
applied
sciences

Article

Event-Based Path-Planning and Path-Following
in Unknown Environments for Underactuated
Autonomous Underwater Vehicles

Sergey Ulyanov * , Igor Bychkov and Nikolay Maksimkin

Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences,
134, Lermontova str., Irkutsk 664033, Russia; bychkov@icc.ru (I.B.); mnn@icc.ru (N.M.)
* Correspondence: sau@icc.ru

Received: 14 October 2020; Accepted: 4 November 2020; Published: 7 November 2020
����������
�������

Abstract: The paper addresses path planning and path-following problems in an unknown complex
environment for an underactuated autonomous underwater vehicle (AUV). The AUV is required to
follow a given reference path represented as a sequence of smoothly joined lines and arcs, bypassing
obstacles encountered on the path. A two-level control system is proposed with an upper level
for event-driven path planning and a lower level for path-following. A discrete event system is
designed to identify situations that require planning a new path. An improved waypoint guidance
algorithm and a Dubins curves based algorithm are proposed to build paths that allow the AUV
to avoid collision with obstacles and to return to the reference path respectively. Both algorithms
generate paths that meet the minimum turning radius constraint. A robust parameter-varying
controller is designed using sublinear vector Lyapunov functions to solve the path-following problem.
The performance of the developed event-based control system is demonstrated in three different
simulation scenarios: with a sharp-edged obstacle, with a U-shaped obstacle, and with densely
scattered obstacles. The proposed scheme does not require significant computing resources and
allows for easy implementation on board.

Keywords: autonomous underwater vehicle; real-time path-planning; path-following; discrete-event
system; Dubins path; forward-looking sonar

1. Introduction

The rapid development of unmanned technologies in recent decades has resulted in significant
growth in commercial, environmental, and military underwater applications [1]. Most underwater
operations, especially those that involve risk to humans, are supported by autonomous underwater
vehicles (AUV). Enhancing the autonomy and reliability of AUVs and expanding their range of
applications is not possible without efficiently solving two underlying problems: path planning
and path-following.

Path planning is a challenging problem has attracted the considerable attention of specialists
in robotics. Insight into state of the art in path-planning methods for AUVs can be obtained from
recent survey papers [1–3]. Path planning can be divided [4,5] into static and dynamic planning. Static
planning is usually done offline and ensures the construction of an optimal global path in a known
environment (see, for example, [6,7]). On the contrary, dynamic planning is aimed at building a safe
path online based on local information about the environment, which is usually considered to be
unknown or partially known.

The emphasis in the contemporary studies on dynamic (local) path planning is made on
developing effective algorithms with low computational costs that are applicable for real-time

Appl. Sci. 2020, 10, 7894; doi:10.3390/app10217894 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-8295-3352
https://orcid.org/0000-0002-1765-0769
http://dx.doi.org/10.3390/app10217894
http://www.mdpi.com/journal/applsci
http://www.mdpi.com/2076-3417/10/21/7894?type=check_update&version=3

Appl. Sci. 2020, 10, 7894 2 of 23

implementation. Real-time path planning can be achieved while using artificial potential
field method [8], rapidly-exploring random trees [9,10], Voronoi diagrams [11], bioinspired
meta-heuristics [12], method based on interfered fluid dynamical system [13], and waypoint
guidance method [4,14,15]. Additionally, AI-based optimization algorithms are actively applied
to path-planning of AUVs in an unknown environment. Among them are particle swarm optimization
(PSO) algorithm [5,16,17], ant colony algorithm [18], and differential evolution algorithm [19].
Many approaches are combined in order to provide the best solution. For example, in [4],
PSO determines the best direction to avoid obstacles, and the waypoint guidance algorithm generates
a sequence of points that provide a way around the obstacle in the selected direction.

Almost all of the mentioned methods indirectly or directly use iterative procedures in order to
obtain a locally optimal path. However, when dealing with an unknown environment, extensive
optimization requiring significant computing resources is meaningless in many cases, since the
resulting local path may not be optimal in the global sense. It should be noted that optimization-based
methods do not always guarantee obtaining a near-optimal solution in a reasonable time. Thus,
approaches that generate feasible paths in a short time are still in demand.

It is known that AUVs operate in fairly harsh underwater environments and they are designed to
be underactuated to reduce their costs. All of this imposes additional requirements to path planning
algorithms; the planner must produce paths that meet the kinematic and dynamic constraints of the
vehicle. In order not to take the AUV model explicitly into account when planning the path, kinematic
constraints are often set by the minimum turning radius [4,5,14,16]. In this case, the obtained path,
which usually consists of straight lines and circular arcs, is only first-order differentiable or smooth.
The degree of smoothness of the path can be increased with the help of splines [12], but their use
makes the planning process more complicated due to the need to meet the geometrical constraints of
obstacles. Another common approach for satisfying kinematic constraints consists in building a path
of minimum curvature via solving a nonlinear programming problem [20].

The path planning problem can be considered in three different contexts, depending on the global
goal pursued by the AUV. The variety of possible goals includes achieving a target point, navigating
through a sequence of waypoints, and following a predefined reference path, in particular a path
that connects waypoints by line and arc segments. Most of the studies mentioned above focus on
path-planning within the first setting. Despite the great applied value, the path planning problem
in which the AUV has to pass through a bunch of waypoints in a given order is practically not
investigated. In this context, we can only refer to paper [21]. The main difficulties in handling multiple
waypoints arise when some of them are located on obstacles. In this case, an additional mechanism for
managing the activity of waypoints are required. The need for the AUV to follow the desired path
makes the problem more complicated, since it is necessary to provide the return of the AUV to the
reference path after completing obstacle avoidance manoeuvres.

Once a path is generated, one needs to make the AUV follow the path accurately, when considiering
its dynamic model, control constraints, and kinematics. A wide diversity of methods have been
developed in order to solve the path-following problem, among which are backstepping method [22–24],
observer-based method [25], nonlinear PID control [26], adaptive control [27], model predictive
control [21,28], sliding mode control [5,29], and fuzzy control [30]. In the context of the simultaneous
solution of path-planning and path-following problems, we note the studies presented in [5,20,21,31].
The majority of these studies are aimed at combating uncertainties, disturbances, and control constraints.
However, in addition to taking into account these negative factors, a path-following controller should
allow for its simple implementation in the on-board control system, which is usually designed as a
digital one, and for the fast calculation of control signals. Tuning control parameters in path-following
controllers to ensure desired or optimal tracking performance is an important step in designing
path-following controllers.

The contributions of this paper are as follows. We propose a new formulation of the path
planning problem, in which the AUV’s primary goal is to sail along a given path passing through

Appl. Sci. 2020, 10, 7894 3 of 23

a sequence of waypoints. To the best of the authors’ knowledge, such a path planning formulation
has not been considered before. To solve the problem, we develop an event-based framework that
includes two levels: the upper one for real-time path planning and the lower one for path-following.
A discrete-event system, which is a basis of the upper level, is designed in order to detect situations
that require building a new path and changing the active waypoint. Two path-planning algorithms
are proposed. The first one, based on refined data from forward-looking sonar (FLS), plans a path
that ensures safe obstacle avoidance, and the second one generates a path that returns the AUV to the
reference path. Paths that are built by these algorithms meet the minimum turning radius constraint.
A robust path-following controller is designed using the gain scheduling control methodology and
sublinear vector Lyapunov functions. When synthesizing the controller gains, in contrast to most
known studies, we aim to minimize the AUV’s positioning errors on the path and take into account the
control saturation, measurement errors, and variability of the path curvature. The designed controller
can be easily implemented in digital control platforms, which are traditional for AUVs.

The remainder of this paper is organized, as follows. The problem statement is presented in
Section 2. The main results of the work are presented in Section 3. In particular, Section 3.1 presents
the architecture of the overall control system. The path-following controller design is discussed
in Section 3.2. Section 3.3 presents an event-based approach for path-planning in an unknown
environment, including path planning algorithms and a discrete event system in order to determine
the moments to run them. In Section 4, the simulation results are provided in order to illustrate the
performance of the proposed approach. Finally, Section 5 discusses the obtained results.

2. Problem Formulation

2.1. AUV Model

A wide variety of underwater applications require the AUV to operate at a constant depth.
Following [23], we consider an underactuated AUV with two identical back thrusters mounted
symmetrically with respect to its longitudinal axis in order to steer the AUV in the horizontal plane.
Using the common and differential modes, the thrusters can generate a force F along the AUV’s
longitudinal axis and a torque G about its yaw axis, respectively.

