
applied
sciences

Article

Compact Spatial Pyramid Pooling Deep
Convolutional Neural Network Based Hand
Gestures Decoder

Akm Ashiquzzaman 1, Hyunmin Lee 2,∗, Kwangki Kim 3,∗, Hye-Young Kim 4, Jaehyung Park 1

and Jinsul Kim 1,*
1 Department of ICT Convergence System Engineering, Chonnam National University, Gwangju 61186, Korea;

zamanashiq3@chonnam.ac.kr (A.A.); hyeoung@jnu.ac.kr (J.P.)
2 Human IT Convergence Research Center, Korea Electronics Technology Institute, Gyeonggi-do 13509, Korea
3 School of IT Convergence, Korea Nazarene University, Chungcheongnam-do 31172, Korea
4 School of Game/Game Software, Hongik University, Seoul 04066, Korea; hykim@hongik.ac.kr
* Correspondence: hyunmw@keti.re.kr (H.L.); k2kim@kornu.ac.kr (K.K.); jsworld@jnu.ac.kr (J.K.)

Received: 14 September 2020; Accepted: 3 November 2020; Published: 7 November 2020 ����������
�������

Abstract: Current deep learning convolutional neural network (DCNN) -based hand gesture detectors
with acute precision demand incredibly high-performance computing power. Although DCNN-based
detectors are capable of accurate classification, the sheer computing power needed for this
form of classification makes it very difficult to run with lower computational power in remote
environments. Moreover, classical DCNN architectures have a fixed number of input dimensions,
which forces preprocessing, thus making it impractical for real-world applications. In this
research, a practical DCNN with an optimized architecture is proposed with DCNN filter/node
pruning, and spatial pyramid pooling (SPP) is introduced in order to make the model input
dimension-invariant. This compact SPP-DCNN module uses 65% fewer parameters than traditional
classifiers and operates almost 3× faster than classical models. Moreover, the new improved proposed
algorithm, which decodes gestures or sign language finger-spelling from videos, gave a benchmark
highest accuracy with the fastest processing speed. This proposed method paves the way for various
practical and applied hand gesture input-based human-computer interaction (HCI) applications.

Keywords: deep learning; convolutional neural network; hand gesture recognition; neural network
pruning; optimization

1. Introduction

Hand gesture recognition is a key part of human communication. Such gestures were the
primary means of communication in the prehistoric age [1]. In modern days, hand gestures are
still useful, for example, in the case of difficulties with oral communication or human-computer
interactions (HCIs). Today, visual experience plays a significant part in HCIs. An interactive and properly
gesture-classifiable computer program can properly recognize human behavior as an input for processing.
The use of sign language as a gesture-based, as opposed to voice-based, means of communication
with another medium makes HCI tremendously promising. The most natural form of gesture-based
communication is sign language. Hearing-impaired individuals and people with speech impediments use
sign language in their everyday lives. American Sign Language (ASL), which is the most popular form
of sign language in the world, is derived from the old French hand symbols and used throughout the
continent of North America. Sign language, first developed two centuries ago, is now widely recognized
throughout the world. Visual perception plays a vital role in HCI [2]. HCI bridges the gap between
machines and humans, allowing them to communicate with each other. Hence, naturally, hand gesture

Appl. Sci. 2020, 10, 7898; doi:10.3390/app10217898 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://www.mdpi.com/2076-3417/10/21/7898?type=check_update&version=1
http://dx.doi.org/10.3390/app10217898
http://www.mdpi.com/journal/applsci

Appl. Sci. 2020, 10, 7898 2 of 22

recognition has been the subject of a significant amount of research in both the communication and
machine learning domains. The main idea in the machine learning domain for HCI is to properly classify
and detect human gestures and improve the accuracy of the classifier.

The main drawback to implementing any kind of machine learning or computer vision-based gesture
classification involves the detection and classification of different hand gestures. Theoretically, there are a
limited number of hand gestures, and mapping those to the almost infinite number of possible expressions
is close to impossible. For this reason, most computer vision-based research solely focuses on classification
of a limited number of gestures. On the other hand, HCI studies concern the development of deep
learning-based classification and hand gesture detection systems. Deep convolutional neural networks
(DCNNs) have recently gained popularity because of their superior ability to recognize visual data.
Utilizing DCNNs for object classification is not a recent advancement. Much research has been done,
solely focusing on the DCNN-based classification of hand gestures.

DCNNs are widely used machine learning algorithms that automate feature extraction and
classification without the need for external selective feature extraction methods. This is done by the
two (2) main steps executed by a DCNN algorithm. The convolutional layers in a DCNN utilize
convolutional operations in order to extract the important features of input images. Subsequently the
fully connected or dense layer of the DCNN classifies the features and produces a prediction of the
given input images. The use of a DCNN eliminates the need for human or machine-based feature
selection criteria and improves the overall accuracy of classification performance.

However, DCNNs have certain fundamental limitations for hand gesture classification.
By definition, the input image that is presented to the convolutional layers of a DCNN must have a
fixed number of dimensions. This creates problems that are related to resizing or cropping of the input
images and results in reduced accuracy and mislabelling due to data loss. Moreover, most research on
DCNNs has solely focused on achieving accuracy. Thus, DCNN layers are increasing in size, number,
and complexity over time. This means that practical applications of DCNNs are extremely power and
computational resource-intensive (in terms of CPU, GPU, RAM, etc.).

Addressing high computational costs and optimizing neural networks is a well-researched topic.
Many DCNN optimization techniques have been presented in recent years. DCNN node pruning is
one such optimization technique, first suggested by Lecun et al. [3]. Neural node and convolution
filter pruning is the process of eliminating neural network nodes and filters that are based on rational
or mathematical comparisons. Although this process is not new, applying it to modern DCNNs is
a comparatively new development. Spatial pyramid pooling (SPP) is a DCNN convolutional layer
feature gathering method that eliminates the need for fixed-dimensional input. Hu et al. first described
this process for a convolutional neural network [4]. To the best of our knowledge, the combination of
both of these techniques has not yet been studied.

This research addresses the ideas of DCNN node pruning and introduction of an SPP layer in the
DCNN, and uses several metrics to evaluate the performance of the subsequent model. Also, a new
algorithm that decodes hand gestures in real time for practical uses is proposed and analyzed. The rest
of the article is organized as follows. Section 2 describes previous work done in this field that inspired
this research. Section 3 discusses the fundamentals of DCNN node pruning and SPP. Our proposed
method is presented in Section 4. Section 5 describes the dataset that was used to train and test the
proposed method. Section 6 concerns the evaluation metrics that were used to validate and test the
results presented in Section 7. Finally, we compare the proposed system with other notable work in
Section 8 and, finally, provide a summary of this work and future directions in Section 9.

Appl. Sci. 2020, 10, 7898 3 of 22

2. Related Works

In recent decades, many researchers have investigated different approaches that use touch and
non-touch gestures in various real-world practical applications. The practicality of manufacturing
such systems has been the subject of many experiments in the last few years. Because of the nature of
hand gestures and the specifics of machine learning research, discussing all of this a gargantuan task.
Accordingly, this section will briefly discuss the original research on machine learning hand gesture
classification, followed by the application of DCNNs and the potential drawbacks of such methods.

Earlier research into both machine learning and computer vision-based ASL recognition relied
heavily on traditional feature selection methods. These methods involved processing input images
into various transformations and then selecting the best features for to classifying the ASL symbol
represented in the image. Vogler et al. presented notable work that utilized the above-mentioned
methods. Their work used an adaptive hidden Markov model (HMM) and three-dimensional (motion)
analysis for recognition [5,6]. These types of studies are usually expensive, as they require additional
motion capture instrumentation that is both time- and resource-intensive. The development of a more
practical setup to overcome such limitations must follow a vision learning-based approach.These types
of studies are usually expensive, as they require additional motion capture instrumentation that is both
time- and resource-intensive. The development of a more practical setup to overcome such limitations
must follow a vision learning-based approach.

A variety of approaches to computer vision-based ASL detection have been developed [7].
These include both traditional machine learning- and deep learning-based approaches. Notable work
in traditional machine learning approaches includes singular value decomposition (SVD) [8],
wavelet transformation via discrete wavelet transformation (DFT) [9], geometric features, and local
binary patterns (LBP) [10]. These methods rely heavily on extraction of input images while using
varieties of classifiers, including but not limited to ensemble classifiers that are based on support
vector machines (SVMs) [11], artificial neural networks (ANNs) [12], and linear regression and genetic
algorithms (GAs) [13]. These methods produced a significant improvement in both image- and
sensor-based input processing. Hand gesture image feature extraction has many applications, some of
which rely on Gabor filters [14]. This research follows a common theme of input data preprocessing and
feature extraction systems. Although much of this research reported high accuracy, the preprocessing
and real-time processing requirements for input data extraction make these systems very impractical
to deploy as real-time gesture recognition applications. In the middle of the 20th century, Hubel
and Weisel explained the biological underpinnings of visual sensory processing in the mammalian
context [15]. In essence, they showed that a small amount of edge detection can lead to superior
image detection. This research served as a precursor to DCNN-based research in computer vision.
Lecunn et al. [16] were the first to successfully demonstrate neural convolutional network training with
backpropagation. Krizhevsky et al. [17], in work that won the 2012 Imagenet competition, opened
the door to use of DCNNs in different image detection applications. Their CNN introduced deep
feed-forward artificial neural network, which is now the most popular visual image analysis technique.
It has been used with exceptional precision in a number of contexts in different models of object
recognition and classification [18].

A great deal of previous work has been focused on DCNN-based sign recognition [19,20].
Some studies used a sensor-only approach [21] . An optimized form of Microsoft’s Kinect device [22,23],
which is primarily a gesture feedback interface for gaming, can be used for gesture classification input
data collection [24]. The classic DCNN approach to image-based hand gesture classification has also
been studied, with a sole focus on accuracy [25]. This has resulted in some extremely complex models
with a very high number of parameters which often require data resizing or background subtraction to
achieve an acceptable degree of accuracy [26,27]. Waeerasekera et al. [10] classified this problem as
the ASL based finger-spelling recognition/classification problem. However, the underlining machine
learning mechanism of ASL based finger-spelling and the gesture recognition is indifferent due to
the invariant dataset.Both high network size and input dimension restrictions limit the applicability

Appl. Sci. 2020, 10, 7898 4 of 22

of DCNN algorithms. Hand gesture recognition must be robust and input dimension-invariant,
as the same hand gesture can appear in different scenarios, which results in a variation in the
number of input dimensions. Moreover, DCNN algorithms need to be faster and computationally less
expensive if they are to be deployed in practical scenarios. We propose a new algorithm that utilizes
L2-normalization-based DCNN node and filter pruning and introduce a spatial pyramid pooling layer
(SPP) that eliminates the necessity to restrict the number of input dimensions in order to address
the data dimension restrictions and computational complexity of DCNNs. We also propose a new
real-time detection hand gesture classifier that can recognize and decode multiple gestures in real time
from an input video. We also utilized the open sourced ASL dataset [28], which provided 29 separate
hand gesture classes for robust ASL finger-spelling or gesture recognition.

3. Basic Theory for Optimizing DCNN

3.1. Deep Convolutional Neural Network and Node Pruning

The basic concept of a DCNN originated from the theory that an input matrix that controls edge
features can be used to understand and define the patterns that appear. Any affine transformation
cannot be used to obtain valuable visual information. Many previous work and literates have described
the basic DCNN theory thoroughly [29,30]. Convolution is a sparse operation, and the parameters are
reused by sharing. This will extract the edge or essential pattern information from visual feedback
and label it as the supplied data. Figure 1 shows a simplified DCNN with 2 (two) convolutional
layers, followed by a flattenws layer with the extracted feature vector that are used to classify the
given image input. Convolution is a mathematical operation that can be applied to a matrix. Basically,
all of the images that serve as the input for a convolutional neural network can be represented as an
N-dimensional matrix. The filter sub-matrix is the underlying weight of the neural network and the
inputs are integrated across the channels, which are the image dimensions.

Figure 1. Simplified deep convolutional network with two (2) convolutional layers and one (1) single
fully connected layer.

If a single node of a neural network can be denoted as the y, which is the mathematical summation
of i inputs x and weights, the node can be expressed as the following matrix form,

y =
n

∑
i=1

wixi + b (1)

Here, b is the bias, and to reduce the result to a threshold based non-linearity, an activation
function σ(x) can be used, as follows,

ŷ = σ(y) (2)

Accordingly, the convolution accepts a volume size of W, H, D as the weight, height, and dept the
number of filters K their stride S, and followed by the spatial extent F and calculates the following,

Appl. Sci. 2020, 10, 7898 5 of 22

Ŵ =
W − F + 2

S + 1

Ĥ =
H − F + 2

S + 1
D̂ = K

(3)

Here, Ŵ, Ĥ, D̂ are the resulting output matrix dimensions. It is important to mention that the
weight and height are computed equally by symmetry and the output convoluted matrix obtains the
exact filter-sized volume for the next convolutional layer to process. Thus, based on the equation that is
shown above, a simple ranking on the nodes based on the ascending values of Ŵ can be used in order
to rank the filters of each layer in both the convolutional and fully connected layers. l1 normalization
of the weight vectors can be calculated as the element-wise vector absolute value, as shown below,

l1(Ŵ) = |Ŵ| (4)

Subsequently, the nodes can be sorted from the calculated l1 normalization and pruned based on
the least scored nodes, as needed. Figure 2 displays the block representation of node pruning in one
particular layer of the DCNNs.

Figure 2. Basic concept of node/filter pruning in a deep convolutional neural network.

3.2. Image Resizing Restriction in DCNN

A DCNN, by definition, must be given a fixed number of input image dimensions, which depends
on the number with which it was trained. For example, Lenet∗5, which was trained on the MNIST
dataset, requires input dimensions of (32, 32) [31]. This means that all of the DCNN developments
based on the MNIST dataset are forced to resize any model to the aforementioned dimensions. Figure 3
demonstrates the problem that arises when resizing input images.

Moreover, the Imagenet challenge dataset has a fixed (224, 224) input dimension restriction [32].
Consequently, most DCNN architectures developed in recent years require those same dimensions.
A trained DCNN model might incorrectly classify images that have been resized from a different
number of dimensions. In Figure 3, the original (224, 224) input images has been resized into 2 different
images of (200, 400) and (400, 200). This results in DCNN wrongly classifying the same images with
different classes, making this DCNN unreliable to use in practical life, where the input dimension
varies heavily. This is the main motivation to incorporate the spatial pyramid pooling (SPP) layer into
the DCNN.

Appl. Sci. 2020, 10, 7898 6 of 22Original Image(224,224) Resized Image(200,400)Resized Image(400,200)CroppingWarpingResizing(A) (B)(C)
Figure 3. Image resizing cause distortion of spatial information, resulting mis-classification and
restricting deep learning convolutional neural network (DCNN) input dimensions. Here, (A) is the
original image, resizing it to feed into DCNN cause distortion shown in (B,C).

