
applied  
sciences

Review

An Overview of GIS-Based Assessment and Mapping
of Mining-Induced Subsidence

Jangwon Suh

Department of Energy and Mineral Resources Engineering, Kangwon National University,
Samcheok 25913, Korea; jangwonsuh@kangwon.ac.kr or jangwonsuh@hanmail.net; Tel.: +82-33-570-6313

Received: 29 September 2020; Accepted: 3 November 2020; Published: 5 November 2020 ����������
�������

Abstract: This article reviews numerous published studies on geographic information system
(GIS)-based assessment and mapping of mining-induced subsidence. The various types of mine
subsidence maps were first classified into susceptibility, hazard, and risk maps according to the
various types of the engineering geology maps. Subsequently, the mapping studies were also
reclassified into several groups according to the analytic methods used in the correlation derivation
or elements of the risk of interest. Data uncertainty, analytic methods and techniques, and usability of
the prediction map were considered in the discussion of the limitations and future perspectives of
mining subsidence zonation studies. Because GIS can process geospatial data in relation to mining
subsidence, the application and feasibility of exploiting GIS-assisted geospatial predictive mapping
may be expanded further. GIS-based subsidence predictive maps are helpful for both engineers
and for planners responsible for the design and implementation of risk mitigation and management
strategies in mining areas.
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1. Introduction

Mining subsidence, a common mining-induced hazard, can result in severe damage to buildings,
infrastructure, and the environment [1]. Numerous mines have been abandoned without the
implementation of appropriate mine reclamation measures, and subsidence events have frequently
occurred at underground mine sites worldwide (Figure 1). Reliable subsidence predictions and mapping
of future subsidence hazards in areas vulnerable to subsidence, based on continuous assessments and
observations using accurate subsidence inventory data, represent a principal step toward effective
mitigation of the risk of damage to property. Specifically, the presentation of engineering geological data
in the form of an engineering geological map represents a useful tool for planners and developers in
that the said maps indicate areas of potentially suitable and unsuitable land in relation to development.
Numerous attempts have been made to assess mining subsidence using spatial information technology
as it provides an effective approach to quantitative assessment at regional scales.

A geographic information system (GIS) is a computer-based technology that enables the
collection, management, analyzing, modeling, and presentation of geospatial data for a wide range of
applications [2]. GIS can also be viewed as a computerized tool that provides a framework for solving
geospatial problems [3]. Therefore, GIS is regarded as science or technology for spatial problem solving
and can be used for scientific or engineering investigations, resource management, and development
planning. In addition, GIS can be used to generate an engineering geology map. Because GIS can also
be considered to be a form of a computer-coded digital mapping tool, it can be used to easily represent
and combine factor maps to effectively derive the susceptibility, hazard, and risk indexes as well as
perform effective modeling. Therefore, GIS plays a highly vital role in the entire process of mining
hazard modeling and mapping production [4–14]. In addition, GIS-based geohazard mapping based

Appl. Sci. 2020, 10, 7845; doi:10.3390/app10217845 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-5724-428X
http://dx.doi.org/10.3390/app10217845
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/21/7845?type=check_update&version=2


Appl. Sci. 2020, 10, 7845 2 of 23

on other concerned geospatial data sets can provide basic data for engineers and planners to help make
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Figure 1. Photos of representative mining-induced subsidence occurrence. 
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Figure 1. Photos of representative mining-induced subsidence occurrence.

The scope of this paper was confined to reviewing only published literature concerning GIS-based
mining-induced subsidence mapping research that included the following three keywords (or concepts):
mine or mining, subsidence, and GIS. As such, the articles that were not concerned with mining areas
such as karst subsidence (e.g., depression, collapse, and doline), and urban land subsidence induced
solely by groundwater withdrawal (i.e., not underground mining activities) were not considered.
Numerous studies have reported on the detection and monitoring of ground subsidence in mine
areas (here, subsidence inventory mapping) using remote sensing observation technologies (e.g.,
interferometric synthetic aperture radar (InSAR) and unmanned aerial vehicles (UAVs)). However,
these are beyond the scope of GIS technology and are therefore excluded from this study.

2. GIS-Based Engineering Geology Maps

An engineering geological map refers to a type of a map that provides a generalized representation
of all the key components of a geological environment in land-use planning and in the design,
construction, and maintenance as applied to civil and mining engineering [15]. More recently,
González de Vallejo and Ferrer [16] reported that geological engineering maps present the geological
and geotechnical information for land-use planning, development, regeneration, and conservation,
and to plan, construct, and maintain buildings, engineering structures, and infrastructure. According to
Chacón et al. [17], engineering geology maps can be classified into inventory maps, susceptibility maps,
hazard maps, and risk maps, as listed in Table 1.