According to [23], the dynamics of such an AUV in 3DOF can be described while using
a global coordinate frame {U} and a body-fixed coordinate frame {B} (see Figure 1) by three
kinematic equations

ẋ = u cos(ψB)− v sin(ψB),
ẏ = u sin(ψB) + v cos(ψB),
ψ̇B = r,

(1)

and three dynamic equations (for surge, sway and yaw)
F = muu̇ + du,
0 = mvv̇ + murur + dv,
G = mr ṙ + dr,

(2)

where (x, y) are the global coordinates of the AUV, ψB denotes the yaw angle, u and v are, respectively,
the surge and sway speeds expressed in {B}, r is the yaw rate;

mu = m− Xu̇, du = −Xuuu2 − Xvvv2,

mv = m−Yv̇, dv = −Yvuv−Yv|v|v|v|,

mr = Iz − Nṙ, dr = −Nvuv− Nv|v|v|v| − Nrur,

mur = m−Yr,

Appl. Sci. 2020, 10, 7894 4 of 23

m is the nominal mass of the AUV, Iz is its moment of inertia around Z-axis (as adopted in marine
navigation, Z-axis or the yaw axis of the AUV is directed towards the bottom), X{·}, Y{·}, N{·}
are the classical hydrodynamic derivatives that define added mass forces and moments as well as
hydrodynamic damping. The interested reader is referred to [32,33] for complete details.

path

{𝑈}

𝑥

𝛽

𝑦

{𝐵}

{𝐹}

𝑣

𝑢

𝑣𝑡

𝑋

𝜓𝐵

𝜓𝑊

𝑌 𝜓𝐵0

𝑢0

𝑠𝑒

𝑦𝑒

Figure 1. Reference frames.

We use the following assumptions and physical constraints on the dynamics of the AUV to solve
the problem under study.

1. The model considered in the paper corresponds to the INFANTE AUV [33], which is a large-sized
vehicle with a length of 4.22 m and a mass of 2234.5 kg.

2. The motion in roll, pitch, and heave is ignored in the model.
3. No waves, currents, or other disturbances are taken into account.
4. The AUV is fully submerged in water and away from the surface and seabed, which allows us to

consider the hydrodynamic derivatives constant.
5. The back thrusters can generate force and torque constrained by Fmax = 500 N and Gmax =

300 N ·m, respectively.
6. The desired surge speed of the AUV is constant: u = 1 m/s.

Assuming that u is always nonzero, we define side-slip angle β = arctan(v/u) and a reference
frame {W}, which is obtained by rotating {B} around the yaw axis through angle β. Subsequently,
the kinematic Equation (1) can be rewritten as

ẋ = vt cos(ψW),
ẏ = vt sin(ψW),
ψ̇W = r + β̇,

(3)

where ψW = ψB + β, vt = (u2 + v2)1/2 is the absolute value of the total velocity vector [u v]T .
Straightforward calculations give the equation for vt, as

v̇t =
F − du

mu
cos β− murur + dv

mv
sin β. (4)

2.2. Relative Dynamics

In order to solve the path-following problem, we use the virtual target-based method [23]. In this
method, the virtual target (VT) as a point moves along a given path, and the AUV must pursue it,
trying to match its position with the position of the VT.

Appl. Sci. 2020, 10, 7894 5 of 23

Denote the course angle of the VT by ψB0, its forward and angular speeds by u0 and r0, respectively.
Define the coordinates of the AUV in a Serret–Frenet reference frame {F} that is associated with the
VT (see Figure 1), as [

se

ye

]
= R

[
x− x0

y− y0

]
, R =

[
cos ψB0 sin ψB0

− sin ψB0 cos ψB0

]
, (5)

(x0, y0) are the coordinates of the VT in the reference frame {B}. As shown in [23], the error dynamics
of the AUV in {F} can be described by

ṡe = −u0 + r0ye + vt cos ψ,
ẏe = −r0se + vt sin ψ,
ψ̇ = r + β̇− r0,

(6)

where ψ = ψW − ψB0.

2.3. Sonar Model

We assume that the AUV is equipped with a multi-beam forward looking sonar (FLS) installed
onboard the AUV in the XOY plane in order to detect obstacles in the heading direction. The data
produced by the FLS can be presented as a set of pairs (αi, ρi), where αi is the signed angle counted
from the AUV’s heading direction to the beam direction, ρi is the distance to an obstacle in the beam
direction, i = 1, Nb, Nb is the number of beams. Here and further, a signed angle is assumed to be
positive if it is counted clockwise (when viewed from above), and negative in the other case. If no
obstacles are detected in the direction i or ρi is greater than the detection range ρmax then ρi = ∞.
For certainty, we take αi ≤ 0 for the left beams (beams that are on the left from the AUV’s heading
direction) and αi > 0 for the right beams. For further purposes, define the following subsets of beams:
IL = {i : αi ≤ 0}, IR = {i : αi > 0}, IA = {i : |αi| ≤ αa}, αa > 0. They indicate the presence of
obstacles on the left, right, and ahead of the AUV. Based on the FLS data, one can form a situational
(local) model of underwater environment as a sequence of 2D points Q = (Q1, Q2, . . . , QNb).

2.4. Path Representation

Throughout the paper, a path P is represented as a sequence of line and arc segments as

〈Pj−1, Pj, Rj〉, j = 1, Np,

where Pj, Pj+1 are the start and end points of the segment, Rj is the radius of the segment connecting
these points (for line segments Rj = ∞), and Np is the number of segments. We assume that Rj < 0
corresponds to the left turn and Rj > 0 to the right one. It is natural to require that every two adjacent
segments of a path are mutually agreed to be smooth. Moreover, all paths, it does not matter whether
they are predefined or constructed using path-planning algorithms, should satisfy the kinematic
constraints that are given by the minimum turning radius Rmin, Rj > Rmin.

2.5. Problem Formulation

The problem that is addressed in the paper consists in designing a control scheme that allows
for the AUV governed by Equations (1) and (2) to follow a given reference path Pre f , bypassing
encountered obstacles detected by FLS.

The designed system must meet the following requirements.

1. The path-following controller (control laws for F and G) should be designed in such a way that
the virtual target tracking errors satisfy

lim
t→∞
|se(t)| ≤ s∞

e , lim
t→∞
|ye(t)| ≤ y∞

e , lim
t→∞
|ψ(t)| ≤ ψ∞, lim

t→∞
|vt(t)− u0(t)| ≤ v∞

t ,

Appl. Sci. 2020, 10, 7894 6 of 23

where s∞
e , y∞

e , ψ∞, and v∞
t are positive constants that characterize the tracking accuracy.

2. The paths generated by path-planning algorithms for detouring obstacles and returning to the
reference path should be at least first-order differentiable (C1 continuous), lie no closer than safe
distance Ds from obstacles, and satisfy kinematic constraints that are given by minimum turning
radius Rmin.

3. Whenever possible, the AUV must follow the reference path Pre f , which means that after leaving
Pre f to detour an obstacle or a group of obstacles the AUV must return, if possible, to Pre f at the
point closest to the leaving point.

4. The system must be efficient for various environments, regardless of the number and location
of obstacles.

Note that most path planning studies focus on generating a safe path that leads the AUV to a
static target point. In contrast, we consider a setting where the AUV should, as far as possible, follow a
given reference path that passes through a sequence of waypoints. This requirement entails the need to
change the active segment of the reference path carefully. We assume that the reference path, which is
constructed by a global planner [6,7] or received from the operator, does not change during the mission.
Focusing on the path planning problem, we believe, for simplicity, that the desired speed u0 of the
AUV while travelling along the path is constant and chosen in such a way that the AUV can follow
it accurately.

3. Two-Level Control System

3.1. Control System Architecture

A two-level control system (see Figure 2) is developed in order to provide the AUV with both
the path-planning and path-following capabilities. The path-following controller at the lower level is
designed to drive the AUV along the path that is generated by the top level. In order to be closer to
practice, the controller is implemented as a digital one with a sample time h.

DES
Event

Detector

AUV
Path-Following

Controller

events

control

FLS data
AUV state

TOP LEVEL

LOWER LEVEL

Operator

path

Top-Level
Controller

Path-Planning
Algorithms

ZOHActuatorSensors

DES
state

Reference
path

AUV state
h

Figure 2. Control system architecture.

The main component of the top level is a discrete-event system (DES). We consider a class of
logical discrete-event systems that can be modelled by finite state machines. Based on the detected
events, the DES changes its state, thus starting a sequence of actions performed by the top-level
controller to build a new path. Therefore, the main goal of the DES is to identify situations that
require updating the current path. For each monitored event, we assign a time interval at which
the event-triggering condition is checked. In order to reduce the load on the on-board computer,

Appl. Sci. 2020, 10, 7894 7 of 23

this interval for most events is assigned to be much larger than h. For simplicity of implementation,
we will assume that this interval is the same for all events and equals he.

In general, the path-planning process includes the following steps:

1. detect events by processing data from FLS and other sensors;
2. change the DES state; and,
3. perform a suitable sequence of actions to rebuild the current path or change the active segment of

the reference path.

Path-planning algorithms proposed in the paper can generate two types of paths: to avoid
obstacles and return to the reference path.