3.3. Spatial Pyramid Pooling Layer (SPP)

The use of a spatial pyramid pooling (SPP) layer eliminates the input image dimension constraints
of DCNNs. SPPs are based on original work more commonly referred to as spatial pyramid matching
(SPM). SPM is an extension of the bag-of-words (BoW) model that was proposed by Sivic et al. [33],
a classical computer vision algorithm that divides input image feature vectors into finer-to-coarser
forms or sections. Later, the algorithm aggregates feature maps in the sections. SPP not only helps
to produce representations for processing from uniformly scaled images/windows, but also helps to
feed the DCNN images of different sizes or scales during image preparation. Training with images
of variable size improves the scale-invariance and eliminates the over-fitting of a DCNN. He et al.
demonstrated that integration of SPP into a DCNN design improves accuracy in traditional DCNN
architectures, such as Lenet∗5, Alexnet with the Imagenet dataset, etc.

Figure 4 shows the main workings of the SPP layer in the DCNN. In the block diagram, (A) is
the input image with any arbitrary input. The image is put through the convolutional feature pooling
layer in (B). The features pulled by the convolutional layer are passed to the SPP layer. SPP generates a
fixed-length output regardless of the size of the input, whereas the common DCNN sliding window
pooling used in normal deep networks cannot perform this operation (C). The operation improves
upon BoW models, such that the network retains spatial information by performing max-pooling in
local spatial bins. The sizes of these spatial bins are proportional to the image size, so the number of
bins is fixed regardless of the image size. This is in contrast to the sliding window pooling used in
classical DCNN approaches, in which each spatial bin reflects the max-pooling responses of each filter.
The outputs of SPP are presented as kM-dimensional vectors, where M denotes the number of bins and
k is the number of filters in the last convolutional layer. Figure 4D shows this process. These vectors
are then transferred to the fully connected layers for classification (Figure 4E) and display (Figure 4F).

Appl. Sci. 2020, 10, 7898 7 of 22Original Image(A)

(B)
(C)

(D)

(E)

A

(F)Convolutional Layers Spatial PyramidPooling Fixed-lengthBin Representation Fully-connectedLayers Output ClassSpatial Pyramid Pooling Layer
Figure 4. Spatial pyramid pooling in a DCNN. (A) A block diagram input is subjected to (B) convolutional
feature pooling, then (C) max-pooled spatial pyramid pooling (SPP) with (D) a fixed number of bins; the
result is finally transferred to (E) the fully connected (FC) layer, which (F) classifies the results.

4. The Proposed Methodology

This section of the article discusses the implementation of the details of the proposed method.
For the sake of simplicity, we separate the proposed method into two main sections. The first section
deals with selection of the optimal nodes in the DCNN by pruning. The second section discusses
transformation of the DCNN to a compact SPP-based DCNN, along with a practical approach to
decoding video gestures in real time based on the compact SPP-based DCNN.

4.1. Practical DCNN Architecture Selection and Pruning Strategy for Optimal Node Selection

Although SPP is not a modern concept in relation to DCNN, the use of both node pruning
and transformation from a classical DCNN to an SPP-based DCNN has not yet been thoroughly
researched. Additionally, we accomplish single image-based decoding by using traditional methods
in a new manner; our technique makes the most of other approaches that have until now not
been practical to deploy in real-life settings. Figure 5 demonstrates the simplicity of the proposed
method. Almost all general feature selection-based classifiers carry out resizing and transformation
from red, green, blue (RGB)-scale to gray-scale for classification, whereas the DCNN with SPP only
requires a dimension-invariant input image for classification.

The proposed DCNN architecture was constructed based on research by Oxford’s Vision Geometry
Group (VGG) [34]. Their proposed model DCNN has several versions for deployment. We started
with the smallest DCNN in VGGnet and pruned from that architecture, as our original dataset contains
far fewer labels than the Imagenet dataset used to train VGGnet. The main goal of this pruning is
optimization and creation of a compact model that is less computationally intensive. The smallest
original VGGnet model is the VGGnet-11. The numeral eleven (11) represents the total number of
hidden convolutional and fully connected layers. Figure 6 shows the full network structure and
node/filter for each layer. The input layer of the DCNN takes a fixed (224, 224) RGB input, and it is
followed by the first convolutional layer, with 64 units/filters. Then, a (2× 2) max-pooling layer is
used to reduce the number of parameters. This is followed by 2 (two) more convolutional layers with
128 units/filters and the same max-pooling process. There are then 2 more convolutional layers with
256 units/filters with max-pooling and, finally, 4 more convolutional layers with 512 units/filters. All of
the convolutional layers were given individual batch normalization layers to reduce the over-fitting of
the altered proposed VGGnet [35]. The output of the last convolutional layer is then passed through
2 (two) fully connected (FC) layers or dense layers. This is followed by an output layer of 29 nodes
with Softmax output for gesture classification. This model has a total of 11 hidden layers and the
input dimension of (224, 224) makes this DCNN model capable of processing a total of 22,506,781
learnable parameters.

Appl. Sci. 2020, 10, 7898 8 of 22

Figure 5. Step-by-step comparison of classification methods. (A) Traditional methods rely on image
resizing and RGB to gray-scale conversion prior to classification. (B) in most DCNN-based methods,
the input image needs to be resized. However, (C) the SPP layer-based DCNN has no need for image
resizing.

2
2
4
x
2
2
4

2
2
4
x
2
2
4

2
2
4
x
2
2
4

1
1
2
x
1
1
2

1
1
2
x
1
1
2

1
1
2
x
1
1
2

1
1
2
x
1
1
2

1
1
2
x
1
1
2

5
6
x
5
6

5
6
x
5
6

5
6
x
5
6

5
6
x
5
6

5
6
x
5
6

2
8
x
2
8

2
8
x
2
8

2
8
x
2
8

2
8
x
2
8

2
8
x
2
8

1
4
x
1
4

1
4
x
1
4

1
4
x
1
4

1
4
x
1
4

1
4
x
1
4

7
x
7

64 64 64

128 128 128 128 128
256 256 256 256 256 512 512 512 512 512 512 512 512 512 512

25088 512 512 512 512

29 29

Figure 6. Proposed deep convolutional network visualization. The color-coded boxes represent the
layers in the model. Convolutional layers are blue (

Version November 2, 2020 submitted to Appl. Sci. 8 of 22

The proposed DCNN architecture was constructed based on research by Oxford’s Vision Geometry214

Group (VGG) [34]. Their proposed model DCNN has several versions for deployment. As our original215

dataset contains far fewer labels than the Imagenet dataset used to train VGGnet, we started with216

the smallest DCNN in VGGnet and pruned from that architecture. The main goal of this pruning is217

optimization and creation of a compact model that is less computationally intensive. The smallest218

original VGGnet model is the VGGnet-11. The numeral eleven (11) represents the total number of219

hidden convolutional and fully connected layers. Figure 6 shows the full network structure and220

node/filter for each layer. The input layer of the DCNN takes a fixed (224, 224) RGB input, and is221

followed by the first convolutional layer, with 64 units/filters. Then, a (2× 2) max-pooling layer is222

used to reduce the number of parameters. This is followed by 2 (two) more convolutional layers with223

128 units/filters and the same max-pooling process. There are then 2 more convolutional layers with224

256 units/filters with max-pooling and, finally, 4 more convolutional layers with 512 units/filters. All225

of the convolutional layers were given individual batch normalization layers to reduce the over-fitting226

of the altered proposed VGGnet [35]. The output of the last convolutional layer is then passed through227

2 (two) fully connected (FC) layers or dense layers. This is followed by an output layer of 29 nodes228

with Softmax output for gesture classification. This model has a total of 11 hidden layers and the input229

dimension of (224, 224) makes this DCNN model capable of processing a total of 22, 506, 781 learnable230

parameters.231

2
2
4
x
2
2
4

2
2
4
x
2
2
4

2
2
4
x
2
2
4

1
1
2
x
1
1
2

1
1
2
x
1
1
2

1
1
2
x
1
1
2

1
1
2
x
1
1
2

1
1
2
x
1
1
2

5
6
x
5
6

5
6
x
5
6

5
6
x
5
6

5
6
x
5
6

5
6
x
5
6

2
8
x
2
8

2
8
x
2
8

2
8
x
2
8

2
8
x
2
8

2
8
x
2
8

1
4
x
1
4

1
4
x
1
4

1
4
x
1
4

1
4
x
1
4

1
4
x
1
4

7
x
7

64 64 64

128 128 128 128 128
256 256 256 256 256 512 512 512 512 512 512 512 512 512 512

25088 512 512 512 512

29 29

Figure 6. Proposed deep convolutional network visualization. The color-coded boxes represent the
layers in the model. Convolutional layers are blue (), batch normalization layers are lime () and
max-pooling layers are forest green (); these are followed by a flatten layer, shown in emerald green
(), a fully connected layer in violet () and the Softmax output in magenta (). The number of
dimensions in each layer is shown beside/below that layer.

The pruning strategy for the DCNN works only in the hidden layers. Neural network node232

pruning is a basic process in which nodes are raked in order to prune them. Hu et al. [36] explored233

sparsity inactivation for network pruning. The exponential linear unit (ReLU) [37] activation function234

imposes sparsity during inference, and the average percentage of positive activation in the output235

can determine the importance of the neuron. L1 normalization is useful for estimation of the saliency236

of feature maps in a given layer. This idea can be used to rank the filters in each layer. The trained237

neural network is then pruned to make it more compact in size while retaining accuracy to produce238

the correct results with less computational overhead. The proposed pruning of the new DCNN takes239

place in 2 steps. First, the model is trained with the proper dataset. Then, the trained model undergoes240

a comparison based on validation accuracy to establish the baseline. Later model pruning is done241

based on the filter and nodes l1-normalized rankings. The pruned compact network is then retrained242

to give the same or higher accuracy with a reduced computational workload. As the original layer in243

the proposed model was extremely large, 50% pruning of convolutional layers and 25% pruning of FC244

layers were proposed to make the final compact DCNN shown in Figure 7.245

Figure 7 displays a final pruned model after 50% pruning of convolutional layers and 25%246

pruning of FC layers. Overall, pruning resulted in more than a 50% reduction in parameters. The first247

convolutional layers with 64 units/filters in Figure 6 now have 32 filters, as shown in Figure 7. The same248

), batch normalization layers are lime (

Version November 2, 2020 submitted to Appl. Sci. 8 of 22

The proposed DCNN architecture was constructed based on research by Oxford’s Vision Geometry214

Group (VGG) [34]. Their proposed model DCNN has several versions for deployment. As our original215

dataset contains far fewer labels than the Imagenet dataset used to train VGGnet, we started with216

the smallest DCNN in VGGnet and pruned from that architecture. The main goal of this pruning is217

optimization and creation of a compact model that is less computationally intensive. The smallest218

original VGGnet model is the VGGnet-11. The numeral eleven (11) represents the total number of219

hidden convolutional and fully connected layers. Figure 6 shows the full network structure and220

node/filter for each layer. The input layer of the DCNN takes a fixed (224, 224) RGB input, and is221

followed by the first convolutional layer, with 64 units/filters. Then, a (2× 2) max-pooling layer is222

used to reduce the number of parameters. This is followed by 2 (two) more convolutional layers with223

128 units/filters and the same max-pooling process. There are then 2 more convolutional layers with224

256 units/filters with max-pooling and, finally, 4 more convolutional layers with 512 units/filters. All225

of the convolutional layers were given individual batch normalization layers to reduce the over-fitting226

of the altered proposed VGGnet [35]. The output of the last convolutional layer is then passed through227

2 (two) fully connected (FC) layers or dense layers. This is followed by an output layer of 29 nodes228

with Softmax output for gesture classification. This model has a total of 11 hidden layers and the input229

dimension of (224, 224) makes this DCNN model capable of processing a total of 22, 506, 781 learnable230

parameters.231

2
2
4
x
2
2
4

2
2
4
x
2
2
4

2
2
4
x
2
2
4

1
1
2
x
1
1
2

1
1
2
x
1
1
2

1
1
2
x
1
1
2

1
1
2
x
1
1
2

1
1
2
x
1
1
2

5
6
x
5
6

5
6
x
5
6

5
6
x
5
6

5
6
x
5
6

5
6
x
5
6

2
8
x
2
8

2
8
x
2
8

2
8
x
2
8

2
8
x
2
8

2
8
x
2
8

1
4
x
1
4

1
4
x
1
4

1
4
x
1
4

1
4
x
1
4

1
4
x
1
4

7
x
7

64 64 64

128 128 128 128 128
256 256 256 256 256 512 512 512 512 512 512 512 512 512 512

25088 512 512 512 512

29 29

Figure 6. Proposed deep convolutional network visualization. The color-coded boxes represent the
layers in the model. Convolutional layers are blue (), batch normalization layers are lime () and
max-pooling layers are forest green (); these are followed by a flatten layer, shown in emerald green
(), a fully connected layer in violet () and the Softmax output in magenta (). The number of
dimensions in each layer is shown beside/below that layer.

The pruning strategy for the DCNN works only in the hidden layers. Neural network node232

pruning is a basic process in which nodes are raked in order to prune them. Hu et al. [36] explored233

sparsity inactivation for network pruning. The exponential linear unit (ReLU) [37] activation function234

imposes sparsity during inference, and the average percentage of positive activation in the output235

can determine the importance of the neuron. L1 normalization is useful for estimation of the saliency236

of feature maps in a given layer. This idea can be used to rank the filters in each layer. The trained237

neural network is then pruned to make it more compact in size while retaining accuracy to produce238

the correct results with less computational overhead. The proposed pruning of the new DCNN takes239

place in 2 steps. First, the model is trained with the proper dataset. Then, the trained model undergoes240

a comparison based on validation accuracy to establish the baseline. Later model pruning is done241

based on the filter and nodes l1-normalized rankings. The pruned compact network is then retrained242

to give the same or higher accuracy with a reduced computational workload. As the original layer in243

the proposed model was extremely large, 50% pruning of convolutional layers and 25% pruning of FC244

layers were proposed to make the final compact DCNN shown in Figure 7.245

Figure 7 displays a final pruned model after 50% pruning of convolutional layers and 25%246

pruning of FC layers. Overall, pruning resulted in more than a 50% reduction in parameters. The first247

convolutional layers with 64 units/filters in Figure 6 now have 32 filters, as shown in Figure 7. The same248

) and
max-pooling layers are forest green (

Version November 2, 2020 submitted to Appl. Sci. 8 of 22

The proposed DCNN architecture was constructed based on research by Oxford’s Vision Geometry214

Group (VGG) [34]. Their proposed model DCNN has several versions for deployment. As our original215

dataset contains far fewer labels than the Imagenet dataset used to train VGGnet, we started with216

the smallest DCNN in VGGnet and pruned from that architecture. The main goal of this pruning is217

optimization and creation of a compact model that is less computationally intensive. The smallest218

original VGGnet model is the VGGnet-11. The numeral eleven (11) represents the total number of219

hidden convolutional and fully connected layers. Figure 6 shows the full network structure and220

node/filter for each layer. The input layer of the DCNN takes a fixed (224, 224) RGB input, and is221

followed by the first convolutional layer, with 64 units/filters. Then, a (2× 2) max-pooling layer is222

used to reduce the number of parameters. This is followed by 2 (two) more convolutional layers with223

128 units/filters and the same max-pooling process. There are then 2 more convolutional layers with224

256 units/filters with max-pooling and, finally, 4 more convolutional layers with 512 units/filters. All225

of the convolutional layers were given individual batch normalization layers to reduce the over-fitting226

of the altered proposed VGGnet [35]. The output of the last convolutional layer is then passed through227

2 (two) fully connected (FC) layers or dense layers. This is followed by an output layer of 29 nodes228

with Softmax output for gesture classification. This model has a total of 11 hidden layers and the input229

dimension of (224, 224) makes this DCNN model capable of processing a total of 22, 506, 781 learnable230

parameters.231

2
2
4
x
2
2
4

2
2
4
x
2
2
4

2
2
4
x
2
2
4

1
1
2
x
1
1
2

1
1
2
x
1
1
2

1
1
2
x
1
1
2

1
1
2
x
1
1
2

1
1
2
x
1
1
2

5
6
x
5
6

5
6
x
5
6

5
6
x
5
6

5
6
x
5
6

5
6
x
5
6

2
8
x
2
8

2
8
x
2
8

2
8
x
2
8

2
8
x
2
8

2
8
x
2
8

1
4
x
1
4

1
4
x
1
4

1
4
x
1
4

1
4
x
1
4

1
4
x
1
4

7
x
7

64 64 64

128 128 128 128 128
256 256 256 256 256 512 512 512 512 512 512 512 512 512 512

25088 512 512 512 512

29 29

Figure 6. Proposed deep convolutional network visualization. The color-coded boxes represent the
layers in the model. Convolutional layers are blue (), batch normalization layers are lime () and
max-pooling layers are forest green (); these are followed by a flatten layer, shown in emerald green
(), a fully connected layer in violet () and the Softmax output in magenta (). The number of
dimensions in each layer is shown beside/below that layer.