In terms of mine subsidence, an inventory map shows the location, type, abundance, activity,
and date of past subsidence [18,19]. In the simplest case, this map type only shows the location of past
subsidence. Because the past and present are keys to the future, an inventory map of the historical
data can be used to predict the probability of future subsidence or to validate the prediction accuracy
of the generated subsidence susceptibility map. Accordingly, the inventory map is the first step in any
mitigation program. However, because an inventory map is mainly compiled through remote sensing
observation technologies or field surveys, it is not considered a GIS analysis. Thus, published literature
on inventory maps is excluded from this study.
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Table 1. Type and characteristics of engineering geological maps in terms of mining subsidence
(modified from Chacón et al. [17]).

Type of Maps Characteristics

Inventory map
· Locations, type, abundance, activity, date of (subsidence) events
· Used to validate prediction accuracy of resulting (subsidence) susceptibility map

Susceptibility map
· Zonation of the relative spatial probability of future (subsidence) events
· Ranks the stability of an area in categories that range from stable to unstable

Hazard map
· Zonation of the spatio-temporal probability of future (subsidence) events
· Hazard = Magnitude × Probability (of subsidence events)

Risk map
· Expected damage or losses caused by (subsidence) events
· Risk = Probability (of subsidence) × Element at risk × Vulnerability

The basic concept of subsidence susceptibility includes the spatial distribution of factors related to
instability processes; this concept is used for determining zones of subsidence vulnerable areas without
any temporal implication. A subsidence susceptibility map shows where subsidence may occur via
the ranks of ground stability of an area in categories that range from stable to unstable. Subsidence
susceptibility has also been considered as an expression of relative hazard.

Subsidence hazard is defined as the probability of occurrence within a specified period and
within a given area of a potentially damaging phenomenon [20]. The term ‘Hazard’ in this instance is
different from what we commonly use for the word “hazard or in danger”. The concept of a subsidence
susceptibility map is different from that of a subsidence hazard map in that the latter includes zonations
showing the annual probability (likelihood) of subsidence occurring throughout an area.

Although several different definitions of the term risk exist, one of the most frequently adopted
definitions is presented by Varnes [20] as the expected number of lives lost, persons injured, damage to
property, and disruption of economic activity caused by a specific damaging phenomenon for a given
area and reference period. From this standpoint, it can be said that a subsidence risk map shows the
expected annual cost of subsidence damage throughout the affected area and combines the probability
information from a subsidence hazard map with an analysis of all possible consequences such as
property damage, casualties, and loss of service [21]. The estimation of the risk associated with
subsidence events can be computed (quantified) by multiplying the subsidence hazard index by the
exposure intensity index and vulnerability index [22].

3. Mine Subsidence Susceptibility/Hazard Assessment and Mapping

Table 2 summarizes the map type, analytical methods and techniques, verification/validation
method, and spatial resolution in each study on mine subsidence susceptibility (or hazard) mapping in
a GIS environment [23–45]. Despite the aforementioned difference between subsidence susceptibility
and hazard maps, all studies on the GIS-based mining subsidence assessment used the term subsidence
hazard map in their title [23,25,28,30,31,34–36,39,40], even though most of the papers used subsidence
maps. Thus, the susceptibility and hazard studies were integrated and analyzed together in this paper.
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Table 2. Analytical methods, verification, and spatial resolution utilized in assessing mine subsidence susceptibility or hazards within a GIS environment.

Reference Map Type Analytical Methods and Techniques Verification/Validation Spatial Resolution Country

Oh and Lee [23] Hazard WoE 1 AUC (ROC) 17 1 m × 1 m Republic of Korea

Suh et al. [24] Susceptibility WoE, Sensitivity analysis AUC (CFD) 18 1 m × 1 m Republic of Korea

Choi et al. [25] Hazard FR 2 AUC (SRC) 19 1 m × 1 m Republic of Korea

Son et al. [26] Susceptibility FR, Radius of influence AUC (CFD) 1 m × 1 m Republic of Korea

Choi et al. [27] Susceptibility Certainty factor analysis,
Fuzzy theory (membership and logic) AUC (SRC) 1 m × 1 m Republic of Korea

Kim et al. [28] Hazard ANN 3 AUC (CFD) 1 m × 1 m Republic of Korea

Lee et al. [29] Susceptibility ANN AUC (CFD) 2 m × 2 m Republic of Korea

Park et al. [30] Hazard ANFIS 4 AUC (CFD) 1 m × 1 m Republic of Korea

Lee and Park [31] Hazard DT 5 AUC (CFD) 1 m × 1 m Republic of Korea

Suh et al. [32] Susceptibility FR, AHP 6, Fuzzy theory N/A (extension software development) N/A 20 Republic of Korea

Kim et al. [33] Susceptibility FR, AHP, Fuzzy theory N/A (extension software development) N/A Republic of Korea

Kim et al. [34] Hazard FR vs. LR 7 AUC (CFD) 1 m × 1 m Republic of Korea

Suh et al. [35] Hazard FR vs. FR-AHP AUC (CFD) 5 m × 5 m Republic of Korea

Bui et al. [36] Susceptibility BLR 8 vs. SVM 9 vs. LMT 10 vs. ADT 11 AUC (ROC) 1 m × 1 m Republic of Korea