3.2. Path-Following Controller

The path-following control laws for tracking the VT’s motion is designed, as follows (cf. [34]):

F (t) = Fc(tk) +Fs(tk), G(t) = Gc(tk) + Gs(tk), t ∈ Tk = [tk, tk+1), k = 1, 2, . . .
Fc(tk) = du(tk) + (muru(tk)r̂(tk) + dv(tk)) tan β(tk)

mu
mv

, Gc(tk) = dr(tk) + mr(ˆ̇r0(tk)− β̈(tk)),
Fs(tk) = sat(k1(tk)se(tk) + k2(tk)4vt(tk),F s),

Gs = sat(k3(tk)ye(tk) + k4(tk)ψ(tk) + k5(tk)4r̂(tk),Gs).

(7)

where Fc, Gc are the feedforward control terms aimed to cancel disturbances and to track the VT’s
heading direction; Fs, Gs are the feedback control terms that were calculated on the basis of discrete
measurements of variables se, ye, ψ, 4vt = vt − u0 and 4r̂ = r + β̇ − r̂0 to stabilize the AUV’s
position along the path, F s, Gs are the control resources in force and torque aimed at stabilization;
and, sat(σ, σ̄) = sign(σ)min(|σ|, σ̄) is the saturation function. The acceleration β̈i is evaluated using
the direct measurement of u, v and their derivatives [23].

In order to reduce the negative effect of discontinuity of r0 on the performance of the closed-loop
system, we use discrete observers for variables r0 and ṙ0, defined as{

r̂0(tk) = r̂0(tk−1) + ˆ̇r0(tk−1)h,
ˆ̇r0(tk) = −k0sat(r̃0(tk), r̄0), r̃0(tk) = (r̂0(tk)− r0(tk))/h.

(8)

The parameter-varying feedback controllers are built using the gain-scheduling methodology [35].
The feedback gains are scheduled as functions of the VT’s angular speed r0, as

k j(tk) = k j(r̂0(tk)) = ki
j, r̂0(tk) ∈ R0i = [ri−1

0 , ri
0), i = 1, nr, j = 1, 5,

where R0i are operation regions that form an operation envelope, nr is the number of regions. As the
speed u0 is assumed to be constant and there is a constraint Rmin on the turning radius, we have
|r0(t)| ≤ u0/Rmin; therefore, we can take r0

0 = −u0/Rmin and rnr
0 = u0/Rmin when obtaining operation

regions R0i.
In order to synthesize feedback gains for each operation region R0i, we transform the closed-loop

system given by (4) and (6)–(8) to a sampled-data representation with uncertainties and then apply
control design algorithms that are based on the sublinear vector Lyapunov functions [36,37] to
determine feedback gains. The synthesis objective is to minimize the weighted sum of estimates
of steady-state tracking errors s∞

e , y∞
e , ψ∞ and v∞

t . When designing gains, we took measurement errors,
control saturation, and the size of operation regions R0i into account. The design steps are described in
detail in [34], where a cooperative path-following controller for multiple AUV is synthesized. Section 4
provides feedback gains determined for the path-following controller considered in the paper.

Appl. Sci. 2020, 10, 7894 8 of 23

3.3. Event-Based Path-Planning

3.3.1. Discrete-Event System

A discrete-event system (DES) is designed in this section in order to identify situations when a
new path needs to be built. Before describing the designed DES, we will introduce some definitions
and notations.

For each obstacle point Qi ∈ Q, i = 1, Nb, define the maximum turning radius Ri
max, which allows

for the AUV to bypass the point Qi at a safe distance Ds (see Figure 3a). It can be calculated (cf. [14]) as

Ri
max = ρ

cos αi
sin 2βi

− Ds, βi = arctan
(

Ds

ρi
sec αi + tan αi

)
.

Note that, when evaluating the proximity of the AUV to obstacles, the maximum radius
Ri

max is preferable to the distance ρi, since using Ri
max ensures safe bypassing of an obstacle point,

when considering the turning radius constraint Rmin.
Define Id(Θ) = {i ∈ Id : Θ}, d ∈ {L, R, A}, Θ is a logical condition that narrows the set Id.

For example, set IA(ρi < ρa) = {i ∈ IA : ρi < ρa} contains all i ∈ IA for which ρi < ρa. Define also

iL
r = arg min

i∈IL

Ri
max, iR

r = arg min
i∈IR

Ri
max, iL

ρ = arg min
i∈IL

ρi, iR
ρ = arg min

i∈IR

ρi.

Denote the current position of the AUV by PV , its orientation vector by eV , the angle measured
from the AUV forward direction to the location of waypoint j (the waypoint bearing angle) by γj,
the angle between the forward direction and the direction of the reference path at waypoint j by φj,
and the distance to the reference path in the travel direction by ρRP. When leaving the reference path to
avoid an obstacle, the AUV saves the leaving time tL and its orientation vector eL, and then monitors
the change in angle ξ measured from vector eV to vector eL. Denote, by tmp (tpm), the time when angle
ξ changes its sign from minus to plus (plus to minus). If no change occurs, then the corresponding
time is assumed to be equal to tL. The last point processed by the path-planning algorithm described
in Section 3.3.2, we will call the key point (KP). Denote, by αK, the bearing angle to the KP. Let jr be
the active segment (or the active waypoint) of the reference path. The most relevant notations are
explained in Figure 3a,b.

𝐷𝑠

𝑅max
𝑖

𝜌𝑖
𝛼𝑖

𝛽𝑖 𝑄𝑖

(a) The maximum turning radius Ri
max.

𝑗

𝑗+1

𝑃𝐿

𝑃𝑉

𝑒𝑉

𝑒𝐿

𝛾𝑗

𝜙𝑗
𝛼𝐾

KP

𝜉

(b) Other notations.

Figure 3. Introduced notations.

Appl. Sci. 2020, 10, 7894 9 of 23

We employ a class of discrete-event systems modeled by a finite automaton (FA) [38]. A FA is
represented by the tuple

G =< X, Σ, f , x0, Xm >,

where X is the finite set of states, Σ is the finite set of events, f : X× Σ→ X is the transition function,
x0 is the initial state, and Xm is the set of marked states.

For the designed DES, set X consists of states that are given in Table 1, x0 = mS, Xm = {mMC}.
For the sake of simplification, we assume that the events of the set Σ consist of atomic events that
are presented in Table 2. In this table, in addition to the previously introduced entries, we use the
following abbreviations: WP for the waypoint and RP for the reference path. A composite event
(E1, . . . , Ene) ∈ Σ is triggered when all of its atomic events Ei, i = 1, ne is triggered simultaneously.
Table 3 summarizes the transition rules implementing the function f .

Table 1. States of the discrete-event system (DES).

Name Description

mS Starting the mission
mPF Following the reference path

mDOL Detouring the selected obstacle from its left side
mDOR Detouring the selected obstacle from its right side
mNRF Navigation to the reference path
mSOL Searching for an obstacle on the left
mSOR Searching for an obstacle on the right
mMC Mission completed

Table 2. Events of the DES.

Name Triggering Condition Description

eOAVC IA(ρi < ρvc) 6= ∅ An obstacle ahead is very close
eOAN IA(ρi < ρn) 6= ∅ An obstacle ahead is near

eNOLN IL(ρi < ρ f) = ∅ There are no obstacles nearby on the left
eNORN IR(ρi < ρ f) = ∅ There are no obstacles nearby on the right
eOLVC IL(Ri

max < Rmin) 6= ∅ An obstacle on the left is very close
eOLN IL(Ri

max < Rmin +4R) 6= ∅ An obstacle on the left is near
eOLF IL(Ri

max < Rmin +4R) = ∅ There are no obstacles on the left that are nearby

eOLKPN IL(Ri
max < Rmin +4R &

αi ≤ αK) = ∅
An obstacle to the left of the KP direction is near

eORVC IR(Ri
max < Rmin) 6= ∅ An obstacle on the right is very close

eOLN IR(Ri
max < Rmin +4R) 6= ∅ An obstacle on the right is near

eORF IR(Ri
max < Rmin +4R) = ∅ There are no obstacles on the right that are nearby

eORKPN IR(Ri
max < Rmin +4R &

αi > αK) = ∅
An obstacle to the right of the KP direction is near

eWPB |γjr | > π/2 The current WP of the RP is located behind the AUV
eWPL γjr ≤ 0 The current WP is located to the left of the AUV
eWPR γjr > 0 The current WP is located to the right of the AUV

eWWPBN ∑
jr+nw
j=jr

γj ≤ 0 The weighted WP relative bearing angle is negative

eWWPBP ∑
jr+nw
j=jr

γj ≤ 0 The weighted WP relative bearing angle is positive
eWPDN φjr <= 0 Angle to the WP direction vector is negative
eWPDP φjr > 0 Angle to the WP direction vector is positive
eRRPL tpm > tmp The AUV is returning to Pre f after the left detouring
eRRPR tpm < tmp The AUV is returning to Pre f after the right detouring
eRPSN ρRP < ρRP

n The reference path segment is near in the heading direction
eEP The VT has reached the end of the current path
eES The VT has reached the end of the current segment

Appl. Sci. 2020, 10, 7894 10 of 23

Table 3. Transition rules of the DES.