The pruning strategy for the DCNN works only in the hidden layers. Neural network node232

pruning is a basic process in which nodes are raked in order to prune them. Hu et al. [36] explored233

sparsity inactivation for network pruning. The exponential linear unit (ReLU) [37] activation function234

imposes sparsity during inference, and the average percentage of positive activation in the output235

can determine the importance of the neuron. L1 normalization is useful for estimation of the saliency236

of feature maps in a given layer. This idea can be used to rank the filters in each layer. The trained237

neural network is then pruned to make it more compact in size while retaining accuracy to produce238

the correct results with less computational overhead. The proposed pruning of the new DCNN takes239

place in 2 steps. First, the model is trained with the proper dataset. Then, the trained model undergoes240

a comparison based on validation accuracy to establish the baseline. Later model pruning is done241

based on the filter and nodes l1-normalized rankings. The pruned compact network is then retrained242

to give the same or higher accuracy with a reduced computational workload. As the original layer in243

the proposed model was extremely large, 50% pruning of convolutional layers and 25% pruning of FC244

layers were proposed to make the final compact DCNN shown in Figure 7.245

Figure 7 displays a final pruned model after 50% pruning of convolutional layers and 25%246

pruning of FC layers. Overall, pruning resulted in more than a 50% reduction in parameters. The first247

convolutional layers with 64 units/filters in Figure 6 now have 32 filters, as shown in Figure 7. The same248

); these are followed by a flatten layer, shown in emerald green
(

Version November 2, 2020 submitted to Appl. Sci. 8 of 22

The proposed DCNN architecture was constructed based on research by Oxford’s Vision Geometry214

Group (VGG) [34]. Their proposed model DCNN has several versions for deployment. As our original215

dataset contains far fewer labels than the Imagenet dataset used to train VGGnet, we started with216

the smallest DCNN in VGGnet and pruned from that architecture. The main goal of this pruning is217

optimization and creation of a compact model that is less computationally intensive. The smallest218

original VGGnet model is the VGGnet-11. The numeral eleven (11) represents the total number of219

hidden convolutional and fully connected layers. Figure 6 shows the full network structure and220

node/filter for each layer. The input layer of the DCNN takes a fixed (224, 224) RGB input, and is221

followed by the first convolutional layer, with 64 units/filters. Then, a (2× 2) max-pooling layer is222

used to reduce the number of parameters. This is followed by 2 (two) more convolutional layers with223

128 units/filters and the same max-pooling process. There are then 2 more convolutional layers with224

256 units/filters with max-pooling and, finally, 4 more convolutional layers with 512 units/filters. All225

of the convolutional layers were given individual batch normalization layers to reduce the over-fitting226

of the altered proposed VGGnet [35]. The output of the last convolutional layer is then passed through227

2 (two) fully connected (FC) layers or dense layers. This is followed by an output layer of 29 nodes228

with Softmax output for gesture classification. This model has a total of 11 hidden layers and the input229

dimension of (224, 224) makes this DCNN model capable of processing a total of 22, 506, 781 learnable230

parameters.231

2
2
4
x
2
2
4

2
2
4
x
2
2
4

2
2
4
x
2
2
4

1
1
2
x
1
1
2

1
1
2
x
1
1
2

1
1
2
x
1
1
2

1
1
2
x
1
1
2

1
1
2
x
1
1
2

5
6
x
5
6

5
6
x
5
6

5
6
x
5
6

5
6
x
5
6

5
6
x
5
6

2
8
x
2
8

2
8
x
2
8

2
8
x
2
8

2
8
x
2
8

2
8
x
2
8

1
4
x
1
4

1
4
x
1
4

1
4
x
1
4

1
4
x
1
4

1
4
x
1
4

7
x
7

64 64 64

128 128 128 128 128
256 256 256 256 256 512 512 512 512 512 512 512 512 512 512

25088 512 512 512 512

29 29

Figure 6. Proposed deep convolutional network visualization. The color-coded boxes represent the
layers in the model. Convolutional layers are blue (), batch normalization layers are lime () and
max-pooling layers are forest green (); these are followed by a flatten layer, shown in emerald green
(), a fully connected layer in violet () and the Softmax output in magenta (). The number of
dimensions in each layer is shown beside/below that layer.

The pruning strategy for the DCNN works only in the hidden layers. Neural network node232

pruning is a basic process in which nodes are raked in order to prune them. Hu et al. [36] explored233

sparsity inactivation for network pruning. The exponential linear unit (ReLU) [37] activation function234

imposes sparsity during inference, and the average percentage of positive activation in the output235

can determine the importance of the neuron. L1 normalization is useful for estimation of the saliency236

of feature maps in a given layer. This idea can be used to rank the filters in each layer. The trained237

neural network is then pruned to make it more compact in size while retaining accuracy to produce238

the correct results with less computational overhead. The proposed pruning of the new DCNN takes239

place in 2 steps. First, the model is trained with the proper dataset. Then, the trained model undergoes240

a comparison based on validation accuracy to establish the baseline. Later model pruning is done241

based on the filter and nodes l1-normalized rankings. The pruned compact network is then retrained242

to give the same or higher accuracy with a reduced computational workload. As the original layer in243

the proposed model was extremely large, 50% pruning of convolutional layers and 25% pruning of FC244

layers were proposed to make the final compact DCNN shown in Figure 7.245

Figure 7 displays a final pruned model after 50% pruning of convolutional layers and 25%246

pruning of FC layers. Overall, pruning resulted in more than a 50% reduction in parameters. The first247

convolutional layers with 64 units/filters in Figure 6 now have 32 filters, as shown in Figure 7. The same248

), a fully connected layer in violet (

Version November 2, 2020 submitted to Appl. Sci. 8 of 22

The proposed DCNN architecture was constructed based on research by Oxford’s Vision Geometry214

Group (VGG) [34]. Their proposed model DCNN has several versions for deployment. As our original215

dataset contains far fewer labels than the Imagenet dataset used to train VGGnet, we started with216

the smallest DCNN in VGGnet and pruned from that architecture. The main goal of this pruning is217

optimization and creation of a compact model that is less computationally intensive. The smallest218

original VGGnet model is the VGGnet-11. The numeral eleven (11) represents the total number of219

hidden convolutional and fully connected layers. Figure 6 shows the full network structure and220

node/filter for each layer. The input layer of the DCNN takes a fixed (224, 224) RGB input, and is221

followed by the first convolutional layer, with 64 units/filters. Then, a (2× 2) max-pooling layer is222

used to reduce the number of parameters. This is followed by 2 (two) more convolutional layers with223

128 units/filters and the same max-pooling process. There are then 2 more convolutional layers with224

256 units/filters with max-pooling and, finally, 4 more convolutional layers with 512 units/filters. All225

of the convolutional layers were given individual batch normalization layers to reduce the over-fitting226

of the altered proposed VGGnet [35]. The output of the last convolutional layer is then passed through227

2 (two) fully connected (FC) layers or dense layers. This is followed by an output layer of 29 nodes228

with Softmax output for gesture classification. This model has a total of 11 hidden layers and the input229

dimension of (224, 224) makes this DCNN model capable of processing a total of 22, 506, 781 learnable230

parameters.231

2
2
4
x
2
2
4

2
2
4
x
2
2
4

2
2
4
x
2
2
4

1
1
2
x
1
1
2

1
1
2
x
1
1
2

1
1
2
x
1
1
2

1
1
2
x
1
1
2

1
1
2
x
1
1
2

5
6
x
5
6

5
6
x
5
6

5
6
x
5
6

5
6
x
5
6

5
6
x
5
6

2
8
x
2
8

2
8
x
2
8

2
8
x
2
8

2
8
x
2
8

2
8
x
2
8

1
4
x
1
4

1
4
x
1
4

1
4
x
1
4

1
4
x
1
4

1
4
x
1
4

7
x
7

64 64 64

128 128 128 128 128
256 256 256 256 256 512 512 512 512 512 512 512 512 512 512

25088 512 512 512 512

29 29

Figure 6. Proposed deep convolutional network visualization. The color-coded boxes represent the
layers in the model. Convolutional layers are blue (), batch normalization layers are lime () and
max-pooling layers are forest green (); these are followed by a flatten layer, shown in emerald green
(), a fully connected layer in violet () and the Softmax output in magenta (). The number of
dimensions in each layer is shown beside/below that layer.

The pruning strategy for the DCNN works only in the hidden layers. Neural network node232

pruning is a basic process in which nodes are raked in order to prune them. Hu et al. [36] explored233

sparsity inactivation for network pruning. The exponential linear unit (ReLU) [37] activation function234

imposes sparsity during inference, and the average percentage of positive activation in the output235

can determine the importance of the neuron. L1 normalization is useful for estimation of the saliency236

of feature maps in a given layer. This idea can be used to rank the filters in each layer. The trained237

neural network is then pruned to make it more compact in size while retaining accuracy to produce238

the correct results with less computational overhead. The proposed pruning of the new DCNN takes239

place in 2 steps. First, the model is trained with the proper dataset. Then, the trained model undergoes240

a comparison based on validation accuracy to establish the baseline. Later model pruning is done241

based on the filter and nodes l1-normalized rankings. The pruned compact network is then retrained242

to give the same or higher accuracy with a reduced computational workload. As the original layer in243

the proposed model was extremely large, 50% pruning of convolutional layers and 25% pruning of FC244

layers were proposed to make the final compact DCNN shown in Figure 7.245

Figure 7 displays a final pruned model after 50% pruning of convolutional layers and 25%246

pruning of FC layers. Overall, pruning resulted in more than a 50% reduction in parameters. The first247

convolutional layers with 64 units/filters in Figure 6 now have 32 filters, as shown in Figure 7. The same248

) and the Softmax output in magenta (

Version November 2, 2020 submitted to Appl. Sci. 8 of 22

The proposed DCNN architecture was constructed based on research by Oxford’s Vision Geometry214

Group (VGG) [34]. Their proposed model DCNN has several versions for deployment. As our original215

dataset contains far fewer labels than the Imagenet dataset used to train VGGnet, we started with216

the smallest DCNN in VGGnet and pruned from that architecture. The main goal of this pruning is217

optimization and creation of a compact model that is less computationally intensive. The smallest218

original VGGnet model is the VGGnet-11. The numeral eleven (11) represents the total number of219

hidden convolutional and fully connected layers. Figure 6 shows the full network structure and220

node/filter for each layer. The input layer of the DCNN takes a fixed (224, 224) RGB input, and is221

followed by the first convolutional layer, with 64 units/filters. Then, a (2× 2) max-pooling layer is222

used to reduce the number of parameters. This is followed by 2 (two) more convolutional layers with223

128 units/filters and the same max-pooling process. There are then 2 more convolutional layers with224

256 units/filters with max-pooling and, finally, 4 more convolutional layers with 512 units/filters. All225

of the convolutional layers were given individual batch normalization layers to reduce the over-fitting226

of the altered proposed VGGnet [35]. The output of the last convolutional layer is then passed through227

2 (two) fully connected (FC) layers or dense layers. This is followed by an output layer of 29 nodes228

with Softmax output for gesture classification. This model has a total of 11 hidden layers and the input229

dimension of (224, 224) makes this DCNN model capable of processing a total of 22, 506, 781 learnable230

parameters.231

2
2
4
x
2
2
4

2
2
4
x
2
2
4

2
2
4
x
2
2
4

1
1
2
x
1
1
2

1
1
2
x
1
1
2

1
1
2
x
1
1
2

1
1
2
x
1
1
2

1
1
2
x
1
1
2

5
6
x
5
6

5
6
x
5
6

5
6
x
5
6

5
6
x
5
6

5
6
x
5
6

2
8
x
2
8

2
8
x
2
8

2
8
x
2
8

2
8
x
2
8

2
8
x
2
8

1
4
x
1
4

1
4
x
1
4

1
4
x
1
4

1
4
x
1
4

1
4
x
1
4

7
x
7

64 64 64

128 128 128 128 128
256 256 256 256 256 512 512 512 512 512 512 512 512 512 512

25088 512 512 512 512

29 29

Figure 6. Proposed deep convolutional network visualization. The color-coded boxes represent the
layers in the model. Convolutional layers are blue (), batch normalization layers are lime () and
max-pooling layers are forest green (); these are followed by a flatten layer, shown in emerald green
(), a fully connected layer in violet () and the Softmax output in magenta (). The number of
dimensions in each layer is shown beside/below that layer.

The pruning strategy for the DCNN works only in the hidden layers. Neural network node232

pruning is a basic process in which nodes are raked in order to prune them. Hu et al. [36] explored233

sparsity inactivation for network pruning. The exponential linear unit (ReLU) [37] activation function234

imposes sparsity during inference, and the average percentage of positive activation in the output235

can determine the importance of the neuron. L1 normalization is useful for estimation of the saliency236

of feature maps in a given layer. This idea can be used to rank the filters in each layer. The trained237

neural network is then pruned to make it more compact in size while retaining accuracy to produce238

the correct results with less computational overhead. The proposed pruning of the new DCNN takes239

place in 2 steps. First, the model is trained with the proper dataset. Then, the trained model undergoes240

a comparison based on validation accuracy to establish the baseline. Later model pruning is done241

based on the filter and nodes l1-normalized rankings. The pruned compact network is then retrained242

to give the same or higher accuracy with a reduced computational workload. As the original layer in243

the proposed model was extremely large, 50% pruning of convolutional layers and 25% pruning of FC244

layers were proposed to make the final compact DCNN shown in Figure 7.245

Figure 7 displays a final pruned model after 50% pruning of convolutional layers and 25%246

pruning of FC layers. Overall, pruning resulted in more than a 50% reduction in parameters. The first247

convolutional layers with 64 units/filters in Figure 6 now have 32 filters, as shown in Figure 7. The same248

). The number of
dimensions in each layer is shown beside/below that layer.