Oh et al. [37] Susceptibility BN 12 vs. NB 13 vs. LR vs. MLP 14 vs. LB 15 AUC (ROC) 2 m × 2 m Republic of Korea

Park et al. [38] Hazard Fuzzy logic with FR vs. LR vs. ANN AUC (SRC) 1 m × 1 m Republic of Korea

Oh and Lee [39] Hazard FR vs. WoE vs. LR vs. ANN vs. Integrated AUC (-) 1 m × 1 m Republic of Korea

Oh et al. [40] Hazard Sensitivity analysis using FR AUC (CFD) 2 m × 2 m Republic of Korea

Blachowski [41] Vertical displacement GWR 16 Difference distribution map
(observed vs. predicted) 10 m × 10 m Poland

Cao et al. [42] Vertical displacement GWR Difference distribution map
(observed vs. predicted) Uncheckable China

Hejmanowski and
Malinowska [43] Vertical displacement Knothe model Difference distribution map

(observed vs. predicted) 5 m × 5 m Poland

Djamaluddin et al. [44] Vertical displacement Stochastic method, Knothe model, Fuzzy theory Difference distribution map
(observed vs. predicted) 20 m × 20 m China

Unlu et al. [45] Vertical displacement Finite element model Correlation between measured and
predicted values ≤1 m × 1 m Turkey

1 WoE: weight of evidence, 2 FR: frequency ratio, 3 ANN: artificial neural network, 4 ANFIS: adaptive neuro-fuzzy inference system, 5 DT: decision tree, 6 AHP: analytic hierarchy process,
7 LR: logistic regression, 8 BLR: Bayesian logistic regression, 9 SVM: support vector machine, 10 LMT: logistic model tree, 11 ADT: alternate decision tree, 12 BN: Bayes net, 13 NB: naïve
Bayes, 14 MLP: multilayer perceptron, 15 LB: logit boost, 16 GWR: geographically weighted regression, 17 ROC: receiver operating characteristic, 18 CFD: cumulative frequency diagram,
19 SRC: success rate curves, 20 N/A: not applicable.
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3.1. General Procedure

In general, subsidence susceptibility mapping research comprises the following four stages:
data processing, data analysis, data mapping, and validation (Figure 2). Many GIS techniques, such as
calculation, conversion, interpolation, map algebra, and other functions, are utilized in all these stages.
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Figure 2. Typical flow chart for assessing mine susceptibility within a GIS environment.

The first step is to collect the GIS data from a study area. A variety of geospatial data are
incorporated into the GIS database, such as subsidence inventory maps (zoning or deformation),
mine cavity (drift or panel) maps, topographic maps, hydrology maps, land use maps, road maps,
building maps, geology maps, borehole data, and other site investigation data. Various subsidence
contributory factor variables are selected from such GIS databases and processed as grid cell raster
type thematic layers using GIS-based spatial analysis and interpolation techniques. In the process of
compiling thematic maps, the size of the grid cell (spatial resolution) must be set to a range of 1 m to
10 m considering the extent and size of the study area. Numerous studies have adopted six to eight
subsidence contributing factors. Subsequently, all the collected data are divided into training data
and validation data to perform an unbiased analysis. In general, the ratio of the training area to the
validation area is set to 70%:30%; however, the data split work does not require a theoretical approach.

The second step is to derive and interpret the correlation between past subsidence occurrences
and the considered factors by analyzing and comparing the subsidence inventory map and each factor
map (or all factor maps) spatially based on the analytical method or model. The analytical method or
model includes probabilistic or statistical methods, fuzzy theory, expert systems, machine learning or
deep learning, and an integrated approach. Correlation analysis is frequently performed outside the
GIS environment, such as with the help of statistical analysis solution software or data mining software.
However, when employing a theoretical approach in predicting future subsidence susceptibility,
correlation analysis is not required.

The third step involves determining the subsidence susceptibility index (SSI) across the entire
grid cell of the raster layer and generating a subsidence susceptibility map representing the relative
possibility of subsidence occurrence in the study area in a GIS environment. Areas with high SSI values
(in general, expressed as red shading) show high subsidence potential; therefore, the SSI value can be
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used as a criterion to rank an area in terms of its subsidence hazard. Occasionally, the susceptibility
map is also visualized along with past subsidence zones and nearby elements at risk, such as buildings
or infrastructure.

The fourth step involves assessing the predictive capability (prediction accuracy) of the generated
subsidence susceptibility map. The SSI enables the ranking of areas in terms of the likelihood of
subsidence occurrence. To verify the accuracy of the SSI predictions, the generated subsidence
susceptibility map is compared with a subsidence inventory map showing the distributions of actual
past subsidence occurrences. The most common approach to the verification of prediction maps in
subsidence contexts is to construct a cumulative frequency diagram (CFD) or a success rate curve (SRC)
by comparing the generated map with the locations of past subsidence occurrences and subsequently
calculating the area under the curve (AUC). This technique derives a prediction accuracy in the range
of 50–100% of the proposed prediction model. The yielded prediction accuracy demonstrates the
efficacy of the generated map in subsidence susceptibility predictions.