State No. Composite Events Next State Actions
mS mPF P = Pre f ; jr = 1

mPF 1 (eOAN, eORVC, eOLF) or
(eOAN, eOLF, eORF, eWWPBN) mDOL

QL = SELECTOBSTACLELEFTP(Q, iL
ρ)

P = AVOIDPATH(QL, ‘L’)

2 (eOAN, eOLVC, eORF) or
(eOAN, eOLF, eORF, eWWPBP) mDOR

QR = SELECTOBSTACLERIGHTP(Q, iR
ρ)

P = AVOIDPATH(QR, ‘R’)

3 (eOLN, eORVC) or
(eOLN, eORN, eWWPBN) mDOL QL = SELECTOBSTACLELEFTP(Q, iL

r)
P = AVOIDPATH(QL, ‘L’)

4 (eORN, eOLVC) or
(eORN, eOLN, eWWPBP) mDOR QR = SELECTOBSTACLERIGHTP(Q, iR

r)
P = AVOIDPATH(QR, ‘R’)

5 eEP mMC no actions
6 eES mPF jr = jr + 1

mNRP 1 mEP mPF P = Pre f ; INITVTSTATE

the first four rules from the mPF block

mDOL 1 (eWPB, eWPR, eWPDN) or
(eWPB, eWPL, eWPDP) mDOL jr = jr + 1

2 eOAVC mDOL the same as in rule 1 of the mPF block
3 eOLKPN mDOL the same as in rule 3 of the mPF block
4 (eNORN, eOLF) mSOR [P , jr] = DUBINSPATH(Pre f , jr , {‘R’}, {‘R’})

5
(eNOLN, eWPL, eRPSN, eRRPL)
or (eNOLN, eWPL, eWPB,
eWPDP, eRRPL)

mNRP [P , jr] = DUBINSPATH(Pre f , jr , {‘L’}, {‘L’,‘R’})

6 eEP mDOL QB = SELECTOBSTACLELEFT(Q)
P = AVOIDPATH(QB, ‘L’)

mSOR 1 (eWPB, eWPR, eWPDN) or
(eWPB, eWPL, eWPDP) mSOR jr = jr + 1

2 eOAN mDOL the same as in rule 1 of the mPF block
3 eOLN mDOL the same as in rule 3 of the mPF block

4
(eNOLN, eWPL, eRPSN, eRRPL)
or (eNOLN, eWPL, eWPB,
eWPDP, eRRPL)

mNRP [P , jr] = DUBINSPATH(Pre f , jr , {‘L’}, {‘L’,‘R’})

5 eEP mPF P = Pre f ; INITVTSTATE

mDOR 1 (eWPB, eWPL, eWPDP) or
(eWPB, eWPR, eWPDN) mDOR jr = jr + 1

2 eOAVC mDOR the same as in rule 2 of the mPF block
3 eORKPN mDOR the same as in rule 4 of the mPF block
4 (eNOLN, eORF) mSOL [P , jr] = DUBINSPATH(Pre f , jr , {‘L’}, {‘L’})

5
(eNORN, eWPR, eRPSN, eRRPR)
or (eNORN, eWPR, eWPB,
eWPDN, eRRP)

mNRP [P , jr] = DUBINSPATH(Pre f , jr , {‘R’}, {‘L’,‘R’})

6 eEP mDOR QB = SELECTOBSTACLERIGHT(Q)
P = AVOIDPATH(QB, ‘R’)

mSOL 1 (eWPB, eWPL, eWPDP) or
(eWPB, eWPR, eWPDN) mSOL jr = jr + 1

2 eOAN mDOR the same as in rule 2 of the mPF block
3 eORN mDOR the same as in rule 4 of the mPF block

4
(eNORN, eWPR, eRPSN, eRRPR)
or (eNORN, eWPR, eWPB,
eWPDN, eRRP)

mNRP [P , jr] = DUBINSPATH(Pre f , jr , {‘R’}, {‘L’,‘R’})

5 eEP mPF P = Pre f ; INITVTSTATE

The AUV behavior strategy that is provided by the DES can be expressed, as follows.

• Try not to get to a place where it is impossible to get out using standard obstacle
avoidance algorithms.

• Do not change once chosen obstacle avoidance direction until the AUV returns to the reference
path (left or right-hand rule).

• Rebuild the path only if it is vital.

In the DES states that are associated with obstacle avoidance (mDOL, mSOR, mDOR, and mSOL),
monitoring atomic events eRRPL and eRRPR (see Table 3) prevents the AUV from prematurely
returning to the reference path, which may happen when the obstacle has a U-shape.

Appl. Sci. 2020, 10, 7894 11 of 23

Changing the state of the DES entails the execution of a sequence of actions, which can be regarded
as a program that consists of a sequence of self-contained functions. As a result of these actions, a new
path P is built and/or the active segment jr is changed.

Function Qout = SELECTOBSTACLELEFTP(Qin, i) generates an obstacle Qout from a set of points
Qin that are produced by FLS by adding all points Qi1 from Qin that meet two conditions:

1 ≤ i1 < i and ∃i2 : (i1 < i2 ≤ i & ρi2 6= ∞) dist(Qi1 , Qi2) ≤ do

provided that i2 = i or the point Qi2 also meets these conditions. The order in which the points
are added to Qout is preserved. Similarly, the function Qout = SELECTOBSTACLERIGHTP(Qin, i) is
defined, with the only difference that the added points should satisfy

i > i1 ≥ |Qin| and ∃i2 : (i ≥ i2 > i1 & ρi2 6= ∞) dist(Qi1 , Qi2) ≤ do.

Unlike function SELECTOBSTACLELEFTP, which forms an obstacle by starting from the point i and
including this point in the output sequence, function Qout = SELECTOBSTACLELEFT(Qin) determines
the obstacle to detour it from its left side. The function chooses from all of the obstacles identified
based on FLS data the one for which the direction to its leftmost point deviates least from the heading
direction of the AUV. When identifying a set of obstacles, two adjacent points Qi and Qi+1 of Qin are
considered to belong to the same obstacle if they satisfy.

dist(Qi, Qi+1) ≤ do.

Similarly, function SELECTOBSTACLERIGHT selects an obstacle for detouring it from its right side.
Function INITVTSTATE initializes the state of the VT after performing a bypass manoeuvre and

returning to the reference path. The VT state includes the segment on which the VT is located as well
as its curvilinear coordinate, forward speed, and acceleration.

Function P = AVOIDPATH(Qin,D) builds a path P to detour a selected obstacle Qin on the left
(D = ‘L’) or on the right (D = ‘R’). The path is planned in two steps. First, the convex outline of the
obstacle is built while using the RCOA algorithm presented in Section 3.3.2, and then the obtained
outline is used to construct an avoidance path by applying a path-planning algorithm that is presented
in Section 3.3.3.

Finally, function [Pout, jout] = DUBINSPATH(Pin, jin,Ds,D f) constructs a Dubins path that connects
the AUV’s current position to the part of the path Pin that begins with segment jin. The constructed
path consists of three segments, each of which corresponds a left-turn arc (L), a right-turn arc (R),
or a straight line (S). The function can build the following paths: LSL, LSR, RSL, or RSR. In Figure 7,
one can find examples of RSL (red line) and RSR (blue line) paths. Arguments Ds, D f ⊆ { ‘L’,‘R’}
define the allowable motion primitives for the first and third segments of the path.

Function DUBINSPATH works, as follows. First, it tries to find the path to segment jin. If the
attempt is unsuccessful, it takes the next segment jin + 1 and searches for the path to it. This action is
sequentially repeated for all segments of the selected path fragment until a path is found. The function
returns the found pathPout and the index jout of the segment to which the path is built. A path-planning
algorithm that builds a path to a segment is described in detail in Section 3.3.4.

Because it is not possible to implement continuous checking of event-triggering conditions,
we cannot prevent situations when Ri

max < Rmin. When such situations happen, the AUV must
activate a special emergency mode in which it slows down the forward speed and starts turning in one
of two possible directions, which is selected based on the last state of the DES. For example, if the last
state of the DES is mDOL, which corresponds to avoiding an obstacle on the left, the AUV should turn
in the left direction. Once Ri

max > Rmin is valid for all i, the AUV returns to the last normal operating
mode with planning a new path if necessary. The emergency mode is not desirable, and the AUV
should avoid it. The use of this mode can be restricted and, in many cases, eliminated, by temporarily
relaxing the requirements for safe distance Ds when planning a path to bypass an obstacle, or increasing

Appl. Sci. 2020, 10, 7894 12 of 23

the frequency of checking the triggering condition for composite events requiring the calculation of
Ri

max, or increasing the value of parameter4R included in some event-triggering conditions. The AUV
should act in a similar way when it is too close to an obstacle. In this article, we do not investigate the
implementation of the emergency mode and apply the above mechanisms to exclude its use.

