 0.66 0.67 21.59 0.51 0.41 0.68 0.58 15.23

HED

GBM 0.81 0.87 0.76 0.72 12.80 0.82 0.84 0.79 0.72 12.64
HNSC 0.80 0.87 0.75 0.70 18.23 0.71 0.66 0.79 0.71 15.89
LCC 0.78 0.79 0.77 0.74 13.37 0.70 0.62 0.81 0.72 10.78
LUSC 0.76 0.85 0.69 0.69 19.73 0.69 0.68 0.70 0.65 21.87

Mask R-CNN

GBM 0.80 0.82 0.79 0.71 12.28 0.79 0.77 0.81 0.72 12.22
HNSC 0.69 0.67 0.77 0.69 16.90 0.48 0.38 0.81 0.68 15.93
LCC 0.59 0.48 0.77 0.73 14.17 0.42 0.29 0.76 0.67 12.43
LUSC 0.69 0.69 0.69 0.69 19.16 0.57 0.49 0.70 0.66 19.64

UNet

GBM 0.79 0.80 0.79 0.71 11.80 0.81 0.80 0.82 0.73 11.13
HNSC 0.72 0.71 0.73 0.67 17.60 0.61 0.53 0.80 0.71 14.38
LCC 0.71 0.65 0.79 0.74 13.20 0.57 0.43 0.84 0.71 10.88
LUSC 0.69 0.70 0.68 0.67 21.20 0.64 0.58 0.73 0.68 18.40

DIMAN

GBM 0.85 0.87 0.84 0.74 11.14 0.83 0.81 0.85 0.76 9.54
HNSC 0.67 0.64 0.76 0.69 18.93 0.64 0.56 0.85 0.75 13.29
LCC 0.62 0.53 0.77 0.75 16.55 0.59 0.46 0.84 0.75 12.38
LUSC 0.71 0.72 0.71 0.71 21.03 0.62 0.55 0.73 0.68 21.99

Table 3. Colour statistics extracted from the used datasets and subsets. From the left: average and
standard deviation for the whole image, red (R), green (G), blue (B) and average and standard deviation
for the nuclei only, R nuclei, G nuclei and B nuclei.

Data Subset R G B R Nuclei B Nuclei G Nuclei

MIC17 175 ± 17.9 117 ± 24.1 163 ± 21.3 103 ± 24.4 61 ± 21.3 118 ± 24.0
BNS 204 ± 12.8 185 ± 19.3 204 ± 10.6 157 ± 10.8 138 ± 11.7 178 ± 6.9
GBM 178 ± 16.8 132 ± 11.8 170 ± 8.5 102 ± 28.7 66 ± 24.1 118 ± 22.2
HNSC 177 ± 13.3 119 ± 13.5 164 ± 8.2 117 ± 26.0 72 ± 21.8 125 ± 11.1
LCC 173 ± 26.6 102 ± 26.9 149 ± 19.6 89 ± 11.5 43 ± 6.6 97 ± 12.0
LUSC 172 ± 17.1 116 ± 30.5 170 ± 31.3 102 ± 24.8 62 ± 21.1 130 ± 30.9

As can be observed, the datasets and subsets have different chromatic features and it is not a
coincidence that the subset which differ the most from the others is precisely the LCC subset. Certainly,
the set of features reported in Table 3 is not exhaustive, but it is representative of the issues present in
histopathology images.

A further issue is represented by the difference in the shape and size of the cells. Indeed,
most nuclei segmentation methods perform well for cells with standard shape and size, otherwise they
could fail. To confirm what has just been said, we visually evaluated the performances of the nuclei
segmentation methods trained using MIC17 and BNS datasets over the images acquired during the
HistoDSSP project. For brevity in Figure 4, we reported the visual results obtained over a single patch,
where the segmentation result of each model (in green colour) was superimposed on the original image.
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Figure 4. Visual segmentation results of the CNN-based methods trained using MIC17 and BNS
datasets over an image used in the HistoDSSP project.

As can be seen, both the models trained with the MIC17 and the BNS datasets underestimated
the number of cells, but in different ways. Indeed, the models trained with the MIC17 dataset
undersegmented the images by producing vast regions incorporating more cells and some background
parts. On the contrary, the models trained with the BNS dataset produced smaller regions by
segmenting only portions of cells and completely neglecting other cells. The leading cause of these
results lies in the characteristics of the public datasets used for training, whose images, even if coming
from different tissues, were all acquired at a magnification of 40×. Thus, the obtained models were not
able to generalise to images acquired with different scale (magnification of 20×), not even the HED
and DIMAN methods, which are multi-scale by nature.

All the attained results demonstrate that much effort is still needed to be able to create more
generalising methods and, therefore, methods that are suitable for real applications. Indeed, even if
some nuclei segmentation methods can achieve relatively good performances in cross-dataset scenarios
when the target images are similar to the ones used for training, much effort must be devoted to
guaranteeing higher invariance in colour and scale.

6. Conclusions

In this work, we evaluated the performances of several state-of-the-art nuclei segmentation
methods based on CNNs, focusing on a challenging, real-world application scenario in which a LIS
database is updated daily with images of different domains and no manually annotated images are
available. To this aim, we simulated a real application scenario, performing several cross-dataset
experiments by training each model on one source dataset and then testing it on a different target
dataset. Our results show that some of the existing CNN models can also achieve a relatively good
performance in cross-dataset scenarios, but this happens only when the target images are similar to
the ones used for training, while their performance is considerably worse when target and source
significantly differ in colours and scale.

The large gap between same- and cross-dataset performances demonstrated that more efforts
must be devoted to creating more generalising methods and, therefore, methods that are suitable for
real applications. The attained results also suggest to avoid focusing future work on improving the cell
nuclei segmentation accuracy on benchmark datasets under the same-domain scenario and to address
the efforts towards achieving a higher invariance in colour and scale.

As a possible solution to improve cross-domain effectiveness when no manually annotated data
from the target scene are available, or when few images (even unlabelled) of the same domain are
available to perform a DA, we envisage the use of a pre-processing procedure on the target images,
in order to modify them to be more similar to the source images used for training the models. We are
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currently investigating this approach, and preliminary results will soon be submitted for consideration
in a journal.

Author Contributions: Investigation, L.P.; software, L.P.; supervision, G.F.; writing—original draft, L.P.;
writing—review and editing, G.F. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the project Histopathology Decision Support Systems (HistoDSSP) based
on whole slide imaging analysis, funded by Regione Autonoma della Sardegna (POR FESR Sardegna 2014–2020
Asse 1 Azione 1.1.3).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; nor in the decision to
publish the results.

Abbreviations

The following abbreviations are used in this manuscript:
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HNSC head and neck squamous cell carcinoma
LUSC lung squamous cell carcinoma
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UDA unsupervised domain adaptation
CNN convolutional neural network
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FCN fully connected network
HED holistically-nested edge detector
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