The pruning strategy for the DCNN only works in the hidden layers. Neural network node
pruning is a basic process, in which nodes are raked in order to prune them. Hu et al. [36] explored
sparsity inactivation for network pruning. The exponential linear unit (ReLU) [37] activation function
imposes sparsity during inference, and the average percentage of positive activation in the output can
determine the importance of the neuron. L1 normalization is useful for the estimation of the saliency of
feature maps in a given layer. This idea can be used to rank the filters in each layer. The trained neural
network is then pruned to make it more compact in size while retaining accuracy to produce the correct
results with less computational overhead. The proposed pruning of the new DCNN takes place in
2 steps. First, the model is trained with the proper dataset. Subsequently, the trained model undergoes
a comparison based on validation accuracy to establish the baseline. Later model pruning is done
based on the filter and nodes l1-normalized rankings. The pruned compact network is then retrained
to give the same or higher accuracy with a reduced computational workload. As the original layer in
the proposed model was extremely large, 50% pruning of convolutional layers and 25% pruning of FC
layers were proposed to make the final compact DCNN that is shown in Figure 7.

Appl. Sci. 2020, 10, 7898 9 of 22

Figure 7 displays a final pruned model after 50% pruning of convolutional layers and 25%
pruning of FC layers. Overall, pruning resulted in more than a 50% reduction in parameters. The first
convolutional layers with 64 units/filters in Figure 6 now have 32 filters, as shown in Figure 7. The same
strategy was implemented in the next two convolutional layers, which have 128 units/filters in Figure 6.
The pruned network has 2 convolutional layers with 64 units/filters after the first 32 node/filter layer,
as shown in Figure 7. The pruning of the next two convolutional layers with 256 units/filters and the
last four convolutional layers with 512 units/filters in Figure 6 followed, resulting in 2 convolutional
layers with 128 units/filters and the last 4 convolutional layers with 128 units/filters, as shown in
Figure 7. The FC layers of the original model each had 512 nodes, so 25% pruning of both layers
leaves 334 nodes in each hidden FC layer, as displayed in Figure 7. Table 1 shows the exact number of
parameters in each layer in the original and pruned network.

Table 1. Parameters in the proposed deep convolutional network and pruned deep convolutional network.

Original Deep Convolutional Network Pruned Deep Convolutional Network

Layers Output Shape Parameters Layers Output Shape Parameters

Input 224, 224, 3 0 Input 224, 224, 3 0
(Conv2D) 64 224, 224, 64 1792 (Conv2D) 32 224, 224, 32 896

Batch Normalization 224, 224, 64 256 Batch Normalization 224, 224, 32 128
Max Pooling (2× 2) 112, 112, 64 0 Max Pooling (2× 2) 112, 112, 32 0

(Conv2D) 128 112, 112, 128 73,856 (Conv2D) 64 112, 112, 64 18,496
Batch Normalization 112, 112, 128 512 Batch Normalization 112, 112, 64 256

(Conv2D) 128 112, 112, 128 147,584 (Conv2D) 64 112, 112, 64 36,928
Batch Normalization 112, 112, 128 512 Batch Normalization 112, 112, 64 256
Max Pooling (2× 2) 56, 56, 128 0 Max Pooling (2× 2) 56, 56, 64 0

(Conv2D) 256 56, 56, 256 295,168 (Conv2D) 128 56, 56, 128 73,856
Batch Normalization 56, 56, 256 1024 Batch Normalization 56, 56, 128 512

(Conv2D) 256 56, 56, 256 590,080 (Conv2D) 128 56, 56, 128 147,584
Batch Normalization 56, 56, 256 1024 Batch Normalization 56, 56, 128 512
Max Pooling (2× 2) 56, 56, 256 0 Max Pooling (2× 2) 28, 28, 128 0

(Conv2D) 512 28, 28, 512 1,180,160 (Conv2D) 256 28, 28, 256 295,168
Batch Normalization 28, 28, 512 2048 Batch Normalization 28, 28, 256 1024

(Conv2D) 512 28, 28, 512 2,359,808 (Conv2D) 256 28, 28, 256 590,080
Batch Normalization 28, 28, 512 2048 Batch Normalization 28, 28, 256 1024
Max Pooling (2× 2) 14, 14, 512 0 Max Pooling (2× 2) 14, 14, 256 0

(Conv2D) 512 14, 14, 512 2,359,808 (Conv2D) 256 14, 14, 256 590,080
Batch Normalization 14, 14, 512 2048 Batch Normalization 14, 14, 256 1024

(Conv2D) 512 14, 14, 512 2,359,808 (Conv2D) 256 14, 14, 256 590,080
Batch Normalization 14, 14, 512 2048 Batch Normalization 14, 14, 256 1024
Max Pooling (2× 2) 7, 7, 512 0 Max Pooling (2× 2) 7, 7, 256 0

Flatten 25,088 0 Flatten 12,544 0
(Fully Connected) 512 512 12,845,568 (Fully Connected) 384 384 4,817,280
Batch Normalization 512 2048 Batch Normalization 384 1536

(Fully Connected) 512 512 262,656 (Fully Connected) 384 384 147,840
Batch Normalization 512 2048 Batch Normalization 384 1536

(Fully Connected) 512 29 14,877 (Fully Connected) 29 29 11,165
Output Softmax 29 0 Output Softmax 29 0

Total Parameters 22,506,781 Total Parameters 7,328,285

The original proposed model presented in Figure 6 has a final trainable parameters, or the weight
value holder of 22,506,781 as compared to 7,328,285 parameters in Figure 7 as noted in the Table 1.
The proposed 50% pruning of the convolutional nodes also results in half of the parameters in the
pruned model. Batch Normalization parameters also cut in half as a result of the parameter reduction
or pruning. The output of the convolutional layers is flattened and feed into the FC layers as a design
of DCNN. Table 1 demonstrates a sharp reduction of 4,817,280 parameters of first hidden FC as oppose
to 12,845,568 parameters in the original model in Figure 6. This data computed based on pruning
shows potential for pruning the DCNN at a high rate in each hidden layer consists of convolution and
dense/fully connected nodes. However, it is not possible to prune the last FC layer in the DCNN by
design due to the output node fixation of DCNN. This is why the Table 1 shows no change in the last
FC later with 29 nodes, as those are the classes/labels for the dataset.

Appl. Sci. 2020, 10, 7898 10 of 22

2
2
4
x
2
2
4

2
2
4
x
2
2
4

2
2
4
x
2
2
4

1
1
2
x
1
1
2

1
1
2
x
1
1
2

1
1
2
x
1
1
2

1
1
2
x
1
1
2

1
1
2
x
1
1
2

5
6
x
5
6

5
6
x
5
6

5
6
x
5
6

5
6
x
5
6

5
6
x
5
6

2
8
x
2
8

2
8
x
2
8

2
8
x
2
8

2
8
x
2
8

2
8
x
2
8

1
4
x
1
4

1
4
x
1
4

1
4
x
1
4

1
4
x
1
4

1
4
x
1
4

7
x
7

32 32 32

64 64 64 64 64
128 128 128 128 128 256 256 256 256 256 256 256 256 256 256

12544 384 384 384 384

29 29

Figure 7. Deep convolutional network after pruning; The color-coded boxes represent the layers in the
model. Convolutional layers are blue (

Version November 2, 2020 submitted to Appl. Sci. 9 of 22

2
2
4
x
2
2
4

2
2
4
x
2
2
4

2
2
4
x
2
2
4

1
1
2
x
1
1
2

1
1
2
x
1
1
2

1
1
2
x
1
1
2

1
1
2
x
1
1
2

1
1
2
x
1
1
2

5
6
x
5
6

5
6
x
5
6

5
6
x
5
6

5
6
x
5
6

5
6
x
5
6

2
8
x
2
8

2
8
x
2
8

2
8
x
2
8

2
8
x
2
8

2
8
x
2
8

1
4
x
1
4

1
4
x
1
4

1
4
x
1
4

1
4
x
1
4

1
4
x
1
4

7
x
7

32 32 32

64 64 64 64 64
128 128 128 128 128 256 256 256 256 256 256 256 256 256 256

12544 384 384 384 384

29 29

Figure 7. Deep convolutional network after pruning; The color-coded boxes represent the layers in the
model. Convolutional layers are blue (), batch normalization layers are lime () and max-pooling
layers are forest green (); these are followed by a flatten layer, shown in emerald green (), a fully
connected layer in violet () and the Softmax output in magenta (). The number of dimensions in
each layer is shown beside/below that layer.

strategy was implemented in the next 2 convolutional layers, which have 128 units/filters in Figure 6.249

The pruned network has 2 convolutional layers with 64 units/filters after the first 32 node/filter layer,250

as shown in Figure 7. Pruning of the next 2 convolutional layers with 256 units/filters and the last 4251

convolutional layers with 512 units/filters in Figure 6 followed, resulting in 2 convolutional layers252

with 128 units/filters and the last 4 convolutional layers with 128 units/filters, as shown in Figure253

7. The FC layers of the original model each had 512 nodes, so 25% pruning of both layers leaves 334254

nodes in each hidden FC layer, as displayed in Figure 7 Table 1 shows the exact number of parameters255

in each layer in the original and pruned network.256

The original proposed model in Figure 6 has a final trainable parameters, or the weight value257

holder of 22, 506, 781 compared to 7, 328, 285 parameters in Figure 7 as noted in the Table 1. The258

proposed 50% pruning of the convolutional nodes also results in half of the parameters in the pruned259

model. Batch Normalization parameters also cut in half as a result of the parameter reduction or260

pruning. The output of the convolutional layers is flattened and feed into the FC layers as a design of261

DCNN. Table 1 demonstrates a sharp reduction of 4, 817, 280 parameters of first hidden FC as oppose262

to 12, 845, 568 parameters in the original model in Figure 6. This data computed based on pruning263

shows potential for pruning the DCNN at a high rate in each hidden layer consists of convolution and264

dense/fully connected nodes. However, due to the output node fixation of DCNN, it is not possible to265

prune the last FC layer in the DCNN by design. This is why the Table 1 shows no change in the last FC266

later with 29 nodes, as those are the classes/labels for the dataset.267

4.2. Integration of Multi-Spatial Pyramid Pooling into the Pruned DCNN268

The model and the pruning strategy described in the section above had a fundamental limitation269

when it comes to the image input dimension. This results in a forcible data resizing and thus accuracy270

reduction as stated in Figure 3. He et. al. [4] proposed SPP in DCNN improves the accuracy and get271

rid of the input dimensions restriction. Now, some research [38,39] have suggested combining various272

spatial pooling combinations including the original research from He et. al. [?]. Now, adopting the273

DCNN to fit in any arbitrary image input dimensions, we proposed a 3 multi-scale based pooling that274

has three (1× 1),(2× 2) and (4× 4) multi-scale SPP. Table 2 shows the modified pruned DCNN in the275

Figure 7 with the proposed Multi-scale SPP fitted after the convolutions.276

As the last convolutional layer has 256 filters the SPP has 265 convolutional feature input. Then277

the data is filter through 3 separate (1× 1),(2× 2) and (4× 4) multi-scaled SPP merged together. This278

makes the total parameters of SPP layer (256× 1× 2× 4) = 5, 376 parameters. Now, the number of279

multi-layer SPP (1, 2, 4) has been decided by both trial and error and suggestion from other researches280

[38,39]. Although, increasing the number of pooling might further increase the accuracy, but it will281

add more computation overhead to the DCNN model. This proposed pruned DCNN has already been282

), batch normalization layers are lime (

Version November 2, 2020 submitted to Appl. Sci. 9 of 22

2
2
4
x
2
2
4

2
2
4
x
2
2
4

2
2
4
x
2
2
4

1
1
2
x
1
1
2

1
1
2
x
1
1
2

1
1
2
x
1
1
2

1
1
2
x
1
1
2

1
1
2
x
1
1
2

5
6
x
5
6

5
6
x
5
6

5
6
x
5
6

5
6
x
5
6

5
6
x
5
6

2
8
x
2
8

2
8
x
2
8

2
8
x
2
8

2
8
x
2
8

2
8
x
2
8

1
4
x
1
4

1
4
x
1
4

1
4
x
1
4

1
4
x
1
4

1
4
x
1
4

7
x
7

32 32 32

64 64 64 64 64
128 128 128 128 128 256 256 256 256 256 256 256 256 256 256

12544 384 384 384 384

29 29

Figure 7. Deep convolutional network after pruning; The color-coded boxes represent the layers in the
model. Convolutional layers are blue (), batch normalization layers are lime () and max-pooling
layers are forest green (); these are followed by a flatten layer, shown in emerald green (), a fully
connected layer in violet () and the Softmax output in magenta (). The number of dimensions in
each layer is shown beside/below that layer.

strategy was implemented in the next 2 convolutional layers, which have 128 units/filters in Figure 6.249

The pruned network has 2 convolutional layers with 64 units/filters after the first 32 node/filter layer,250

as shown in Figure 7. Pruning of the next 2 convolutional layers with 256 units/filters and the last 4251

convolutional layers with 512 units/filters in Figure 6 followed, resulting in 2 convolutional layers252

with 128 units/filters and the last 4 convolutional layers with 128 units/filters, as shown in Figure253

7. The FC layers of the original model each had 512 nodes, so 25% pruning of both layers leaves 334254

nodes in each hidden FC layer, as displayed in Figure 7 Table 1 shows the exact number of parameters255

in each layer in the original and pruned network.256

The original proposed model in Figure 6 has a final trainable parameters, or the weight value257

holder of 22, 506, 781 compared to 7, 328, 285 parameters in Figure 7 as noted in the Table 1. The258

proposed 50% pruning of the convolutional nodes also results in half of the parameters in the pruned259

model. Batch Normalization parameters also cut in half as a result of the parameter reduction or260

pruning. The output of the convolutional layers is flattened and feed into the FC layers as a design of261

DCNN. Table 1 demonstrates a sharp reduction of 4, 817, 280 parameters of first hidden FC as oppose262

to 12, 845, 568 parameters in the original model in Figure 6. This data computed based on pruning263

shows potential for pruning the DCNN at a high rate in each hidden layer consists of convolution and264

dense/fully connected nodes. However, due to the output node fixation of DCNN, it is not possible to265

prune the last FC layer in the DCNN by design. This is why the Table 1 shows no change in the last FC266

later with 29 nodes, as those are the classes/labels for the dataset.267

4.2. Integration of Multi-Spatial Pyramid Pooling into the Pruned DCNN268

The model and the pruning strategy described in the section above had a fundamental limitation269

when it comes to the image input dimension. This results in a forcible data resizing and thus accuracy270

reduction as stated in Figure 3. He et. al. [4] proposed SPP in DCNN improves the accuracy and get271

rid of the input dimensions restriction. Now, some research [38,39] have suggested combining various272

spatial pooling combinations including the original research from He et. al. [?]. Now, adopting the273

DCNN to fit in any arbitrary image input dimensions, we proposed a 3 multi-scale based pooling that274

has three (1× 1),(2× 2) and (4× 4) multi-scale SPP. Table 2 shows the modified pruned DCNN in the275