3.2. Literature Review According to Analytic Methods and Approaches

Subsidence susceptibility/hazard mapping studies can be classified into several groups according
to their quantitative analysis method or approach used to derive and interpret the correlations between
past subsidence and each contributory factor. Table 2 presents 16 analysis techniques applied to
evaluate mine subsidence susceptibility.

3.2.1. Probabilistic/Statistical Approach

Probabilistic/statistical methods are utilized to predict the possibility of future subsidence by
analyzing spatial data from an inventory of past subsidence events; this was done with the assumption
that subsidence occurrences are determined by specific subsidence-related factors, and that future
subsidence events will occur under conditions similar to those of past subsidence events.

Some studies have adopted the weight of evidence (WoE) method, which is a Bayesian probability
model, to assess the susceptibility of mining subsidence. This method calculates the weight for each
predictive factor based on the presence or absence of the training point subsidence units within the
area of each binary predictor theme. Oh and Lee [23] assessed ground subsidence susceptibility
at abandoned coal mine sites in Samcheok city in Korea using GIS and the WoE model. In this
study, seven parameters were considered as subsidence-influencing factors, such as the depth of drift
(cavity), distance from drift (cavity), geology, land use, slope, depth of ground water, and permeability.
The spatial resolution (grid cell size) of the subsidence inventory map and contributory map was set
to 1 m × 1 m. The WoE model was utilized to derive the correlation between the past subsidence
binary value and each contributory factor value. The predicted map showed a 96.67% prediction
accuracy based on the area using the ROC validation technique. Suh et al. [24] evaluated mining
subsidence susceptibility using the WoE model by considering 3D complexed multiple mine drifts and
estimated mined panels rather than employing 2D-based factors such as drift depth and distance to
the mine drift to incorporate the complex effects of ground instability in the influential area. The SSI
was calculated through the application of the WoE model, and it was shown on a map along with
the damage level of buildings located in the mine area (Figure 3). Validation using the CFD–AUC
technique revealed that the suggested approach showed a 5.51% higher prediction accuracy than the
case using 2D-based factors.
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The FR model has also been used to evaluate subsidence susceptibility. The FR is the ratio of
the area where an event (in this case, subsidence) occurred in the total study area and is the ratio
of the probabilities of an event occurrence to a nonoccurrence for a given attribute. The application
process of the FR model for subsidence prediction is similar to that of the WoE method, and the
calculation procedure is relatively simple. Choi et al. [25] predicted areas vulnerable to mining
subsidence near abandoned underground coal mines. This study applied the FR model to determine
each subsidence-influencing factor’s relative rating (for each class of the factor), and then the coefficient
of determination (R2) between past subsidence occurrence and each factor was derived. Unfortunately,
although there were many cases in which the coefficient of determination, which indicates the degree
of relevance between ground subsidence and a specific factor, was less than 0.5 (low correlation),
these factors were considered in the assessment of mine subsidence susceptibility. Son et al. [26]
analyzed mining subsidence susceptibility by combining the FR model and radius of influence concept,
which averages the FR value of each grid cell as well as surrounding cells within the radius of influence
specified from the drift depth and the break angle. The resulting enhancement in prediction accuracy
proved that this technique enabled the reinforcement of preceding statistical approaches by suggesting
method averages. The verification result using the CFD–AUC technique (Figure 4) revealed that the
prediction accuracy of the suggested method (75.90%) was 8.31% higher than that of the existing
method (the radius of influence concept was not considered) (67.49%).
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3.2.2. Fuzzy Theory

Choi et al. [27] applied certainty factor analysis and fuzzy theory to mining subsidence susceptibility
estimations. Certainty factor analysis was used to estimate the relative weight of eight major factors
influencing ground subsidence. The relative weight of each factor was then converted into a fuzzy
membership value (0–1) and integrated as SSI using fuzzy combination operators to generate several
coal mine subsidence susceptibility maps. Consequently, the fuzzy γ-operator with a low γ value and
fuzzy algebraic product operator were specifically useful for ground subsidence prediction. This is a
meaningful case study as an example of applying fuzzy membership functions (FMFs) and various
fuzzy operators (i.e., fuzzy AND, fuzzy OR, fuzzy algebraic product, fuzzy algebraic sum, and fuzzy
gamma operations) to mining subsidence studies. However, the previously mentioned use of the
term ‘subsidence hazard map’ instead of the ‘subsidence susceptibility map’ in this study will need to
be corrected.

3.2.3. Machine Learning and Deep Learning

Because of the recent growing interest in data mining technology worldwide, the use of machine
learning methods for evaluating mining subsidence has become widespread in the last few years.
However, although various deep learning techniques have recently been proposed, only limited
techniques have been used in the field of mining subsidence.