3.3.2. Robust Convex Outline Algorithm

For efficient path-planning, we propose a simple algorithm that transforms a sequence of obstacle
points Qin that are produced by the FLS into another sequence of points Qout that forms a convex
outline of the obstacle. Usually, the sequence Qout contains a relatively small number of points.
The algorithm implies the following steps.

Step 1: If sequence Qin consists of less than 3 points, mark these points for further inclusion in the
output sequence Qout and go to Step 5.

Step 2: Mark the start and end points of Qin. Assign i0 = 1.
Step 3: By going through the points, starting from point Qi0 , find the first point Qik that satisfies the

following condition: there exists a point Qi between Qi0 and Qik such that the shortest
distance from it to the line passing through the points Qi0 and Qik is greater than a
predetermined value Dm and it lies on the same side of the line as the AUV (see Figure 4).
If such a point does not exist, go to Step 5.

Step 4: Mark the point Qik−1 immediately preceding point Qik . If Qik is not the end point of Qin,
then i0 = ik − 1 and go to Step 3.

Step 5: Form the sequence Qout from all marked points of Qin keeping the order.

𝑄𝑖0

𝑄𝑖𝑘

𝑄𝑖

≥ 𝐷𝑚

Figure 4. Building a convex obstacle outline.

Note that the proposed algorithm is robust in the sense that small measurement errors and the
irregularity of the obstacle do not significantly increase the number of generated points. When using
the resulting convex outline in the path-planning algorithm presented in the next section, the safe
distance parameter Ds should be increased by Dm.

3.3.3. Path-Planning Algorithm for Detouring Obstacles

This section proposes a path-planning algorithm for detouring a single obstacle or a group
of obstacles considered as a single one. Given a sequence of points Qin = (Q1, Q2, . . . , QNo) that
represents a convex outline of an obstacle, the algorithm finds a collision-free path P , which consists
of line and arc segments, which satisfies the turning radius constraint Rmin and passes no closer than
the safe distance Ds from the obstacle. We restrict ourselves to the case when the AUV detours the
obstacle on the left side. Without a loss of generality, we assume that the last point QNo of Qin is the
point with minimum Rmax, i.e., iL

r = N0.

Appl. Sci. 2020, 10, 7894 13 of 23

Step 1: Take i = No. Construct the arc segment of radius Ri
max that connects the AUV’s current

position PV with the point P′i located at the distance Ds (or Ds + Dm after applying the RCOA
algorithm) from the obstacle point Qi (see Figure 5). Add this segment to the avoidance
path P .

Step 2: Construct an arc segment 〈P′i , P′′i ,±Rmin〉 that rotates the AUV around its vertical axis until
its longitudinal axis is directed along vector ~v(Qi, Qi−1) that is drawn from point Qi to point
Qi−1. The direction of the rotation is selected depending on the sign of the angle between
vector ~v(Qi, Qi−1) and the tangent vector of the constructed segment at point P′i . Add the
constructed segment to the avoidance path P .

Step 3: Take R = Rmin and calculate

Di−1 = R− (R− Di)/ cos δ,

where Di is the distance from point P′′i to line QiQi−1 and δ is the angle between vectors
~v(Qi, Qi−1) and ~v(Qi−1, Qi−2). The specified R and Di uniquely define the arc with center O
and start point K that wraps around the point Qi−1, as shown in Figure 6a.

Step 4: If Di−1 ≥ Ds then

R = (Di − Ds cos δ)/(1− cos δ), Di−1 = Ds,

and we have a new arc with center O′ and start point K′ (see Figure 6b); otherwise, shift points
O and K along the vector ei (the unit vector of ~v(Qi, Qi−1)) by

∆ = (Ds − Di−1)/ cos δ

to obtain new points O′ and K′ (see Figure 6c).
Step 5: Construct a line segment 〈P′i−1, P′′i−1, 0〉 with P′i−1 = K′ and an arc segment 〈P′i−1, P′′i−1,−R〉

with center O′ and radius R. Add both segments to path P .
Step 6: If i > 3 (point Qi−2 is not the first in Qin) then i = i− 2 and go to Step 3.
Step 7: Supplement path P with the line segment 〈P′′i−1, P′i−2, 0〉, which is parallel to vector

~v(Qi−1, Qi−2), where P′i−2 is the point on a line passing through the point P′′i−1 and parallel
to the line Qi−1, Qi−2, which is closest to the point Qi−2.

𝑃𝑖
′

𝑃𝑉

𝑄𝑖

𝑄𝑖−1

𝑄𝑖−2

𝑃𝑖
′′

𝑃𝑖−1
′

𝑃𝑖−1
′′

𝑃𝑖−2
′

Figure 5. Building a path that detours obstacle from its left side.

Appl. Sci. 2020, 10, 7894 14 of 23

𝛿

𝑄𝑖
𝐷𝑖

𝑄𝑖−2

𝑄𝑖−1

𝐷𝑖−1

𝑃𝑖
′′

𝑒𝑖

𝑂

𝐾

(a) Explanation of Step 3.

𝛿

𝑄𝑖

𝑅

𝑄𝑖−2

𝑄𝑖−1

𝐷𝑖−1

𝐾′

𝑂′

𝑒𝑖

𝑃𝑖
′′

𝑂

𝐾

(b) Explanation of Step 4 for
Di−1 ≥ Ds.

𝑃𝑉

𝛿
𝐷𝑖−1

𝐾

𝑂𝑂′

𝐾′

Δ

𝑄𝑖

𝑄𝑖−2

(c) Explanation of Step 4 for
Di−1 < Ds.

Figure 6. Building a path that wraps around a middle obstacle point.

3.3.4. Path-Planning Algorithm for Building a Path to a Given Segment

The path-planning algorithm that is proposed in this section generates a path P that connects the
current position PV of the AUV oriented along the vector ev with a segment S, thus solving the problem
of returning the AUV to the reference path Pre f . It is based on Dubins curves [39]. The generic Dubins
algorithms generate the shortest path that connects two points with a constraint on the curvature of
the path. However, in our case, it is also necessary to determine the final path point, which is on a line
or arc segment of Pre f , as well as to limit the set of allowable types for the path, specifying allowable
motion primitives Ds,D f ⊆ {‘L’,‘R’} for the start and final segments of the path respectively. Here,
as before, the symbol ‘L’ corresponds to a left-arc turn and the symbol ‘R’ to a right-arc turn. Note that
there are algorithms that build a Dubins path to a circle [40,41], but they cannot be directly adapted for
our purposes.

Step 1: Set L = ∞ and P = ∅.
Step 2: For each start turning direction ds ∈ Ds and final turning direction d f ∈ D f perform

Steps 3–8.
Step 3: Find the center Cds

1 of the arc S for start turning direction ds.
Step 4: Shift segment S in direction d f by Rmin, resulting in a new segment Sd f

.
Step 5: Find a point Pf on segment Sd f

which is closest to point PV . If the distance between points
PV and Pf is greater than 2Rmin, then build a Dubins path PDub of type dsSd f that connects
points PV and Pf and go to step 8.

Step 6: Find the point C
d f
2 of intersection of the circle with the center Cds

1 and radius 2Rmin with the
segment Sd f

. If there are no such points, go to Step 2 and continue with the next d f .
Step 7: Build a path PDub of type dsSd f connecting point PV with point Pf , which is obtained by

projecting point C
d f
2 onto segment S.

Step 8: If the path PDub is successfully built (PDub = ∅) and the length LDub of the path PDub is less
than L, then L = LDub and P = PDub.

The described algorithm is illustrated in Figure 7.

Appl. Sci. 2020, 10, 7894 15 of 23

𝑃𝑉

𝑒𝑉

𝐶1
𝑅

𝐶2
𝑅

𝑆

𝑆𝐿

𝑆𝑅

𝐶2
𝐿

𝑃𝑓

Figure 7. An example of building a Dubins path that connects point Pv with arc S. For this example,
Ds = {‘R’} and D f = {‘L’,‘R’}. The red line indicates the shortest path.

4. Simulation Results

We conducted numerical simulations using three scenarios in order to validate the performance
of the designed control system: with a sharp-edged obstacle, with a U-shaped obstacle, and with
densely scattered obstacles. Scenario 1 aims to test the ability of the path planner to cope with
obstacles having complex shapes. Scenario 2 demonstrates how the planner can drive the AUV out of
a trap made by a U-shaped obstacle. The last scenario shows whether the algorithm is effective in a
cluttered environment.