Figure 7 with the proposed Multi-scale SPP fitted after the convolutions.276

As the last convolutional layer has 256 filters the SPP has 265 convolutional feature input. Then277

the data is filter through 3 separate (1× 1),(2× 2) and (4× 4) multi-scaled SPP merged together. This278

makes the total parameters of SPP layer (256× 1× 2× 4) = 5, 376 parameters. Now, the number of279

multi-layer SPP (1, 2, 4) has been decided by both trial and error and suggestion from other researches280

[38,39]. Although, increasing the number of pooling might further increase the accuracy, but it will281

add more computation overhead to the DCNN model. This proposed pruned DCNN has already been282

) and max-pooling
layers are forest green (

Version November 2, 2020 submitted to Appl. Sci. 9 of 22

2
2
4
x
2
2
4

2
2
4
x
2
2
4

2
2
4
x
2
2
4

1
1
2
x
1
1
2

1
1
2
x
1
1
2

1
1
2
x
1
1
2

1
1
2
x
1
1
2

1
1
2
x
1
1
2

5
6
x
5
6

5
6
x
5
6

5
6
x
5
6

5
6
x
5
6

5
6
x
5
6

2
8
x
2
8

2
8
x
2
8

2
8
x
2
8

2
8
x
2
8

2
8
x
2
8

1
4
x
1
4

1
4
x
1
4

1
4
x
1
4

1
4
x
1
4

1
4
x
1
4

7
x
7

32 32 32

64 64 64 64 64
128 128 128 128 128 256 256 256 256 256 256 256 256 256 256

12544 384 384 384 384

29 29

Figure 7. Deep convolutional network after pruning; The color-coded boxes represent the layers in the
model. Convolutional layers are blue (), batch normalization layers are lime () and max-pooling
layers are forest green (); these are followed by a flatten layer, shown in emerald green (), a fully
connected layer in violet () and the Softmax output in magenta (). The number of dimensions in
each layer is shown beside/below that layer.

strategy was implemented in the next 2 convolutional layers, which have 128 units/filters in Figure 6.249

The pruned network has 2 convolutional layers with 64 units/filters after the first 32 node/filter layer,250

as shown in Figure 7. Pruning of the next 2 convolutional layers with 256 units/filters and the last 4251

convolutional layers with 512 units/filters in Figure 6 followed, resulting in 2 convolutional layers252

with 128 units/filters and the last 4 convolutional layers with 128 units/filters, as shown in Figure253

7. The FC layers of the original model each had 512 nodes, so 25% pruning of both layers leaves 334254

nodes in each hidden FC layer, as displayed in Figure 7 Table 1 shows the exact number of parameters255

in each layer in the original and pruned network.256

The original proposed model in Figure 6 has a final trainable parameters, or the weight value257

holder of 22, 506, 781 compared to 7, 328, 285 parameters in Figure 7 as noted in the Table 1. The258

proposed 50% pruning of the convolutional nodes also results in half of the parameters in the pruned259

model. Batch Normalization parameters also cut in half as a result of the parameter reduction or260

pruning. The output of the convolutional layers is flattened and feed into the FC layers as a design of261

DCNN. Table 1 demonstrates a sharp reduction of 4, 817, 280 parameters of first hidden FC as oppose262

to 12, 845, 568 parameters in the original model in Figure 6. This data computed based on pruning263

shows potential for pruning the DCNN at a high rate in each hidden layer consists of convolution and264

dense/fully connected nodes. However, due to the output node fixation of DCNN, it is not possible to265

prune the last FC layer in the DCNN by design. This is why the Table 1 shows no change in the last FC266

later with 29 nodes, as those are the classes/labels for the dataset.267

4.2. Integration of Multi-Spatial Pyramid Pooling into the Pruned DCNN268

The model and the pruning strategy described in the section above had a fundamental limitation269

when it comes to the image input dimension. This results in a forcible data resizing and thus accuracy270

reduction as stated in Figure 3. He et. al. [4] proposed SPP in DCNN improves the accuracy and get271

rid of the input dimensions restriction. Now, some research [38,39] have suggested combining various272

spatial pooling combinations including the original research from He et. al. [?]. Now, adopting the273

DCNN to fit in any arbitrary image input dimensions, we proposed a 3 multi-scale based pooling that274

has three (1× 1),(2× 2) and (4× 4) multi-scale SPP. Table 2 shows the modified pruned DCNN in the275

Figure 7 with the proposed Multi-scale SPP fitted after the convolutions.276

As the last convolutional layer has 256 filters the SPP has 265 convolutional feature input. Then277

the data is filter through 3 separate (1× 1),(2× 2) and (4× 4) multi-scaled SPP merged together. This278

makes the total parameters of SPP layer (256× 1× 2× 4) = 5, 376 parameters. Now, the number of279

multi-layer SPP (1, 2, 4) has been decided by both trial and error and suggestion from other researches280

[38,39]. Although, increasing the number of pooling might further increase the accuracy, but it will281

add more computation overhead to the DCNN model. This proposed pruned DCNN has already been282

); these are followed by a flatten layer, shown in emerald green (

Version November 2, 2020 submitted to Appl. Sci. 9 of 22

2
2
4
x
2
2
4

2
2
4
x
2
2
4

2
2
4
x
2
2
4

1
1
2
x
1
1
2

1
1
2
x
1
1
2

1
1
2
x
1
1
2

1
1
2
x
1
1
2

1
1
2
x
1
1
2

5
6
x
5
6

5
6
x
5
6

5
6
x
5
6

5
6
x
5
6

5
6
x
5
6

2
8
x
2
8

2
8
x
2
8

2
8
x
2
8

2
8
x
2
8

2
8
x
2
8

1
4
x
1
4

1
4
x
1
4

1
4
x
1
4

1
4
x
1
4

1
4
x
1
4

7
x
7

32 32 32

64 64 64 64 64
128 128 128 128 128 256 256 256 256 256 256 256 256 256 256

12544 384 384 384 384

29 29

Figure 7. Deep convolutional network after pruning; The color-coded boxes represent the layers in the
model. Convolutional layers are blue (), batch normalization layers are lime () and max-pooling
layers are forest green (); these are followed by a flatten layer, shown in emerald green (), a fully
connected layer in violet () and the Softmax output in magenta (). The number of dimensions in
each layer is shown beside/below that layer.

strategy was implemented in the next 2 convolutional layers, which have 128 units/filters in Figure 6.249

The pruned network has 2 convolutional layers with 64 units/filters after the first 32 node/filter layer,250

as shown in Figure 7. Pruning of the next 2 convolutional layers with 256 units/filters and the last 4251

convolutional layers with 512 units/filters in Figure 6 followed, resulting in 2 convolutional layers252

with 128 units/filters and the last 4 convolutional layers with 128 units/filters, as shown in Figure253

7. The FC layers of the original model each had 512 nodes, so 25% pruning of both layers leaves 334254

nodes in each hidden FC layer, as displayed in Figure 7 Table 1 shows the exact number of parameters255

in each layer in the original and pruned network.256

The original proposed model in Figure 6 has a final trainable parameters, or the weight value257

holder of 22, 506, 781 compared to 7, 328, 285 parameters in Figure 7 as noted in the Table 1. The258

proposed 50% pruning of the convolutional nodes also results in half of the parameters in the pruned259

model. Batch Normalization parameters also cut in half as a result of the parameter reduction or260

pruning. The output of the convolutional layers is flattened and feed into the FC layers as a design of261

DCNN. Table 1 demonstrates a sharp reduction of 4, 817, 280 parameters of first hidden FC as oppose262

to 12, 845, 568 parameters in the original model in Figure 6. This data computed based on pruning263

shows potential for pruning the DCNN at a high rate in each hidden layer consists of convolution and264

dense/fully connected nodes. However, due to the output node fixation of DCNN, it is not possible to265

prune the last FC layer in the DCNN by design. This is why the Table 1 shows no change in the last FC266

later with 29 nodes, as those are the classes/labels for the dataset.267

4.2. Integration of Multi-Spatial Pyramid Pooling into the Pruned DCNN268

The model and the pruning strategy described in the section above had a fundamental limitation269

when it comes to the image input dimension. This results in a forcible data resizing and thus accuracy270

reduction as stated in Figure 3. He et. al. [4] proposed SPP in DCNN improves the accuracy and get271

rid of the input dimensions restriction. Now, some research [38,39] have suggested combining various272

spatial pooling combinations including the original research from He et. al. [?]. Now, adopting the273

DCNN to fit in any arbitrary image input dimensions, we proposed a 3 multi-scale based pooling that274

has three (1× 1),(2× 2) and (4× 4) multi-scale SPP. Table 2 shows the modified pruned DCNN in the275

Figure 7 with the proposed Multi-scale SPP fitted after the convolutions.276

As the last convolutional layer has 256 filters the SPP has 265 convolutional feature input. Then277

the data is filter through 3 separate (1× 1),(2× 2) and (4× 4) multi-scaled SPP merged together. This278

makes the total parameters of SPP layer (256× 1× 2× 4) = 5, 376 parameters. Now, the number of279

multi-layer SPP (1, 2, 4) has been decided by both trial and error and suggestion from other researches280

[38,39]. Although, increasing the number of pooling might further increase the accuracy, but it will281

add more computation overhead to the DCNN model. This proposed pruned DCNN has already been282

), a fully
connected layer in violet (

Version November 2, 2020 submitted to Appl. Sci. 9 of 22

2
2
4
x
2
2
4

2
2
4
x
2
2
4

2
2
4
x
2
2
4

1
1
2
x
1
1
2

1
1
2
x
1
1
2

1
1
2
x
1
1
2

1
1
2
x
1
1
2

1
1
2
x
1
1
2

5
6
x
5
6

5
6
x
5
6

5
6
x
5
6

5
6
x
5
6

5
6
x
5
6

2
8
x
2
8

2
8
x
2
8

2
8
x
2
8

2
8
x
2
8

2
8
x
2
8

1
4
x
1
4

1
4
x
1
4

1
4
x
1
4

1
4
x
1
4

1
4
x
1
4

7
x
7

32 32 32

64 64 64 64 64
128 128 128 128 128 256 256 256 256 256 256 256 256 256 256

12544 384 384 384 384

29 29

Figure 7. Deep convolutional network after pruning; The color-coded boxes represent the layers in the
model. Convolutional layers are blue (), batch normalization layers are lime () and max-pooling
layers are forest green (); these are followed by a flatten layer, shown in emerald green (), a fully
connected layer in violet () and the Softmax output in magenta (). The number of dimensions in
each layer is shown beside/below that layer.

strategy was implemented in the next 2 convolutional layers, which have 128 units/filters in Figure 6.249

The pruned network has 2 convolutional layers with 64 units/filters after the first 32 node/filter layer,250

as shown in Figure 7. Pruning of the next 2 convolutional layers with 256 units/filters and the last 4251

convolutional layers with 512 units/filters in Figure 6 followed, resulting in 2 convolutional layers252

with 128 units/filters and the last 4 convolutional layers with 128 units/filters, as shown in Figure253

7. The FC layers of the original model each had 512 nodes, so 25% pruning of both layers leaves 334254

nodes in each hidden FC layer, as displayed in Figure 7 Table 1 shows the exact number of parameters255

in each layer in the original and pruned network.256

The original proposed model in Figure 6 has a final trainable parameters, or the weight value257

holder of 22, 506, 781 compared to 7, 328, 285 parameters in Figure 7 as noted in the Table 1. The258

proposed 50% pruning of the convolutional nodes also results in half of the parameters in the pruned259

model. Batch Normalization parameters also cut in half as a result of the parameter reduction or260

pruning. The output of the convolutional layers is flattened and feed into the FC layers as a design of261

DCNN. Table 1 demonstrates a sharp reduction of 4, 817, 280 parameters of first hidden FC as oppose262

to 12, 845, 568 parameters in the original model in Figure 6. This data computed based on pruning263

shows potential for pruning the DCNN at a high rate in each hidden layer consists of convolution and264

dense/fully connected nodes. However, due to the output node fixation of DCNN, it is not possible to265

prune the last FC layer in the DCNN by design. This is why the Table 1 shows no change in the last FC266

later with 29 nodes, as those are the classes/labels for the dataset.267

4.2. Integration of Multi-Spatial Pyramid Pooling into the Pruned DCNN268

The model and the pruning strategy described in the section above had a fundamental limitation269

when it comes to the image input dimension. This results in a forcible data resizing and thus accuracy270

reduction as stated in Figure 3. He et. al. [4] proposed SPP in DCNN improves the accuracy and get271

rid of the input dimensions restriction. Now, some research [38,39] have suggested combining various272

spatial pooling combinations including the original research from He et. al. [?]. Now, adopting the273

DCNN to fit in any arbitrary image input dimensions, we proposed a 3 multi-scale based pooling that274

has three (1× 1),(2× 2) and (4× 4) multi-scale SPP. Table 2 shows the modified pruned DCNN in the275

Figure 7 with the proposed Multi-scale SPP fitted after the convolutions.276

As the last convolutional layer has 256 filters the SPP has 265 convolutional feature input. Then277

the data is filter through 3 separate (1× 1),(2× 2) and (4× 4) multi-scaled SPP merged together. This278

makes the total parameters of SPP layer (256× 1× 2× 4) = 5, 376 parameters. Now, the number of279

multi-layer SPP (1, 2, 4) has been decided by both trial and error and suggestion from other researches280

[38,39]. Although, increasing the number of pooling might further increase the accuracy, but it will281

add more computation overhead to the DCNN model. This proposed pruned DCNN has already been282

) and the Softmax output in magenta (

Version November 2, 2020 submitted to Appl. Sci. 9 of 22

2
2
4
x
2
2
4

2
2
4
x
2
2
4

2
2
4
x
2
2
4

1
1
2
x
1
1
2

1
1
2
x
1
1
2

1
1
2
x
1
1
2

1
1
2
x
1
1
2

1
1
2
x
1
1
2

5
6
x
5
6

5
6
x
5
6

5
6
x
5
6

5
6
x
5
6

5
6
x
5
6

2
8
x
2
8

2
8
x
2
8

2
8
x
2
8

2
8
x
2
8

2
8
x
2
8

1
4
x
1
4

1
4
x
1
4

1
4
x
1
4

1
4
x
1
4

1
4
x
1
4

7
x
7

32 32 32

64 64 64 64 64
128 128 128 128 128 256 256 256 256 256 256 256 256 256 256

12544 384 384 384 384

29 29

Figure 7. Deep convolutional network after pruning; The color-coded boxes represent the layers in the
model. Convolutional layers are blue (), batch normalization layers are lime () and max-pooling
layers are forest green (); these are followed by a flatten layer, shown in emerald green (), a fully
connected layer in violet () and the Softmax output in magenta (). The number of dimensions in
each layer is shown beside/below that layer.

strategy was implemented in the next 2 convolutional layers, which have 128 units/filters in Figure 6.249

The pruned network has 2 convolutional layers with 64 units/filters after the first 32 node/filter layer,250

as shown in Figure 7. Pruning of the next 2 convolutional layers with 256 units/filters and the last 4251

convolutional layers with 512 units/filters in Figure 6 followed, resulting in 2 convolutional layers252

with 128 units/filters and the last 4 convolutional layers with 128 units/filters, as shown in Figure253