An artificial neural network (ANN) method was utilized to predict ground subsidence in a GIS
environment. Kim et al. [28] attempted to generate subsidence susceptibility maps using the ANN
method with seven factor maps in a GIS environment. The weight of each factor was calculated using
the back-propagation training method. Three-layered feed-forward networks (7 × 15 × 1 structure for
each) were created using the MATLAB software package in this study. A subsidence susceptibility
map was compiled using the determined weights of each factor. The verification results showed a
96.06% accuracy and exhibited sufficient agreement between the presumptive hazard map and the
existing data on ground subsidence area. Similarly, Lee et al. [29] spatially predicted mining subsidence
susceptibility using the ANN technique and eight contributory factors. The analysis procedures and
methods of this study were similar to those of the previous study, except for the structure of the
network (8 × 16 × 1). The results of the relative importance and weights of the factors revealed that the
distance from the fault showed the highest value of 1.5477, followed by the geology factor in this case.
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Park et al. [30] mapped ground subsidence hazards using an adaptive neuro-fuzzy inference
system (ANFIS) model with different types of FMFs. The ANFIS method adopts neural network
learning algorithms and fuzzy reasoning to map inputs into an output. This is similar to the fuzzy
inference system in the framework of adaptive neural networks. The validation results showed
similar prediction accuracy: 95.12% for the generalized bell-shaped MF model and 94.94% for the
Sigmoidal2 MF model, which suggested that the choice of MFs was not important in the study.
The authors of this paper concluded that the ANFIS technique showed an excellent predictive capability
in subsidence prediction by combining the expert system (fuzzy inference) with the learning ability of
the ANN method.

Lee and Park [31] constructed decision trees (DTs) using the chi-squared automatic interaction
detector (CHAID) and quick, unbiased, and efficient statistical tree (QUEST) algorithms to analyze the
relationships between past subsidence and related factors, as well as to map subsidence susceptibility
near abandoned underground coal mines. Both subsidence susceptibility maps achieved by the DT
model showed a better prediction accuracy (94.01% for the CHAID algorithm and 90.37% for the
QUEST algorithm) than the FR model (86.70%).

Bui et al. [36] adopted four machine learning algorithms for land subsidence stability in mining
areas. The four models include Bayesian logistic regression (BLR), support vector machine (SVM),
logistic model tree (LMT), and alternate decision tree (ADTree). The seven subsidence-influencing
factors were selected using the least square SVM technique. As a result, the most important subsidence
conditioning factor for the study area was the distance to the lineament factor. This was followed by land
use, lithology, lineament density, RMR, slope angle, distance to drift, and drift density. The validation
results showed that the BLR model was the most distinguished model for subsidence management.

3.2.4. Comparative Studies

Some comparative studies have been reported in the assessment of subsidence susceptibility.
Suh et al. [32] and Kim et al. [33] developed software called ArcMine as an extension toolbar in the
ArcMap program that enables users to select up to 15 contributing factors as well as to select one to all
methods of FR, FMFs, and the analytic hierarchy process (AHP) technique for comparative analysis
and visualization of the mining subsidence susceptibility in a GIS environment. As a case study,
the prediction accuracies of the two models were compared, such as the fuzzy model and fuzzy AHP
model. The validation result showed that the fuzzy AHP model showed a higher prediction accuracy
than the fuzzy model.

Kim et al. [34] assessed and compared ground subsidence hazards near an abandoned underground
coal mine in Korea using FR and logistic regression (LR) models. This study compared the characteristics
of the two models in the data processing step. The FR model is simple, and the application procedure
is easy to understand. There is no need to convert attribute values to another format because the
FR value can be used as a rating. Conversely, the LR model requires data to be converted to ASCII
format for use in the statistical package and later reconverted to be incorporated into the GIS database.
The verification results showed that the LR model (95.01%) had a better prediction accuracy than the
FR model (93.29%) in the study area. The validation results revealed that both techniques showed a
high predictive performance. Unfortunately, this study did not provide an interpretation of why the
LR model showed a higher prediction accuracy than the FR model. Suh et al. [35] applied two methods
(FR vs. FR–AHP) to generate subsidence hazard maps and compared two maps to determine the most
accurate subsidence hazard map, which is one of the elements needed to compile a subsidence risk
map. The CFD–AUC validation technique revealed that the FR model showed a higher prediction
accuracy than the FR–AHP integrated model. Hence, the FR model-based subsidence hazard map was
selected as one of the elements to map subsidence risk.

In terms of the four machine learning algorithms compared by Bui et al. [36] in predicting
subsidence susceptibility, the ROC-AUC validation technique revealed that the BLR model produced a
higher prediction accuracy compared to other applied models, even though the other models also had
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reasonable results. Similarly, Oh et al. [37] compared the predictive capabilities of different models
in generating mining-induced subsidence susceptibility maps. The ROC–AUC validation technique
revealed that the map generated by the logit boost model, one of the meta-ensemble machine learning
models, showed the highest prediction accuracy (91.44%). This was followed by the logistic (88.92%),
multilayer perceptron (86.76%), Bayes net (86.42%), and naïve Bayes (85.39%) models.