In the simulations, we adopted parameters of the model (1) and (2) that correspond to the
INFANTE AUV [23]: the nominal mass m = 2234.5 kg and moment of inertia Iz = 2000 N ·m2.
The rest of the model parameters can be found in [23]. The path-following controller was designed with
the following parameters: sampling time h = 0.2 s, control constraints F s = 200 N and Gs = 100 N m,
and maximum path curvature cmax = 1/Rmin = 0.05. Figure 8 shows the feedback gains ki, i = 1, 5 of
the path-following controller (7), (8) as functions of the VT’s angular speed r0.

𝑘3

𝑘1

𝑘4

𝑘2

𝑘5

𝑘𝑖

𝑟0, rad ⋅ s−1

Figure 8. Feedback coefficients ki (i = 1, 5) synthesized for the path-following controller (7) as functions
of the VT’s angular speed r0.

Path-planning parameters are specified, as follows: Rmin = 20 m, Ds = 10 m, Dm = 2 m,4R =

5 m, ρvc = 10 m, ρn = 25 m, ρ f = 70 m, ρRP
n = 30 m, do = 50 m. Also, for the FLS we specify the

number of beams Nb = 60, the detection range ρmax = 150 m, and the field of view ψFLS = 120◦.
The triggering conditions for all events, excluding eEP (the VT has reached the end of the current
path) and eES (the VT has reached the end of the current segment), which are monitored with period
h = 0.2 s, are checked with interval he = 2 s.

Figures 9–13 show the results of the simulation for Scenario 1. From Figure 1, we can conclude
that the AUV successfully avoids collisions with the obstacle by keeping a safe distance from it. In this

Appl. Sci. 2020, 10, 7894 16 of 23

scenario, which lasts approximately 900 s, the AUV rarely corrects the path. The left-hand part of
Figure 9 demonstrates that the designed DES changes its state only 14 times and, therefore, the path
is corrected the same number of times. Between corrections, the upper control level only checks the
event triggering conditions at an interval of 2 s. Obviously, the less the DES changes its state, the less
the path is updated, and the less load on the on-board computing device.

Note that DES detects not only situations when it is necessary to generate a new path, but also
situations when the active waypoint should be changed. For example, during the first 250 s of
scenario 1, the active waypoint is changed twice, due to the simultaneous occurrence of elementary
events eWPB, eWPR, and eWPDN (rule 1 of the mDOL block in Table 3). As a result of these changes,
waypoint 4 of the reference path becomes active before the AUV approaches the line segment between
waypoints 3 and 4, and events that triggers the return to the reference path (rule 5 of the mDOL block
in Table 3) can be detected.

Figure 13 shows that the proposed path-planning algorithms generate paths that have a
constrained curvature |cc| ≤ cmax = 0.05, and, consequently, meets the turning radius constraint
Rmin = 1/cmax = 20 m.

The analysis of Figures 10, 11, and 13 allows for drawing a conclusion that the main source of
disturbances causing the growth of path-following errors se, ye and velocity discrepancies is jumps
in the path curvature. Without these disturbances, the errors asymptotically tend to zero as well as
velocities u and r tend to the desired values u0 = 1 m/s and r0 = ccu0. The horizontal sections of lines
that are shown in Figures 10 and 11 correspond to a motion without disturbances.

Figure 12 shows that the developed path-following controller, combating the curvature-induced
disturbances, may cause saturation of the torque G (maximum torque Gmax = 300 N ·m). The reason for
this is that the feedback gains of the controller were synthesized in order to minimize the steady-state
errors for se and ye. It should be noted that other requirements to the lower level controller, specified
in terms of direct indicators of dynamic quality, can be satisfied using the VLF-based tool employed in
this paper for tuning feedback gains. For example, the aim of synthesis may be to maximize the size
of the region of attraction. Note also that the path-following errors can be reduced by regulating the
forward speed u0 of the VT, or transforming the generated path into a smoother one, or reducing the
control interval h.

waypoints

the reference path

the actual path

Start

Finish

1

2

3

4

5 6 7

8

0 100 200 300 400 500 600 700 800 900
mPF

mNRP

mDOL

mSOR

Figure 9. Simulation results for Scenario 1: sharp-edged obstacle environment. On the left, the blue
area corresponds to the obstacle on the (x, y) plane, the red line represents the AUV’s reference path,
and the blue line represents the actual trajectory obtained by the simulation; marks on the red line are
points connecting two adjacent segments of the reference path. On the right, the blue line shows the
change in the state of the designed discrete event system and red marks on the line indicate moments
when a new path is generated.

Appl. Sci. 2020, 10, 7894 17 of 23

0 100 200 300 400 500 600 700 800 900
-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0 100 200 300 400 500 600 700 800 900
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Figure 10. Path-following errors for Scenario 1: along path error se (left-hand part) and across path
error ye (right-hand part).

0 100 200 300 400 500 600 700 800 900
0.975

0.98

0.985

0.99

0.995

1

1.005

1.01

1.015

1.02

0 100 200 300 400 500 600 700 800 900
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Figure 11. AUV velocities for Scenario 1: forward velocity (left-hand part) and yaw velocity
(right-hand part).

0 100 200 300 400 500 600 700 800 900
15

20

25

30

35

40

45

50

55

60

0 100 200 300 400 500 600 700 800 900
-300

-200

-100

0

100

200

300

Figure 12. Control activity for Scenario 1: force (left-hand part) and torque (right-hand part).

Appl. Sci. 2020, 10, 7894 18 of 23

0 100 200 300 400 500 600 700 800 900
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

Figure 13. Evolution of the path curvature in Scenario 1.

Figures 14 and 15 show the simulation results for Scenarios 2 and 3, respectively. We do not display
all results for these scenarios because the missed data do not provide new information about the
performance of the designed path-following controller and are quite similar to the simulation results
of Scenario 1. In particular, the path curvature is bounded by constant cmax = 0.05; the path-following
errors se and ye increase significantly when the path curvature changes with a jump, and then, passing
through a transient phase, tend to the neighbourhood of zero; u and r behave similarly, with the only
difference being that they tend to u0 and r0 respectively; force F and torque G do not exceed the
maximum allowed limits Fmax and Gmax, respectively.

As shown in Figure 14, being in path-following mode mPF, the AUV activates obstacle avoidance
mode mDOR twice: at the very beginning and on the 250th s of Scenario 2. Following the right-hand
rule that was implemented in the developed DES, the AUV does not change the chosen avoidance
direction until it returns to the reference path. During the obstacle bypass, mode mDOR alternates
with mode mSOL. The last is activated when the AUV reaches the end of the avoidance path, and no
obstacles are detected on the left. Elementary event eRRPR, which is monitored in mode mDOR,
determines whether the AUV is ready to return to the reference path: the AUV is ready if event eRRPR
can be detected. This event is introduced to exclude situations when the AUV repeatedly travel along
the same reference path segment. In Scenario 2, when the AUV gets out of the U-shaped obstacle trap,
the fact that event eRRPR does not occur prevents the AUV from returning to the part of the reference
path that it has already passed.

The left-hand part of Figure 15 shows that the AUV freely passes between obstacles at the bottom
part of the scene because they are located far enough away from each other (the distance between
obstacles is more than 70 m). In turn, the AUV does not try to squeeze between the tightly placed
obstacles at the top of the scene and detours them by turning to the right. Such behavior allows for the
vehicle not to be caught in a potential trap and to use only standard path planning algorithms.

Appl. Sci. 2020, 10, 7894 19 of 23

-300 -200 -100 0 100 200

-100

-50

0

50

100

150

0 200 400 600 800 1000 1200 1400

t, s

mPF

mNRP

mDOL

mSOR

mDOR

mSOL

m
o

d
e

Figure 14. Simulation results for Scenario 2: U-shaped obstacle environment. The explanation of the
figure is the same as that of Figure 9.

-300 -200 -100 0 100 200 300
-250

-200

-150

-100

-50

0

50

100

150

200

250

0 100 200 300 400 500 600 700 800

t, s

mPF

mNRP

mDOL

mSOR

mDOR

mSOL
m

o
d
e

Figure 15. Simulation results for Scenario 3: cluttered environment. The explanation of the figure is the
same as that of Figure 9.

5. Discussion

The simulation experiments have shown that the developed event-based approach to real-time
path planning is practical in most possible situations. However, we are far from the opinion that it
provides rational behavior for the AUV in all circumstances. An example of the irrational behavior of
the AUV is the simulation scenario 2 (see Figure 14), in which it is more advantageous for the AUV,
after getting out of the U-shaped trap, to turn to the right and move along the obstacle, holding it on
the right. The irrational behavior arises from the fact that an essential characteristic of the proposed
approach is the reactivity of decision making without using global information about the environment,
for example, in the form of a map incrementally built during the motion. The application of such
models in path planning procedures will be studied further.