7. The FC layers of the original model each had 512 nodes, so 25% pruning of both layers leaves 334254

nodes in each hidden FC layer, as displayed in Figure 7 Table 1 shows the exact number of parameters255

in each layer in the original and pruned network.256

The original proposed model in Figure 6 has a final trainable parameters, or the weight value257

holder of 22, 506, 781 compared to 7, 328, 285 parameters in Figure 7 as noted in the Table 1. The258

proposed 50% pruning of the convolutional nodes also results in half of the parameters in the pruned259

model. Batch Normalization parameters also cut in half as a result of the parameter reduction or260

pruning. The output of the convolutional layers is flattened and feed into the FC layers as a design of261

DCNN. Table 1 demonstrates a sharp reduction of 4, 817, 280 parameters of first hidden FC as oppose262

to 12, 845, 568 parameters in the original model in Figure 6. This data computed based on pruning263

shows potential for pruning the DCNN at a high rate in each hidden layer consists of convolution and264

dense/fully connected nodes. However, due to the output node fixation of DCNN, it is not possible to265

prune the last FC layer in the DCNN by design. This is why the Table 1 shows no change in the last FC266

later with 29 nodes, as those are the classes/labels for the dataset.267

4.2. Integration of Multi-Spatial Pyramid Pooling into the Pruned DCNN268

The model and the pruning strategy described in the section above had a fundamental limitation269

when it comes to the image input dimension. This results in a forcible data resizing and thus accuracy270

reduction as stated in Figure 3. He et. al. [4] proposed SPP in DCNN improves the accuracy and get271

rid of the input dimensions restriction. Now, some research [38,39] have suggested combining various272

spatial pooling combinations including the original research from He et. al. [?]. Now, adopting the273

DCNN to fit in any arbitrary image input dimensions, we proposed a 3 multi-scale based pooling that274

has three (1× 1),(2× 2) and (4× 4) multi-scale SPP. Table 2 shows the modified pruned DCNN in the275

Figure 7 with the proposed Multi-scale SPP fitted after the convolutions.276

As the last convolutional layer has 256 filters the SPP has 265 convolutional feature input. Then277

the data is filter through 3 separate (1× 1),(2× 2) and (4× 4) multi-scaled SPP merged together. This278

makes the total parameters of SPP layer (256× 1× 2× 4) = 5, 376 parameters. Now, the number of279

multi-layer SPP (1, 2, 4) has been decided by both trial and error and suggestion from other researches280

[38,39]. Although, increasing the number of pooling might further increase the accuracy, but it will281

add more computation overhead to the DCNN model. This proposed pruned DCNN has already been282

). The number of dimensions in
each layer is shown beside/below that layer.

4.2. Integration of Multi-Spatial Pyramid Pooling into the Pruned DCNN

The model and the pruning strategy described in the section above had a fundamental limitation
when it comes to the image input dimension. This results in a forcible data resizing and, thus, accuracy
reduction, as stated in Figure 3. He et al. [4] proposed SPP in DCNN improves the accuracy and get
rid of the input dimensions restriction. Now, some research [38,39] have suggested combining various
spatial pooling combinations including the original research from He et al. [4]. Now, adopting the
DCNN to fit in any arbitrary image input dimensions, we proposed a 3 multi-scale based pooling that
has three (1× 1), (2× 2) and (4× 4) multi-scale SPP. Table 2 shows the modified pruned DCNN in
the Figure 7 with the proposed Multi-scale SPP fitted after the convolutions.

Table 2. Proposed spatial pyramid pooling in the deep convolutional network. Input (X, X) denotes
any arbitrary input image dimensions.

Layers Output Shape Parameters

Input X, X, 3 0
(Conv2D) 32 X, X, 32 896

Batch Normalization X, X, 32 128
Max Pooling (2× 2) X, X, 32 0

(Conv2D) 64 X, X,6 4 18,496
Batch Normalization X, X, 64 256

(Conv2D) 64 X, X, 64 36,928
Batch Normalization X, X, 64 256
Max Pooling (2× 2) X, X, 64 0

(Conv2D) 128 X, X, 128 73,856
Batch Normalization X, X, 128 512

(Conv2D) 128 X, X, 128 147,584
Batch Normalization X, X, 128 512
Max Pooling (2× 2) X, X, 128 0

(Conv2D) 256 X, X, 256 295,168
Batch Normalization X, X, 256 1024

(Conv2D) 256 X, X, 256 590,080
Batch Normalization X, X, 256 1024
Max Pooling (2× 2) X, X, 256 0

(Conv2D) 256 X, X, 256 590,080
Batch Normalization X, X, 256 1024

(Conv2D) 256 X, X, 256 590,080
Batch Normalization X, X, 256 1024
Max Pooling (2× 2) X, X, 256 0

Spatial Pyramid Pooling 5376 0
(Fully Connected) 384 384 2,064,384
Batch Normalization 384 1536

(Fully Connected) 384 384 147,840
Batch Normalization 384 1536
(Fully Connected) 29 29 11,165

Output Softmax 29 0

Total Parameters 4,575,389

Appl. Sci. 2020, 10, 7898 11 of 22

As the last convolutional layer has 256 filters the SPP has 265 convolutional feature input.
Subsequently, the data are filtered through 3 separate (1× 1), (2× 2), and (4× 4) multi-scaled SPP
merged together. This makes the total parameters of SPP layer (256× 1× 2× 4) = 5376 parameters.
Now, the number of multi-layer SPP (1, 2, 4) has been decided by both trial and error and suggestion
from other researches [38,39]. Although increasing the number of pooling might further increase the
accuracy, but it will add more computation overhead to the DCNN model. This proposed pruned
DCNN has already been optimized with less than half of the original weight parameter with SPP based
pooling. Introducing multi-scale SPP gets rid of this dimension restriction and improves the accuracy.

4.3. Practical Classification Algorithm for Real-Time Gesture-To-Word Decoding

The proposed SPP based Compact DCNN will give proper results for hand gestures in real-time.
However, to the best of our knowledge, a practical video to gesture decoding algorithm with SPP based
DCNN has not yet been properly researched. In this subsection, we have devised a novel practical
approach to decode the hand gesture to the consecutive algorithm in real-time. Algorithm 1 has shown
the approach for decoding gesture(s) video in real-time.

Algorithm 1 Hand Gesture Decoding Algorithm
Input: Hand gesture video or image frames set
Output: Decoded alphabets instruction set

BEGIN
Step 1: Process the video for the given frames per second (fps)
Step 2: Transform the images as 2D array (M, N) where M is fps

and the N will be the instruction/word length (images)
Step 3: Apply the Proposed Compact Spatial Pyramid Pooling Deep

Convolutional Neural Network to transform each images
Step 4: Column wise Majority Selection
Step 5: Return array of n-sized output instruction
END

The ASL sign language has 29 distinct classes denoting all of the English alphabet A to Z,
along with space, del, and nothing characters gesture for additional support. The gestures set can be
mathematically computed as a permutation problem with Equation (5),

P(n, r) =
n!

(n− r)!
(5)

Here, n is the total class of 29 gestures and r is the selected sets. Giving the input into Equation (5)
gives a total of 570,024 usable gestures for various instructions. Another important step of the gesture
is the frame per second (fps) processing. The modern video camera has the standard of 30 fps in
real life. Accordingly, the input video containing a 4 instruction set will have 120 frames to decode.
It transforms the images into a 2D array of (M, N) dimensions and then applies the proposed compact
SPP-DCNN to transform each image into a corresponding gesture alphabet label. At this part of the
algorithm, the majority member selection was done based on the median operator applied in the
predicted array, as shown in Equation (6)

Majority(x1, x2, . . . , xn) =

⌊
1
2
+

(∑n
i=1 xi)− 1/2

n

⌋
(6)

Here, x1, x2, . . . , xn denotes the decoded label in each form of the array. Now, as a simple example
of 5 fps gesture of 〈A, B, C, D〉 can produce [0, 0, 0, 1] for the first row of data with the SPP-DCNN
with 95% accuracy. However, the proposed majority member selection will change the result into the
correct gesture based on the majority member in that row. This practical approach makes this proposed
algorithm extremely effective for practical gesture decoding. A detailed accuracy analysis from this
proposed algorithm has been discussed in Section 7 for more clarification.

Appl. Sci. 2020, 10, 7898 12 of 22

5. Dataset Description

DCNN is practically useless without training and validating with proper data. In our research,
we aim to develop practical hand gesture decoding in real-time. A proper dataset with enough label
would ensure the validity of the proposed method. American Sign Language (ASL) is a generalized
gesture set that has been curated and standardised by National Institute of Deafness and Other
Communication Disorders (NIDCD). The precise origins of ASL are not clear, although some claim
that it originated first from combining of local hand gestures and French sign language (LSF, or Langue
des Signes Française) more than two centuries ago. There are a lot of datasets that curate a different
form of ASL [26], especially the only one focused on the numerical hand gestures [11,40]. So, to be
more robust with more practical application, this research focused on the data that were developed in
Kaggle ASL challenge [28].

The data gathering for the training comprises 87,000 images which are (200× 200) dimensions.
There are 29 categories, including 26 for the characters A–Z and 3 for SPACE, DELETE, and EMPTY.
These 3 sections are a huge benefit in implementations and decoding gestures in real-time. The test
data collection includes only 29 images categories, to allow for real-world reference images to be
included. Figure 8 displays the whole data class examples. Although, Islam et al. [26] proposed and
collected dataset containing 26 classes of same ASL. However, the prepossessing from RGB to grayscale
makes it not usable for our learning purpose. Kaggle ASL challenge dataset was more suitable as it
has the dataset with no prepossessing done to it prior to classification. It is worth mentioning that
although this dataset titled as the ASL hand gesture dataset, for ASL finger spelling same principle
applies for labeling. This makes them virtually the same task with different terminologies.

Figure 8. English ASL alphabet based hand gesture dataset. Here, the first 26 (Twenty six) gesture
represents from A to Z; 3 extra gesture classes for SPACE, DELETE, and EMPTY.

Appl. Sci. 2020, 10, 7898 13 of 22

Table 3 shows the training testing split of the dataset for proper validation. The splitting was done
randomly to ensure bias-free training and data augmentation, random rotation and shifting were used
during training for ensuring reduced over-fitting.

Table 3. Training/testing separation statistics.

Total Data Training Data Testing Data

87,000 69,600 17,400

6. Evaluation Metrics

It is important to establish proper evaluation metrics for analyzing the performance of any
machine learning algorithm. Although, most of the DCNN related research solely focuses on accuracy
for validation. However, precision, recall, and f 1-score can also help to interpret the result more
accurately. Precision P, Recall R, and f 1 Score can be calculated, as follows,

P = TP/(TP + FP) (7)

R = TP/(TP + FN) (8)

f 1 = 2PR/(P + R) (9)

Here TP is the number of true positives, i.e., the number of correctly classified faulty instances.
FP is the number of false positives, i.e., the number of normal instances that were wrongfully classified
as faulty ones. FN stands for false negatives, which is the number of faulty instances classified as
normal ones. the properly labeled cases were denoted as True Negative TN. Additionally, the accuracy
(AC) is also computed, as follows,

AC = (TP + TN)/(TP + TN + FP + FN) (10)

Additionally, R2 (coefficient of determination) regression score function has been computed for
5 consecutive testing of all 3 proposed model for evaluation. Assuming the original label as y and
predicted labels as ŷ, the R2 will be

R2(y, ŷ) = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2 (11)

Here, ȳ = 1
n ∑n

i=1 yi and ∑n
i=1(yi − ŷi)

2 = ∑n
i=1 ε2

i . It reflects the proportion of variance that the
independent variables in the model have defined. It gives an indicator of fitness effectiveness and,
thus, a measure of how well the model is able to assess unknown samples. For the newly proposed
member majority function, the mean majority is calculated, as follows,

Mjmean(a1, a2, . . . , an) = 100 ∗ 1
n

n

∑
i=1

ai ∗ k (12)

ai ∗ k is the corrected majority derived from the dataset. Basically, it is a mean average of the
majority count in the array [a1, a2, . . . , an]. The detailed analysis of the result evaluated based on this
metric is discussed in Section 7.

7. Results

The implementation and both pieces of training with validation and testing of the proposed
DCNN network were exclusively done by using the Python programming language. Python allows
for creation of a virtual environment and a cloning mechanism in that environment with relative ease.
Thus, developing the proposed DCNN algorithm with SPP in a Python-based application allows for
rapid prototyping and instant deployment in a variety of practical scenarios. Experiments of proposed

Appl. Sci. 2020, 10, 7898 14 of 22

DCNN node pruning and SPP integration were constructed and modified by Python-based Keras
library, which has a TensorFlow library as a backend system [41]. A high-performance server computer
with Intel Corporation Xeon E5/Core i7, 32 GB of RAM, and Nvidia GPU RTX 2080 with Ubuntu
16.04.6 LTS Operating System (OS) was used for training and application deployment. The DCNN
training parameters are 100 epochs each, with a 40 batch size, the learning rate was 0.001 for faster
convergence. Convolution and Dense or FC layers used in these proposed DCNNs were both built with
Relu activation [37], along with Adadelta Optimization and Categorical Crossentropy for loss/error
function. The main addition in this ensemble is the introduction of Batch normalization [42] to reduce
over-fitting and the convergence of data during training. The original VGG-11 was not utilized with
batch normalization. The original and both pruned and SPP with pruned DCNN was trained and
tested using a single Nvidia RTX 2080 GPU instance. However, in modern application deployment,
it is necessary to use parallel GPU training and deployment. Moreover, sometimes, more than two
or three instances of GPUs are available to use in real-time application. In order to deploy with GPU
based parallelism, the final proposed SPP based DCNN model has trained with 2 Nvidia RTX 2080
GPU instances.

In Figures 9 and 10, loss chart displays the gradual error reduction during training and
validation/testing. Even though the loss chart is comparatively smooth, the accuracy varies drastically
during training and validation. This is due to the data augmentation and highly randomised testing in
each iteration. This forces the model to learn without over-fitting. They also display the training and
validation of the Original Proposed DCNN and retraining after the pruning was applied. The original
and the pruned training were both done for 100 iterations of Epoch. Now, both Figures 9 and 10 have
shown instability during the training and this phenomenon can be described by the random data
augmentation that is done to reduce over-fitting. However, model weights were saved at the end of
every epoch to select the best weigh from the training. The DCNN had the highest accuracy of 90.0%
and the pruned DCNN has 91.0% accuracy. This finding is initially surprising, as all the previous
literature suggested that retaining or slight decrease in accuracy usually occurs after the pruning.
However, this occurrence can also be explained by learning data volume and DCNN size. The first
proposed modified VGG-11, like DCNN, had 11 total hidden layers and most of the last convolution
layer along with the first hidden FC layer of the neural network has a 12,845,568 and 2,359,808 weight
parameters. On the other hand, the total training instances were 69,600 images. A simple representative
convolution of six parameters each can be “memorized” or saved into the weight parameter and, thus,
an over-fitting occurs. Now, this result actually proves the hypothesis at the beginning of this research.
The hand gesture classifier has less data than the Image-net Challenge dataset and does not need a
bigger network, like the proposed original, to achieve higher accuracy. Additionally, this theory can be
proved more in the analysis of the weight and the l1-normalization ranking of the nodes and filters in
all hidden layers.

Figure 9. Training/testing loss and accuracy of the proposed deep convolutional neural network.