3.2.5. Integrative Studies

Unlike previous techniques, an integrative approach (or ensemble approach) has been proposed
to support subsidence prediction and management of abandoned mine areas. Park et al. [38] proposed
a new approach called the ensemble of several ground subsidence susceptibility maps. First, this study
analyzed the correlation between past subsidence occurrences and related factors and computed the
SSI of entire grid cells using three methods: FR, LR, and ANN. Second, the three SSI index maps
were then used as new input factors and integrated using fuzzy ensemble methods to create better
susceptibility maps. The validation result using the SRC–AUC technique revealed that the ensemble
model was more effective in terms of prediction accuracy than the individual model.

Oh and Lee [39] also generated four different subsidence susceptibility maps of an abandoned coal
mine using FR, WoE, LR, and ANN models and subsequently used the four maps as new input factors
to compile an integrated ground subsidence susceptibility map. As a result, the integrated subsidence
susceptibility maps that used the four new subsidence-related input factors showed a greater accuracy
(96.46% for FR, 97.22% for WoE, 97.20% for LR, and 96.70% for ANN) than the individual subsidence
maps (95.54% for FR, 94.22% for WoE, 96.89% for LR, and 94.45% for ANN).

3.2.6. Sensitivity Analysis

A sensitivity analysis for GIS-based mapping of the ground subsidence susceptibility near
an abandoned underground coal mine was performed to determine the importance of extracted
subsidence-related factors [40]. When comparing the combined effects of all factors except one for
prediction accuracy, the distance from the lineament and the distance from the drift highly affected the
occurrence of ground subsidence, and the groundwater depth, land use, and rock mass rating had the
weakest effects.

Oh and Lee [23] considered seven subsidence-contributory factors in susceptibility mapping
and the area ratio based on the ROC technique in calculating prediction accuracy as a validation.
Then, five other subsidence prediction maps were created using five different combinations of the two
factors among the seven factors. The combinations included the depth of the drift and slope (case 1),
the distance from the drift and depth of ground water (case 2), the distance from the drift and land use
(case 3), the distance from the drift, depth of ground water and land use (case 4), and using geology
and land use (case 5). As a result, when all seven influential factors were considered, the prediction
accuracy was the highest. On the other hand, the combination of depth of drift and slope showed the
worst result of 76.48%.

Suh et al. [24] selected six subsidence-triggering factors to evaluate mine subsidence susceptibility
and performed sensitivity analysis for two purposes: to examine how changes in prediction accuracy
vary when the input factors are changed, and to generate an optimal prediction map by excluding
factors that decrease the prediction accuracy. The prediction accuracies of the subsidence susceptibility
maps based on different combinations of factors were calculated using the CFD–AUC technique.
As listed in Table 3, the prediction accuracy increased when the slope gradient factor was excluded
as an input parameter. This result indicated that the subsidence susceptibility map with five factors
(without slope gradient) was the most appropriate model for the study area.
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Table 3. Sensitivity analysis: prediction accuracy of eight generated subsidence prediction maps
representing combinations of the considered factors (revised from Suh et al. [24]).

Prediction Model Prediction Accuracy (%)

SSI * with all six factors 91.09

SSI with five factors (excluding 3D mine drift) 88.80

SSI with five factors (excluding mined panel) 90.32

SSI with five factors (excluding land use) 90.53

SSI with five factors (excluding proximity to railroads) 89.45

SSI with five factors (excluding proximity to roads) 91.03

SSI with five factors (excluding the slope gradient) 91.11 (Best model)

* SSIs: subsidence susceptibility index.

3.2.7. Vertical Displacement

In this section, unlike previous studies that mainly showed the susceptibility or hazard of mining
subsidence as zoning (horizontal subsided area), several studies have predicted the vertical displacement
(z-axis) based on past actual settlement amounts using regression equations or collapse theories.
These studies usually provided a difference distribution map between observed subsidence and
predicted subsidence. Vertical displacements can have positive and negative increments. The prediction
methods used in this section describe the vertical displacement as subsidences.

The geographically weighted regression (GWR) method, which allows for spatial variability of
subsidence factors, has been applied to map vertical displacement with subsidence zoning. In previous
studies, most of the subsidence inventory data were binary type data, such as 0 (nonoccurrence) or
1 (occurrence). On the other hand, subsidence inventory data used in GWR techniques are mainly
indicative of vertical displacement. Blachowski [41] predicted and mapped vertical displacement
with subsided zoning (in three axis directions) within complicated mining conditions in Poland.
Seven subsidence contributory factor data types and subsidence inventory data between 1886 and
2009 within the study area were used as inputs for the GWR method. As a result, cavity factors
(thickness, inclination, and depth) and surface slope factor were identified as significant parameters.
Using the regression equation between past vertical displacement and factor values, a hybrid map of
subsidence for the entire study area was produced. The maximum predicted subsidence in these areas
was calculated to be −10.5 m. Similarly, Cao et al. [42] adopted the GWR model and five triggering
factors to predict amount of settlement in the Sanshandao area, Laizhou, Shandon Province, China.
The accuracy of determining subsidence in the area used for validation was ±8.5 mm with a maximum
calculated subsidence of −329.26 mm. The maximum subsidence predicted with the model for the
seabed was −63 mm with a mean subsidence of −50 mm.