In general, it is not easy to evaluate a path planning algorithm from a real-time perspective
without conducting experimental work on real AUVs. However, extensive simulations can also be
used in order to evaluate the algorithm for real-time applicability indirectly. For example, it takes less
than 100 s on a computer with the Intel Core i7-8550U 1.8 GHz processor to run the simulation scenario
1 (with a sharp-edged obstacle) of 900 s from Section 4. Computations for this scenario, in addition to
integrating the motion equation, generating paths, and updating control signals, also include rendering
the scene. The computation time indicates that the proposed method has high potential for working in
real-time. The efficiency of path planning is achieved due to some features of the proposed event-based
approach. First, the path update regulated by the designed DES occurs when it is vital. Second,

Appl. Sci. 2020, 10, 7894 20 of 23

the developed path planning algorithms do not rely on in-depth optimization: the algorithm based
on the waypoint guidance method uses only a simple model of the environment built on raw data
that were obtained from FLS and is not optimizing in its essence; the algorithm based on Dubins
curves moves through only up to four path alternatives to choose the best one. Third, to determine
the direction of bypassing detected obstacles, an in-depth analysis of the local environment is not
performed: if two obstacle avoidance directions are equal, then the designed DES chooses one of them
based on the analysis of forthcoming waypoints of the reference path. Finally, checking all of the
triggering conditions does not require significant computing efforts.

The developed approach to path planning is ideologically close to (and in many ways inspired
by) [4,14]. However, in contrast to these studies, we consider a more elaborate formulation of the path
planning problem, in which the AUV has to move along a reference path, instead of trying to reach a
static target point. Besides, we do not divide obstacles into classes and do not use separate planning
algorithms for each class. Additionally, the robust convex outline algorithm proposed in the paper
produces fewer points compared to the largest polar angle algorithm from [14], which reduces the
number of path segments generated by the waypoint guidance method used in both studies.

In the proposed event-based approach, a DES determines the obstacle avoidance behavior of
the AUV. We designed the DES in such a way as to avoid situations that require the use of energy
inefficient emergency modes [14]. These situations arise when any path generated by path-planning
algorithms leads to a collision with an obstacle or dangerously approaches it. The logic of the AUV’s
behavior is described using concepts accepted in the theory of discrete event systems. In the future,
this will allow for us to apply formal methods and software tools to analysis of DESs intended for path
planning. Besides, we plan to develop a convenient tool for specifying DES with the possibility to
integrate new rules and actions in the path planning process.

Although the focus of the paper is on path planning in an unknown environment, it also
concerns the path-following problem. The designed path-following controller demonstrates acceptable
performance: the steady-state tracking errors in the along path direction se and in the across path
direction ye do not exceed 1 m (see Figure 10). Analysis of the simulation results showed that the
tracking errors are primarily affected by jump changes in the path curvature. At the same time,
such jumps occur quite rarely at junction points of two adjacent path segments, so the AUV has time
to reduce errors before reaching the next junction point. It should be noted that increasing Dm in the
RCOA algorithm can reduce the number of path segments that are generated by the waypoint guidance
algorithm and, therefore, the number of jumps. In turn, a path generated by Dubins curve-based
algorithm consists only of three segments.

6. Conclusions

In the paper, we developed a two-level control system that allows for the AUV to move along a
given reference path in a two-dimensional (2D) environment with obstacles. The key idea behind the
developed approach is to use a discrete event system at the top level as a mechanism for detecting
situations that require path updates and waypoint management. Two path planning algorithms were
developed in order to ensure safe obstacle avoidance and return to the reference path after completing
the avoidance maneuver. A digital path-following controller was designed while using the vector
Lyapunov function method by minimizing the steady-state positioning errors of the AUV with respect
to the moving VT. The simulation results illustrated the performance of the control system proposed.

The developed approach demonstrates promising results on the plane. In our opinion,
the approach has the potential to be extended to the 3D case. Additionally, there is a particular
interest in its application to multiple AUVs. We plan to work on these directions in the future.

Appl. Sci. 2020, 10, 7894 21 of 23

Author Contributions: S.U., I.B., and N.M. proposed the main idea; I.B. supervised the research work; S.U.
designed the algorithms and conducted simulation; S.U. and N.M. analyzed the data; S.U. wrote the paper.
All authors have read and agreed to the published version of the manuscript.

Funding: The event-triggered control system architecture has been developed under support of the Russian
Foundation for Basic Research (Projects No. 20-07-00397). The work related to the development of the
event-based path planning algorithm for AUVs is supported by the Ministry of Science and Higher Education
of the Russian Federation (Grant No. 075-15-2020-787, large scientific project “Fundamentals, methods and
technologies for digital monitoring and forecasting of the environmental situation on the Baikal natural territory”).
The path-following controller has been designed using algorithms and software tools developed under support of
the Russian Science Foundation (Project No. 16-11-00053).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sahoo, A.; Dwivedy, S.K.; Robi, P. Advancements in the field of autonomous underwater vehicle. Ocean. Eng.
2019, 181, 145–160. [CrossRef]

2. Li, D.; Wang, P.; Du, L. Path Planning Technologies for Autonomous Underwater Vehicles-A Review.
IEEE Access 2019, 7, 9745–9768. [CrossRef]

3. Panda, M.; Das, B.; Subudhi, B.; Pati, B.B. A Comprehensive Review of Path Planning Algorithms for
Autonomous Underwater Vehicles. Int. J. Autom. Comput. 2020, 17, 321–352. [CrossRef]

4. Yan, Z.; Li, J.; Wu, Y.; Zhang, G. A Real-Time Path Planning Algorithm for AUV in Unknown Underwater
Environment Based on Combining PSO and Waypoint Guidance. Sensors 2019, 19, 20. [CrossRef]

5. Wang, X.; Yao, X.; Zhang, L. Path Planning under Constraints and Path Following Control of Autonomous
Underwater Vehicle with Dynamical Uncertainties and Wave Disturbances. J. Intell. Robot. Syst. 2020.
[CrossRef]

6. Ataei, M.; Yousefi-Koma, A. Three-Dimensional Optimal Path Planning for Waypoint Guidance of an
Autonomous Underwater Vehicle. Robot. Auton. Syst. 2015, 67, 23–32. [CrossRef]

7. Sun, B.; Zhu, D.; Tian, C.; Luo, C. Complete Coverage Autonomous Underwater Vehicles Path Planning
Based on Glasius Bio-Inspired Neural Network Algorithm for Discrete and Centralized Programming.
IEEE Trans. Cogn. Dev. Syst. 2019, 11, 73–84. [CrossRef]

8. Fan, X.; Guo, Y.; Liu, H.; Wei, B.; Lyu, W. Improved Artificial Potential Field Method Applied for AUV Path
Planning. Math. Probl. Eng. 2020, 2020, 6523158. [CrossRef]

9. Hernández, J.D.; Vidal, E.; Moll, M.; Palomeras, N.; Carreras, M.; Kavraki, L.E. Online motion planning
for unexplored underwater environments using autonomous underwater vehicles. J. Field Robot. 2019,
36, 370–396. [CrossRef]

10. Xiong, C.; Zhou, H.; Lu, D.; Zeng, Z.; Lian, L.; Yu, C. Rapidly-Exploring Adaptive Sampling Tree*:
A Sample-Based Path-Planning Algorithm for Unmanned Marine Vehicles Information Gathering in Variable
Ocean Environments. Sensors 2020, 20, 2515. [CrossRef]

11. Candeloro, M.; Lekkas, A.M.; Sorensen, A.J. A Voronoi-diagram-based dynamic path-planning system for
underactuated marine vessels. Control. Eng. Pract. 2017, 61, 41–54. [CrossRef]

12. Wei, D.; Wang, F.; Ma, H. Autonomous Path Planning of AUV in Large-Scale Complex Marine Environment
Based on Swarm Hyper-Heuristic Algorithm. Appl. Sci. 2019, 9, 2654. [CrossRef]

13. Yao, P.; Zhao, S. Three-Dimensional Path Planning for AUV Based on Interfered Fluid Dynamical System
Under Ocean Current (June 2018). IEEE Access 2018, 6, 42904–42916. [CrossRef]

14. Yan, Z.; Li, J.; Zhang, G.; Wu, Y. A Real-Time Reaction Obstacle Avoidance Algorithm for Autonomous
Underwater Vehicles in Unknown Environments. Sensors 2018, 18, 438. [CrossRef] [PubMed]

15. Li, J.; Zhang, J.; Zhang, H.; Yan, Z. A Predictive Guidance Obstacle Avoidance Algorithm for AUV in
Unknown Environments. Sensors 2019, 19, 2862. [CrossRef]