Appl. Sci. 2020, 10, 7898 15 of 22

Figure 10. Training/testing loss and accuracy of the proposed pruned deep convolutional neural network.

Table 4 has the experimental results to prove the assumptions above. The whole worst scored
20 filters and node weights after can been seen in Table 4. The first hidden layers have different nodes.
such as middle nodes as less weight, but the last convolutional layer almost exclusively has low scoring
weight outermost filters when compared to the projection of previous convoluted output.

Table 4. Node pruning details in each layer. The worst scored nodes can be used in future references as
a reproducibility.

Layers
Numbers of

Original
Node/Filters

Numbers of
Pruned

Node/Filters

Percentage
of Pruning Worst Scored 20 Filters/Nodes

(Conv2D) 64 64 32 50 29, 7, 38, 31, 23, 54, 27, 40, 6, 42, 45, 61, 44, 25, 20, 15, 49, 4, 50, 1
(Conv2D) 128 128 64 50 70, 39, 1, 64, 60, 110, 116, 119, 50, 84, 18, 107, 42, 89, 48, 15, 85, 7, 12, 58
(Conv2D) 128 128 64 50 16, 49, 101, 100, 36, 88, 123, 91, 48, 97, 95, 78, 23, 55, 93, 68, 74, 108, 86, 82
(Conv2D) 256 256 128 50 250, 82, 230, 186, 121, 62, 228, 35, 199, 64, 17, 133, 60, 143, 58, 57, 139, 31, 255, 135
(Conv2D) 256 256 128 50 100, 88, 196, 245, 49, 118, 251, 170, 42, 138, 107, 92, 160, 238, 143, 199, 253, 191, 233, 36
(Conv2D) 512 512 256 50 246, 273, 125, 166, 396, 287, 9, 233, 59, 111, 483, 22, 70, 423, 27, 370, 469, 232, 7, 372
(Conv2D) 512 512 256 50 58, 119, 497, 221, 482, 487, 253, 251, 267, 160, 296, 204, 23, 179, 214, 278, 114, 48, 76, 414
(Conv2D) 512 512 256 50 369, 454, 213, 317, 385, 395, 134, 147, 160, 346, 251, 58, 124, 360, 45, 205, 352, 445, 33, 498
(Conv2D) 512 512 256 50 29, 79, 90, 313, 96, 27, 246, 436, 373, 298, 255, 148, 229, 262, 360, 9, 264, 150, 131, 172

(Fully Connected) 512 512 384 25 251, 309, 244, 375, 218, 478, 153, 189, 146, 128, 357, 104, 325, 463, 430, 394, 253, 27, 441, 203
(Fully Connected) 512 512 384 25 454, 98, 250, 410, 438, 124, 332, 175, 434, 297, 360, 5, 505, 436, 510, 69, 287, 32, 166, 504

Figure 11 is the visual representation pruning justification in the proposed method. Original proposed
DCNN’s first six convolutional layers filters are shown based on the l1-normalized values. Half of these
nodes have the normalized weight value that falls less than the median. Accordingly, pruning half of the
nodes in reality did not affect the total accuracy of the proposed DCNN. Moreover, retraining the pruned
model forces the weights to generalized of features detection more than “memorization” of the dataset.
As a result, the pruned DCNN gained more accuracy than the original model. This practical pruning also
proves that the bigger DCNN is often not useful for smaller features/labels dataset classification.

Table 5 shows the testing accuracy, precision, recall, and f 1 score for the all 3 proposed model.
Although the overall accuracy of the original DCNN had 90% over all classes, the individual precision
was skewed to some classes and less in some classes. This results in bias classification accuracy in
real life. However, pruning and retraining of the model made the DCNN more generalized, and the
class-wise precision and recall improved significantly. The overall accuracy also increases due to the
newly pruned DCNN. After pruning and retraining for 100 epochs, the general accuracy improved into
92% in the pruned DCNN. Additionally, the introduction of SPP in the pruned DCNN further improves
the accuracy of up to 95%. This is around 2% improvement of the previous model, as suggested by
He et al. [4]. Moreover, SPP makes the final model dimension invariant. As a result, the input image
can be fed directly without any pre-processing.

Appl. Sci. 2020, 10, 7898 16 of 22

Table 5. Result Analysis of all the Proposed Models

Original Model Pruned Model Convolutional Spatial Pyramid Pooling Model

Class Precision Recall f1-Score Support Precision Recall f1-Score Support Precision Recall f1-Score Support

0 0.95 0.97 0.96 146 0.96 0.95 0.96 137 0.9 1 0.95 140
1 0.93 1 0.96 137 0.97 0.94 0.96 125 0.97 1 0.99 151
2 0.97 1 0.98 139 0.99 0.98 0.99 131 1 0.98 0.99 150
3 1 0.89 0.94 142 1 0.77 0.87 154 1 1 1 119
4 0.83 0.98 0.9 140 0.77 0.99 0.87 133 0.91 0.89 0.9 141
5 1 0.95 0.98 133 0.97 1 0.99 132 1 0.97 0.98 146
6 0.97 0.89 0.92 132 1 0.89 0.94 152 1 0.93 0.97 136
7 0.95 0.94 0.95 143 0.95 0.99 0.97 141 0.94 0.98 0.96 151
8 1 0.77 0.87 138 1 0.67 0.8 170 0.98 0.91 0.94 132
9 0.97 0.94 0.96 136 0.83 0.96 0.89 142 0.96 0.96 0.96 146

10 0.99 1 1 141 0.95 0.94 0.94 127 1 1 1 127
11 0.99 0.99 0.99 141 1 0.98 0.99 134 1 1 1 143
12 0.82 0.76 0.79 148 0.87 0.84 0.85 154 0.73 0.98 0.83 113
13 0.56 0.55 0.56 139 0.8 0.68 0.73 142 0.98 0.6 0.75 134
14 0.8 0.85 0.82 141 0.73 0.87 0.79 112 0.96 0.89 0.93 133
15 0.94 1 0.97 114 0.95 1 0.97 133 0.98 1 0.99 131
16 0.93 0.99 0.96 139 0.95 0.95 0.95 146 0.99 0.98 0.99 135
17 0.99 0.87 0.93 124 0.94 0.96 0.95 138 0.98 0.97 0.98 143
18 0.69 0.64 0.66 135 0.66 0.97 0.78 132 0.68 0.94 0.79 144
19 0.95 0.75 0.84 129 0.97 0.81 0.89 143 0.89 0.96 0.92 140
20 0.78 0.99 0.88 143 0.88 0.91 0.89 144 1 0.97 0.98 150
21 0.88 0.99 0.93 137 0.92 0.98 0.95 126 0.98 0.99 0.99 128
22 0.84 0.95 0.89 140 0.83 0.99 0.91 130 0.95 1 0.97 124
23 0.7 0.57 0.63 128 0.99 0.6 0.75 142 0.97 0.44 0.6 133
24 0.87 0.91 0.89 137 0.92 0.92 0.92 130 0.96 0.9 0.93 144
25 0.88 0.97 0.92 144 0.94 0.97 0.95 118 0.85 1 0.92 144
26 0.96 0.91 0.93 148 0.95 0.95 0.95 153 0.99 0.99 0.99 140
27 1 0.99 0.99 144 0.9 0.98 0.93 131 0.92 1 0.96 142
28 0.99 1 1 142 0.97 1 0.98 148 1 1 1 140

accuracy - - 0.9 4000 - - 0.91 4000 - - 0.94 4000

macro avg. 0.9 0.9 0.9 4000 0.92 0.91 0.91 4000 0.95 0.94 0.94 4000

weighted avg. 0.9 0.9 0.9 4000 0.92 0.91 0.91 4000 0.95 0.94 0.94 4000

The pruning of the DCNN not only improved the accuracy, it also compacted the DCNN with
less weight parameter. Table 6 shows the final pruning statistics of the proposed DCNN. The original
DCNN had a total of 22,498,973 weight parameters and the pruned DCNN had the final 7,323,869
weight parameters. This pruning makes the network more than 3× smaller than the original, with a
67.45% compression rate.

Table 6. Deep Convolutional Network Pruning Statistics.

Original Parameters After Pruned Pruned Parameters

22,498,973 7,323,869 15,175,104
Total Compression (%) 67.45%

Figure 12 displays that some common mislabeling occurs in all proposed DCNN models.
In hindsight, this might contradict the high accuracy of pruned model and SPP DCNN, but further
examination of the input images shows that the original input image is often too visually obscure to
separate distinguishable features with convolution. Furthermore, some of the images are more visually
similar to predicted class than ground truth.

Table 7 shows the advanced performance of the all 3 proposed DCNN. Each model’s performance
is based on a 4000 random sample input and initialized 5 times for randomness in each epoch. Accuracy
and R2 score for all 3 model both prove the viability of using this proposed DCNN in real-life scenarios.
A comparison among 3 models based on the R2-score makes the SPP-based DCNN the best model to
use in real-life applications. This ensures the prediction quality of the proposed SPP-DCNN suitable
for a faster reliable hand gesture classifier. The proposed gesture decoder algorithm needs faster
prediction output to apply in real-time in the gesture decoder systems. Table 8 shows a comparative
run-time of the proposed algorithms in real-time based on the generated data from Algorithm 1.
The setup was followed, as described at the beginning of this Section 7. Now, the proposed 3 models
perform relatively well. However, it is noticeable the run-time for a video sequence containing 4
gestures have 19.30± 1.32 s average. On the other hand, the pruned version was sped up significantly

Appl. Sci. 2020, 10, 7898 17 of 22

having 9.34± 1.37 s average. This is predictable, as the pruned model has less weight parameters
to calculate in real-time. Moreover, in real-life, some of the server-based application has the option
for multi-GPU based parallelization. The proposed SPP-based DCNN was also implemented as
a multi-GPU based in this experiment and had an astonishing 0.013± 0.019 s average run when
compared to the other models.

Figure 11. Filters of the first six layers of the proposed convolutional neural network, ranked by weight
l1 normalization.

(A)

(B)

(C)

Figure 12. Examples of mis-labeling by all three proposed models; (A) original model; (B) pruned
model; and, (C) spatial pyramid pooling model

Appl. Sci. 2020, 10, 7898 18 of 22

Table 7. Advanced performance of the proposed deep convolutional neural network models. Each model’s
performance is based on 4000 random sample input; initialized 5 times for randomness in each epoch.

Original Model Pruned Model Spatial Pyramid Pooling Model

Accuracy R2-Score Accuracy R2-Score Accuracy R2-Score

90.9761 0.9050 91.7250 0.9262 93.1249 0.9415
90.9762 0.9022 91.3250 0.9206 94.3750 0.9599
90.9761 0.9125 91.2750 0.9392 93.8000 0.9384
90.9761 0.9227 92.6429 0.9206 93.3571 0.9487
90.5814 0.9148 89.1129 0.9241 93.1500 0.9552

Table 8. Deep convolutional network classification in real-time (mean ± standard deviation of several
runs, 10 loops each); containing four sequence characters/finger-spelling.

Model Name Run Time (s) Comment

Modified VGG-like Proposed Model 19.30 ± 1.32 -
Proposed Pruned Model 9.34 ± 1.37 -

Spatial Pyramid Pooling Model 4.10 ± 8.97 -
Spatial Pyramid Pooling Model 0.013 ± 0.019 (Multi-GPU)

Table 9 shows the results of multi-GPU based parallelization in greater detail. Here, the 6 gesture
sequence video or 6 consecutive alphabets finger-spelling takes an average of 267± 2.13 ms to decode
per frames. Based on these results, the proposed algorithm is fast enough to decode gestures in the
real world.

Table 9. Compact deep spatial pyramid pooling convolutional network classification in real-time
(mean ± standard deviation of seven runs, 10 loops each) (with multi-GPU functionality; 2 GTX-2080).

Total Class in Sequence Run Time (ms)

3 136 ± 1.98
4 173 ± 3.36
5 202 ± 8.97
6 267 ± 2.13

Table 10 shows the results of gesture decoding by the proposed algorithm while using a video
with various frame rates. The mean majority accuracy was counted based on Equation (12) from
Section 6. This provides an idea of the overall ability of the proposed decoding algorithm. Even at
60 fps, the decoder gives 99% accuracy. The decrease in accuracy with increased fps can be explained
by the transitional frames between gestures. However, as this error is minimal, the algorithm can
cope with this minuscule source of error. Based on this experiment, 30 fps is the recommended speed
for fast real-world decoding for practical applications. Our proposed decoder or ASL finger-spelling
system usually 100% accurate in various finger-spelling or gesture decoding. However, the mean
majority in rows shows that the gradual rise of error can be cumulative and might make wrong
classification in future. However, more training with diverse dataset and applying proposed algorithm
in recommended 30 fps will held up the reported accuracy of any ASL-finger-spelling gesture decoding
in real time.

Appl. Sci. 2020, 10, 7898 19 of 22

Table 10. Proposed sequencer performance analysis.

Image
Samples
in Each

Class (fps)

Original
Generated
Sequence

Pruned
Classifier
Predicted
Sequence

Mean
Majority in

Rows
(Percent)

Spatial Pyramid
Classifier
Predicted
Sequence

Mean
Majority in Rows

(Percent)

5
[‘H’ ‘K’ ‘J’ ‘M’] [‘H’ ‘K’ ‘J’ ‘M’] 99.20 [‘H’ ‘K’ ‘J’ ‘M’] 100
[‘Y’ ‘G’ ‘Z’ ‘X’] [‘Y’ ‘G’ ‘Z’ ‘X’] 99.20 [‘Y’ ‘G’ ‘Z’ ‘X’] 100
[‘T’ ‘C’ ‘W’ ‘V’] [‘T’ ‘C’ ‘W’ ‘V’] 99.20 [‘T’ ‘C’ ‘W’ ‘V’] 100

10
[‘H’ ‘K’ ‘J’ ‘M’] [‘H’ ‘K’ ‘J’ ‘M’] 99.23 [‘H’ ‘K’ ‘J’ ‘M’] 100
[‘Y’ ‘G’ ‘Z’ ‘X’] [‘Y’ ‘G’ ‘Z’ ‘X’] 98.2 [‘Y’ ‘G’ ‘Z’ ‘X’] 100
[‘T’ ‘C’ ‘W’ ‘V’] [‘T’ ‘C’ ‘W’ ‘V’] 98.2 [‘T’ ‘C’ ‘W’ ‘V’] 99.97

30
[‘H’ ‘K’ ‘J’ ‘M’] [‘H’ ‘K’ ‘J’ ‘M’] 99.23 [‘H’ ‘K’ ‘J’ ‘M’] 99.88
[‘Y’ ‘G’ ‘Z’ ‘X’] [‘Y’ ‘G’ ‘Z’ ‘X’] 98.99 [‘Y’ ‘G’ ‘Z’ ‘X’] 99.3
[‘T’ ‘C’ ‘W’ ‘V’] [‘T’ ‘C’ ‘W’ ‘V’] 98.99 [‘T’ ‘C’ ‘W’ ‘V’] 99.33

60
[‘H’ ‘K’ ‘J’ ‘M’] [‘H’ ‘K’ ‘J’ ‘M’] 98.99 [‘H’ ‘K’ ‘J’ ‘M’] 99.33
[‘Y’ ‘G’ ‘Z’ ‘X’] [‘Y’ ‘G’ ‘Z’ ‘X’] 98.24 [‘Y’ ‘G’ ‘Z’ ‘X’] 99.67
[‘T’ ‘C’ ‘W’ ‘V’] [‘T’ ‘C’ ‘W’ ‘V’] 98.56 [‘T’ ‘C’ ‘W’ ‘V’] 99.33

8. Comparison with Other Methodologies

Modern deep learning-based hand gesture classification research has been solely focused
on accuracy-based classification and regression. Depending on the image dataset, the size and
computational complexity of such classification algorithms are increasing rapidly. In this study,
we have introduced a new real-time approach to classical gesture decoding. Islam et al. [26] approached
DCNN-based classification while using the same dataset as used in this research and reported 94%
accuracy over all input data. However, that method involved a background subtraction process along
with data image resizing and gray-scale conversion. Moreover, integrating a multi-support vector
machine (MSVM) into the DCNN might further improve classification accuracy, but ultimately the
algorithm lacks practicality for real-time applications. Tushar et al. [40] approached gesture recognition
in a similar fashion as the present research, but the image resizing and limitation of gesture classes to
numerical hand gestures limits its utility in real-time applications. Our previous approach to node
pruning with a DCNN yielded a similar increase in prediction response time, but the image resizing
restriction was still present [43].