Conversely, a few studies predicted vertical displacement within mine areas using traditional
theories or empirical equations. Hejmanowski and Malinowska [43] introduced the influence function
methods called Knothe’s theory-based subsidence prediction approach. This theory allowed for the
input of various parameters (e.g., distance from the center of elementary exploitation, volume extracted
in the exploitation part, radius of the range of main influence of mining activities, exploitation depth,
angle of the main influence range, extraction coefficient, and others) to calculate the vertical displacement
for the entire study area. Figure 5 shows a 5 m × 5 m raster grid-based map that demonstrates the
surface subsidence that was measured and predicted, as well as the difference between the two values
in 2005. Djamaluddin et al. [44] simulated the phenomenon of progressive movement distribution and
damage to structures from large sequential coal mining in China using a new 3D GIS coupling model.
This model combines theoretical methods of predicting subsidence over time using a stochastic medium
concept involving the Knothe time function for basic governing equations to calculate progressive
movement. Through coupling with GIS, this model can effectively and spatially model the vertical
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displacement and surface influential range according to the size and shape of the underground mining
area. Unlu et al. [45] proposed a GIS-based integrated approach for ground deformation within coal
mining basins. This approach integrates GIS data analysis, 2D finite element numerical modeling
analysis, a comparison between predicted data, and highly accurate measurement data (i.e., GPS or
InSAR). From the calibration process, the proposed approach provides more accurate results than
those obtained from other classical subsidence prediction methods.
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3.3. Subsidence Contributory Factors

Table 4 lists the subsidence triggering factors utilized to assess mine subsidence susceptibility
within a GIS environment. Nearly 20 factors were considered in subsidence susceptibility mapping.
These factors included mine cavity parameters (depth, thickness, inclination, proximity, density),
the mining method, geological parameters (land use, land cover, proximity to fault, surface geology,
RMR), dynamic loads (proximity to a road or railroad), hydrological parameters (surface runoff,
groundwater, permeability), topological parameters (elevation, ground slope), and time parameters.
This result indicated that mine subsidence can be caused by interactions among many factors,
including internal geotechnical aspects, external dynamic loads, and human mining activities. The result
also showed that the minimum number of the influential factors considered for each study was 3
and the maximum number was 11. Most of these studies adopted six to eight parameters to predict
subsidence susceptibility.
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Table 4. Contributory factors considered in assessing and mapping mine subsidence susceptibility or hazards within a GIS environment.

Reference

Contributory Factors ∑
Cavity

Depth 1
Cavity

Thickness
Cavity

Inclination
Distance
to Cavity

Cavity
Density

Mining
Method

Distance to
Lineament 2

Distance to
(Rail)Road

Land
Use/Land

Cover
Geology RMR Runoff/

Groundwater Permeability Elevation Ground
Slope Time

Oh and Lee [23] • • • • • • • 7

Suh et al. [24] • • • • • • 6

Choi et al. [25] • • • • • • • • 8

Son et al. [26] • • • • • 5

Choi et al. [27] • • • • • • • • 8

Kim et al. [28] • • • • • • • 7

Lee et al. [29] • • • • • • • • 8

Park et al. [30] • • • • • • • 7

Lee and Park [31] • • • • • • • • 8

Suh et al. [32] • • • • • • • • • • • 11

Kim et al. [33] • • • • • • • • • • • 11

Kim et al. [34] • • • • • • • • • 9

Suh et al. [35] • • • • • •• • 8

Bui et al. [36] • • • • • • • 7

Oh et al. [37] • • • • • • • • 8

Park et al. [38] • • • • • • • 7

Oh and Lee [39] • • • • • • • 7

Oh et al. [40] • • • • • • • • 8

Blachowski [41] • • • • • • • 7

Cao et al. [42] • • • • 4

Hejmanowski and
Malinowska [43] • • • • • 5

Djamaluddin et al. [44] • • • • • 5

Unlu et al. [45] • • • 3∑
19 7 5 21 3 2 9 4 16 16 12 15 10 3 21 1

1 Cavity includes mine drift, mined panel. 2 Lineation refers to geological lineament or discontinuity such as faults.
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Distance to the nearest cavity, ground slope, and cavity depth factors were frequently used as input
factors (in more than 80% of studies), followed by land use/land cover, geology, runoff/groundwater,
and RMR factors (adopted in more than 50% of studies). Clearly, the influential factors frequently used
in past studies have made substantial contributions to subsidence events. However, these studies
have not necessarily considered that some factors are less relevant to ground subsidence because they
are also affected by difficulties in collecting GIS data. Typically, the mine cavity density can be an
important factor in predicting ground subsidence zoning because horizontal density or vertical overlap
of underground cavities can be evaluated. In addition, the stability of the underground cavity is
degraded over time, so the time factor can also be important. These problems require further research,
such as numerical analysis or experiments of individual factors.