16. Lim, H.S.; Fan, S.; Chin, C.K.; Chai, S.; Bose, N.; Kim, E. Constrained path planning of autonomous
underwater vehicle using selectively-hybridized particle swarm optimization algorithms. In Proceedings
of the 12th IFAC Conference on Control Applications in Marine Systems, Robotics, and Vehicles CAMS,
Daejeon, Korea, 18–20 September 2019. [CrossRef]

17. Yan, Z.; Li, J.; Wu, Y.; Yang, Z. A Novel Path Planning for AUV Based on Objects’ Motion Parameters
Predication. IEEE Access 2018, 6, 69304–69320. [CrossRef]

http://dx.doi.org/10.1016/j.oceaneng.2019.04.011
http://dx.doi.org/10.1109/ACCESS.2018.2888617
http://dx.doi.org/10.1007/s11633-019-1204-9
http://dx.doi.org/10.3390/s19010020
http://dx.doi.org/10.1007/s10846-019-01146-3
http://dx.doi.org/10.1016/j.robot.2014.10.007
http://dx.doi.org/10.1109/TCDS.2018.2810235
http://dx.doi.org/10.1155/2020/6523158
http://xxx.lanl.gov/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.21827
http://dx.doi.org/10.1002/rob.21827
http://dx.doi.org/10.3390/s20092515
http://dx.doi.org/10.1016/j.conengprac.2017.01.007
http://dx.doi.org/10.3390/app9132654
http://dx.doi.org/10.1109/ACCESS.2018.2861468
http://dx.doi.org/10.3390/s18020438
http://www.ncbi.nlm.nih.gov/pubmed/29393915
http://dx.doi.org/10.3390/s19132862
http://dx.doi.org/10.1016/j.ifacol.2019.12.326
http://dx.doi.org/10.1109/ACCESS.2018.2880307

Appl. Sci. 2020, 10, 7894 22 of 23

18. Ma, Y.; Gong, Y.; Xiao, C.; Gao, Y.; Zhang, J. Path Planning for Autonomous Underwater Vehicles: An Ant
Colony Algorithm Incorporating Alarm Pheromone. IEEE Trans. Veh. Technol. 2019, 68, 141–154. [CrossRef]

19. MahmoudZadeh, S.; Powers, D.M.W.; Yazdani, A.M.; Sammut, K.; Atyabi, A. Efficient AUV Path Planning
in Time-Variant Underwater Environment Using Differential Evolution Algorithm. J. Mar. Sci. Appl. 2018,
17, 585–591. [CrossRef]

20. Shen, C.; Shi, Y.; Buckham, B. Integrated Path Planning and Tracking Control of an AUV: A Unified Receding
Horizon Optimization Approach. IEEE/ASME Trans. Mechatron. 2017, 22, 1163–1173. [CrossRef]

21. Yao, X.; Wang, X.; Wang, F.; Zhang, L. Path Following Based on Waypoints and Real-Time Obstacle Avoidance
Control of an Autonomous Underwater Vehicle. Sensors 2020, 20, 795. [CrossRef] [PubMed]

22. Liang, X.; Qu, X.; Hou, Y.; Zhang, J. Three-dimensional path following control of underactuated autonomous
underwater vehicle based on damping backstepping. Int. J. Adv. Robot. Syst. 2017, 14, 1729881417724179.
[CrossRef]

23. Lapierre, L.; Soetanto, D. Nonlinear path-following control of an {AUV}. Ocean. Eng. 2007, 34, 1734–1744.
[CrossRef]

24. Lapierre, L.; Jouvencel, B. Robust Nonlinear Path-Following Control of an AUV. IEEE J. Ocean. Eng. 2008,
33, 89–102. [CrossRef]

25. Kim, E.; Fan, S.; Bose, N.; Nguyen, H. Current Estimation and Path Following for an Autonomous
Underwater Vehicle (AUV) by Using a High-gain Observer Based on an AUV Dynamic Model. Int. J.
Control. Autom. Syst. 2020. [CrossRef]

26. Guerrero, J.; Torres, J.; Creuze, V.; Chemori, A.; Campos, E. Saturation based nonlinear PID control for
underwater vehicles: Design, stability analysis and experiments. Mechatronics 2019, 61, 96–105. [CrossRef]

27. Zeng, J.; Wan, L.; Li, Y.; Dong, Z.; Zhang, Y. Adaptive line-of-sight path following control for underactuated
autonomous underwater vehicles in the presence of ocean currents. Int. J. Adv. Robot. Syst. 2017,
14, 1729881417748127. [CrossRef]

28. Shen, C.; Shi, Y.; Buckham, B. Path-Following Control of an AUV: A Multiobjective Model Predictive Control
Approach. IEEE Trans. Control. Syst. Technol. 2019, 27, 1334–1342. [CrossRef]

29. Guo, C.; Han, Y.; Yu, H.; Qin, J. Spatial Path-Following Control of Underactuated AUV With Multiple
Uncertainties and Input Saturation. IEEE Access 2019, 7, 98014–98022. [CrossRef]

30. Xiang, X.; Yu, C.; Zhang, Q. Robust Fuzzy 3D Path Following for Autonomous Underwater Vehicle Subject
to Uncertainties. Comput. Oper. Res. 2017, 84, 165–177. [CrossRef]

31. Sgorbissa, A. Integrated robot planning, path following, and obstacle avoidance in two and three dimensions:
Wheeled robots, underwater vehicles, and multicopters. Int. J. Robot. Res. 2019, 38, 853–876. [CrossRef]

32. Fossen, T.I. Guidance and Control of Ocean Vehicles; Wiley: Hoboken, NJ, USA, 1994.
33. Silvestre, C.; Pascoal, A. Control of the INFANTE AUV using gain scheduled static output feedback.

Control. Eng. Pract. 2004, 12, 1501–1509. [CrossRef]
34. Ulyanov, S.; Maksimkin, N. Formation path-following control of multi-AUV systems with adaptation of

reference speed. Math. Eng. Sci. Aerosp. (MESA) 2019, 10, 487–500.
35. Leith, D.J.; Leithead, W. Survey of Gain-Scheduling Analysis & Design. Int. J. Control. 2000, 73, 1001–1025.
36. Kozlov, R.I.; Kozlova, O.R. Investigation of stability of nonlinear continuous-discrete models of economic

dynamics using vector Lyapunov function. J. Comput. Syst. Sci. Int. 2009, 48, 262–271. [CrossRef]
37. Vassilyev, S.; Ulyanov, S.; Maksimkin, N. A VLF-Based Technique in Applications to Digital Control of Nonlinear

Hybrid Multirate Systems; AIP Publishing LLC: Melville, NY, USA, 2017; pp. 020170(1)–020170(10). [CrossRef]
38. Cassandras, C.G.; Lafortune, S. Introduction to Discrete Event Systems, 2nd ed.; Springer: Berlin/Heidelberg,

Germany, 2010.
39. Dubins, E.L. On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed

Initial and Terminal Positions and Tangents. Am. J. Math. 1957, 79, 497. [CrossRef]
40. Manyam, S.G.; Casbeer, D.W.; Moll, A.V.; Fuchs, Z. Shortest Dubins Path to a Circle. arXiv 2018,

arXiv:1804.07238v1.

http://dx.doi.org/10.1109/TVT.2018.2882130
http://dx.doi.org/10.1007/s11804-018-0034-4
http://dx.doi.org/10.1109/TMECH.2016.2612689
http://dx.doi.org/10.3390/s20030795
http://www.ncbi.nlm.nih.gov/pubmed/32024015
http://dx.doi.org/10.1177/1729881417724179
http://dx.doi.org/10.1016/j.oceaneng.2006.10.019
http://dx.doi.org/10.1109/JOE.2008.923554
http://dx.doi.org/10.1007/s12555-019-0673-5
http://dx.doi.org/10.1016/j.mechatronics.2019.06.006
http://dx.doi.org/10.1177/1729881417748127
http://dx.doi.org/10.1109/TCST.2018.2789440
http://dx.doi.org/10.1109/ACCESS.2019.2928897
http://dx.doi.org/10.1016/j.cor.2016.09.017
http://dx.doi.org/10.1177/0278364919846910
http://dx.doi.org/10.1016/j.conengprac.2004.02.012
http://dx.doi.org/10.1134/S1064230709020105
http://dx.doi.org/10.1063/1.4972762
http://dx.doi.org/10.2307/2372560

Appl. Sci. 2020, 10, 7894 23 of 23

41. Chen, Z. On Dubins paths to a circle. Automatica 2020, 117, 108996. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.automatica.2020.108996
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem Formulation
	AUV Model
	Relative Dynamics
	Sonar Model
	Path Representation
	Problem Formulation

	Two-Level Control System
	Control System Architecture
	Path-Following Controller
	Event-Based Path-Planning
	Discrete-Event System
	Robust Convex Outline Algorithm
	Path-Planning Algorithm for Detouring Obstacles
	Path-Planning Algorithm for Building a Path to a Given Segment

	Simulation Results
	Discussion
	Conclusions
	References