The proposed compact SPP-based DCNN model eliminates the image resizing restriction.
We utilized a large ASL dataset to create a new gesture or ASL finger-spelling decoding algorithm
that works in real time. Although the proposed pruned model with the SPP layer achieved the same
accuracy as the latest relevant research using this dataset, the combination with the newly proposed
video-based decoding upgraded the result to a maximum of 99% accuracy in real time with very low
processing time. All of the previous algorithms focused on accuracy improvement. In this research,
we have combined the improved accuracy with a novel algorithm to achieve a new benchmark system
that provides a practical technique for the development of future applications that are based on
gesture recognition.

9. Conclusions

The rise of edge-based remote applications has created a demand for high-performance low-cost
computing-based deep learning convolutional neural networks (DCNNs). The main idea of the DCNN
is not new. However, optimization and expanding the applications of neural networks are now
very demanding tasks due to the rise of edge computing and real-time response-based application
deployment. Decoding hand gestures in real time requires a fast DCNN capable of interpreting
variable-sized image inputs owing to the variation between cameras in modern systems. In this
research, we proposed a new hand gesture classification system that can classify various hand gestures

Appl. Sci. 2020, 10, 7898 20 of 22

with 94% accuracy. Moreover, we integrated a spatial pyramid pooling (SPP) layer into the proposed
DCNN and used node pruning to make it less computationally resource intensive and image input
dimension-invariant. Consequently, the proposed SPP-DCNN is the most reliable method of real-time
gesture decoding. Moreover, we have introduced a novel algorithm for video-based gesture decoding
that can process a video with any arbitrary input dimensions and variable frames per second (fps),
which will decode an input gesture video into consecutive gesture classes. This proposed new and
faster system can also be used as an advance ASL finger-spelling recogniser. The use of these compact
SPP-DCNNs in various remote smart locations with minimal computing resources will ensure high
performance with lower computing costs and better connectivity.

Author Contributions: Conceptualization, A.A. and J.K.; methodology, A.A.; software, A.A.; validation, J.P.,
A.A. and J.K.; formal analysis, A.A.; investigation, H.L.; resources, K.K.; data curation, A.A.; writing—original
draft preparation, K.K.; writing—review and editing, J.P. and H.-Y.K.; visualization, K.K.; supervision, H.L.;
project administration, J.K.; funding acquisition, J.K. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the ITRC
(Information Technology Research Center) support program (IITP-2020-2016-0-00314) supervised by the IITP
(Institute for Information & communications Technology Planning & Evaluation) and also are results of a
study on the supported by Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea
Government(MOTIE) (P0011931, The Establishment Project of Industry-University Fusion District). Finally,
this project was also supported by the National Research Foundation of Korea (NRF) funded by the MSIT
(NRF-2018R1A4A1025559).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Corballis, M.C. From mouth to hand: Gesture, speech, and the evolution of right-handedness. Behav. Brain
Sci. 2003, 26, 199–208. [CrossRef] [PubMed]

2. Liu, L.; Özsu, M.T. Encyclopedia of Database Systems; Springer: New York, NY, USA, 2009; Volume 6.
3. LeCun, Y.; Denker, J.S.; Solla, S.A. Optimal Brain Damage. In Advances in Neural Information Processing

Systems 8: Proceedings of the 1995 Conference; Morgan Kaufmann: San Francisco, CA, USA, 1990; pp. 598–605.
4. He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual

recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [CrossRef] [PubMed]
5. Vogler, C.; Metaxas, D. Adapting hidden Markov models for ASL recognition by using three-dimensional

computer vision methods. In Proceedings of the 1997 IEEE International Conference on Systems, Man,
and Cybernetics, Computational Cybernetics and Simulation, Orlando, FL, USA, 12–15 October 1997;
Volume 1, pp. 156–161.

6. Vogler, C.; Metaxas, D. ASL recognition based on a coupling between HMMs and 3D motion analysis.
In Proceedings of the Sixth International Conference on Computer Vision (IEEE Cat. No. 98CH36271),
Bombay, India, 7 January 1998; pp. 363–369.

7. Mitra, S.; Acharya, T. Gesture recognition: A survey. IEEE Trans. Syst. Man. Cybern. Part C 2007, 37, 311–324.
[CrossRef]

8. Hoshino, K.; Kawabuchi, I. A humanoid robotic hand performing the sign language motions. In Proceedings
of the MHS2003 International Symposium on Micromechatronics and Human Science (IEEE Cat. No.
03TH8717), Nagoya, Japan, 19–22 October 2003; pp. 89–94.

9. Karami, A.; Zanj, B.; Sarkaleh, A.K. Persian sign language (PSL) recognition using wavelet transform and
neural networks. Expert Syst. Appl. 2011, 38, 2661–2667. [CrossRef]

10. Weerasekera, C.S.; Jaward, M.H.; Kamrani, N. Robust asl fingerspelling recognition using local binary
patterns and geometric features. In Proceedings of the 2013 International Conference on Digital Image
Computing: Techniques and Applications (DICTA), Hobart, TAS, Australia, 26–28 November 2013; pp. 1–8.

11. Bhuiyan, R.A.; Tushar, A.K.; Ashiquzzaman, A.; Shin, J.; Islam, M.R. Reduction of gesture feature dimension
for improving the hand gesture recognition performance of numerical sign language. In Proceedings of the
2017 20th International Conference of Computer and Information Technology (ICCIT), Dhaka, Bangladesh,
22–24 December 2017; pp. 1–6.

http://dx.doi.org/10.1017/S0140525X03000062
http://www.ncbi.nlm.nih.gov/pubmed/14621511
http://dx.doi.org/10.1109/TPAMI.2015.2389824
http://www.ncbi.nlm.nih.gov/pubmed/26353135
http://dx.doi.org/10.1109/TSMCC.2007.893280
http://dx.doi.org/10.1016/j.eswa.2010.08.056

Appl. Sci. 2020, 10, 7898 21 of 22

12. Oz, C.; Leu, M.C. American Sign Language word recognition with a sensory glove using artificial neural
networks. Eng. Appl. Artif. Intell. 2011, 24, 1204–1213. [CrossRef]

13. Vogler, C.; Metaxas, D. A framework for recognizing the simultaneous aspects of american sign language.
Comput. Vis. Image Underst. 2001, 81, 358–384. [CrossRef]

14. Ranga, V.; Yadav, N.; Garg, P. American sign language fingerspelling using hybrid discrete wavelet
transform-gabor filter and convolutional neural network. J. Eng. Sci. Technol. 2018, 13, 2655–2669.

15. Jung, R.; Kornhuber, H.; Da Fonseca, J.S. Multisensory Convergence on Cortical Neurons Neuronal Effects
of Visual, Acoustic and Vestibular Stimuli in the Superior Convolutions of the Cat’s Cortex. Prog. Brain Res.
1963, 1, 207–240.

16. LeCun, Y.; Bengio, Y. Convolutional networks for images, speech, and time series. Handb. Brain Theory
Neural Netw. 1995, 3361, 1995.

17. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet Classification with Deep Convolutional Neural
Networks. Advances in Neural Information Processing Systems. 2012; pp. 1097–1105. Available online:
http://www.cs.toronto.edu/~hinton/absps/imagenet.pdf (accessed on 19 August 2020).

18. Kılıboz, N.Ç.; Güdükbay, U. A hand gesture recognition technique for human–computer interaction. J. Vis.
Commun. Image Represent. 2015, 28, 97–104. [CrossRef]

19. Kim, H.J.; Lee, J.S.; Park, J.H. Dynamic hand gesture recognition using a CNN model with 3D receptive fields.
In Proceedings of the 2008 international conference on neural networks and signal processing, Nanjing,
China, 7–11 June 2008; pp. 14–19.

20. Lin, H.I.; Hsu, M.H.; Chen, W.K. Human hand gesture recognition using a convolution neural network.
In Proceedings of the 2014 IEEE International Conference on Automation Science and Engineering (CASE),
Taipei, Taiwan, 18–22 August 2014; pp. 1038–1043.

21. Kim, S.Y.; Han, H.G.; Kim, J.W.; Lee, S.; Kim, T.W. A hand gesture recognition sensor using reflected
impulses. IEEE Sens. J. 2017, 17, 2975–2976. [CrossRef]

22. Zafrulla, Z.; Brashear, H.; Starner, T.; Hamilton, H.; Presti, P. American sign language recognition with the
kinect. In Proceedings of the 13th International Conference on Multimodal Interfaces, Alicante, Spain, 14–18
November 2011; pp. 279–286.

23. Ren, Z.; Yuan, J.; Meng, J.; Zhang, Z. Robust part-based hand gesture recognition using kinect sensor.
IEEE Trans. Multimed. 2013, 15, 1110–1120. [CrossRef]

24. Bantupalli, K.; Xie, Y. American sign language recognition using deep learning and computer vision.
In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA,
10–13 December 2018; pp. 4896–4899.

25. Tushar, A.K.; Ashiquzzaman, A.; Afrin, A.; Islam, M. A Novel Transfer Learning Approach upon Hindi,
Arabic, and Bangla Numerals using Convolutional Neural Networks. arXiv 2017, arXiv:1707.08385.

26. Islam, M.R.; Mitu, U.K.; Bhuiyan, R.A.; Shin, J. Hand gesture feature extraction using deep convolutional
neural network for recognizing American sign language. In Proceedings of the 2018 4th International
Conference on Frontiers of Signal Processing (ICFSP), Poitiers, France, 24–27 September 2018; pp. 115–119.

27. Garcia, B.; Viesca, S.A. Real-time American sign language recognition with convolutional neural networks.
Convolutional Neural Netw. Vis. Recognit. 2016, 2, 225–232.

28. Akash. ASL Alphabet Dataset. 2018. Available online: https://www.kaggle.com/grassknoted/asl-alphabet
(accessed on 19 August 2020).

29. Goodfellow, I.; Bengio, Y.; Courville, A.; Bengio, Y. Deep Learning; MIT Press: Cambridge, UK, 2016; Volume 1.
30. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
31. LeCun, Y. The MNIST Database of Handwritten Digits. 1998. Available online: http://yann.lecun.com/

exdb/mnist/ (accessed on 19 August 2020).
32. Krizhevsky, A.; Hinton, G. Convolutional deep belief networks on cifar-10. 2010, unpublished manuscript.
33. Sivic, J.; Zisserman, A. Video Google: A Text Retrieval Approach to Object Matching in Videos.

In Proceedings of the IEEE International Conference on Computer Vision (ICCV 2003), Nice, France,
13–16 October 2003; p. 1470.

34. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv
2014, arXiv:1409.1556.

http://dx.doi.org/10.1016/j.engappai.2011.06.015
http://dx.doi.org/10.1006/cviu.2000.0895
http://www.cs.toronto.edu/~hinton/absps/imagenet.pdf
http://dx.doi.org/10.1016/j.jvcir.2015.01.015
http://dx.doi.org/10.1109/JSEN.2017.2679220
http://dx.doi.org/10.1109/TMM.2013.2246148
https://www.kaggle.com/grassknoted/asl-alphabet
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Appl. Sci. 2020, 10, 7898 22 of 22

35. Understanding the Backward Pass through Batch Normalization Layer. Available online: https://kratzert.
github.io/2016/02/12/understanding-the-gradient-flow-through-the-batch-normalization-layer.html
(accessed on 6 September 2017).

36. Hu, H.; Peng, R.; Tai, Y.; Tang, C.; Trimming, N. A Data-Driven Neuron Pruning Approach towards Efficient
Deep Architectures. arXiv 2016, arXiv:1607.03250.

37. Clevert, D.A.; Unterthiner, T.; Hochreiter, S. Fast and accurate deep network learning by exponential linear
units (elus). arXiv 2015, arXiv:1511.07289.

38. Yue, J.; Mao, S.; Li, M. A deep learning framework for hyperspectral image classification using spatial
pyramid pooling. Remote Sens. Lett. 2016, 7, 875–884. [CrossRef]

39. Qu, T.; Zhang, Q.; Sun, S. Vehicle detection from high-resolution aerial images using spatial pyramid
pooling-based deep convolutional neural networks. Multimed. Tools Appl. 2017, 76, 21651–21663. [CrossRef]

40. Tushar, A.K.; Ashiquzzaman, A.; Islam, M.R. Faster convergence and reduction of overfitting in numerical
hand sign recognition using DCNN. In Proceedings of the 2017 IEEE Region 10 Humanitarian Technology
Conference (R10-HTC), Dhaka, Bangladesh, 21–23 December 2017; pp. 638–641.

41. Chollet, F. Keras. 2015. Available online: https://github.com/fchollet/keras (accessed on 19 August 2020).
42. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate

shift. In Proceedings of the International Conference on Machine Learning, Lille, France, 7–9 July 2015;
pp. 448–456.

43. Ashiquzzaman, A.; Oh, S.; Lee, D.; Lee, J.; Kim, J. Compact Deeplearning Convolutional Neural Network
based Hand Gesture Classifier Application for Smart Mobile Edge Computing. In Proceedings of the
2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC),
Fukuoka, Japan, 19–21 Febuary 2020; pp. 119–123.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://kratzert.github.io/2016/02/12/understanding-the-gradient-flow-through-the-batch-normalization-layer.html
https://kratzert.github.io/2016/02/12/understanding-the-gradient-flow-through-the-batch-normalization-layer.html
http://dx.doi.org/10.1080/2150704X.2016.1193793
http://dx.doi.org/10.1007/s11042-016-4043-5
https://github.com/fchollet/keras
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Basic Theory for Optimizing DCNN
	Deep Convolutional Neural Network and Node Pruning
	Image Resizing Restriction in DCNN
	Spatial Pyramid Pooling Layer (SPP)

	The Proposed Methodology
	Practical DCNN Architecture Selection and Pruning Strategy for Optimal Node Selection
	Integration of Multi-Spatial Pyramid Pooling into the Pruned DCNN
	Practical Classification Algorithm for Real-Time Gesture-To-Word Decoding

	Dataset Description
	Evaluation Metrics
	Results
	Comparison with Other Methodologies
	Conclusions
	References