These various mine subsidence-influencing factors support that GIS can be effectively used to
derive and analyze the influential factors of mine subsidence. The mine cavity density was calculated by
applying a spatial density analysis technique to mine cavity polyline data. In addition, proximity factors
such as distance to a mine cavity, geological lineament, road, and railroad are newly created through
the distance analysis function of GIS. In the case of RMR or permeability factors, they are compiled by
applying the geostatistical interpolation method of GIS to point-type borehole data. The elevation or
slope of the topography was produced via the topographic slope analysis function. These geospatial
influential factors enable the evaluation and prediction of ground subsidence from diverse perspectives.

4. Mine Subsidence Risk Assessment and Mapping

Many researchers have sought to assess the subsidence risk arising from mining activities. Table 5
summarizes the subsidence hazard factor, exposure item, vulnerability item, final risk item visualized
in the map, and the spatial resolution of grid cells in the published literature investigated in this
study. Most studies adopted buildings, land, road networks, and infrastructure as exposure factors to
compute the risk arising from subsidence, whereas another study addressed agricultural crop areas
at risk. In the case of a risk item as a final result, there were more studies showing a subsidence risk
index and zone from a relative perspective than studies showing risk as an absolute number of loss or
cost. In these studies, the spatial resolution (cell size) of the subsidence risk map was lower on average
compared with those of the subsidence susceptibility maps.

4.1. General Procedure

As mentioned in Section 2, subsidence risk can be quantified by multiplying the subsidence hazard
index, exposure intensity index, and vulnerability index. Consequently, in the process of creating the
subsidence risk map, in addition to the subsidence hazard mapping procedure (Figure 2), generations of
an exposure map and a vulnerability map as well as multiplication of the three maps is added, as shown
in Figure 6. In this section, an exposure map shows an element at risk caused by mining subsidence,
and a vulnerability map shows the element at risk. Strictly, the resulting subsidence risk map contains
the expected annual cost or loss from an absolute point of view [20]. This is ascribed to the subsidence
hazard already containing the concept of the probability of occurrence. Because subsidence risk
mapping is a complex and difficult task, most of these studies lack a verification of the risk result.
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Table 5. Summary of three elements considered in assessing and mapping mine subsidence risk within a GIS environment.

Reference Hazard Factor Exposure Factors 1 Vulnerability Factors Risk Item Spatial Resolution Country

Malinowska and
Hejmanowski [46]

Terrain deformation
(category) Building Building resistance (strength) Building damage 100 m × 100 m Poland

Mancini et al. [47] Terrain deformation
(sinking rate) Building

Presence/absence of building
(V = 1 for goods
and properties,

V = 0 for people’s life)

Relative risk map
(1–5 classes) 50 m × 50 m Bosnia and Herzegovina

Tzampoglou and
Loupasakis [48] Susceptibility Land and Road network

Rating each class for land
and road network by

experts’ opinion

Relative risk map
(very low to very high) 10 m × 10 m Macedonia, Greece

Suh et al. [35] Susceptibility Building and Infrastructure Distributions and depth of
mine drift

Relative risk map
(very low to very high) 5 m × 5 m Republic of Korea

Darmody [49] Hazard Agricultural (crop) area Soil subsidence sensitivity Corn yield loss 10 m × 10 m United States of America
1 Exposure factors refer to the element at risk due to mining activities.
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4.2. Literature Review According to the Element at Risk

4.2.1. Buildings and Infrastructures

Several studies considered buildings or infrastructures as elements at risk associated with mining
subsidence events.

Among them, some studies adopted the terrain deformation value as an element for estimating
subsidence risk. Malinowska and Hejmanowski [46] assessed building damage in mining terrains
based on a comparison between building strength and terrain deformation using a theoretical method
in a GIS environment. This study predicted surface subsidence caused by coal and copper ore
underground exploitation by employing the Polish approach from the influence function of Knothe’s
theory. Subsequently, the overall hazardous impact of mining on buildings (within a densely built up
area) at the planned mining extraction site in selected periods of time was assessed by evaluating mining
impacts on the surface, the resistance of objects in mining areas, and hazards in order. A fuzzy inference
system was used to identify the damage classification (final form of result), such as structural buildings,
to assess the impact of subsidence on surface properties. Mancini et al. [47] assessed salt mining
activities related to risk at Tuzla (Bosnia and Herzegovina) by evaluating building density and intensity
classes for four different hazards: deformation (sinking rate), water table rise, superficial fracture
density, and deep fracturing. Using a multi-criteria decision analysis method including the FMF
and AHP techniques, this study generated a final risk map with five severity classes over the area
of abandoned salt mines, where care must be taken by urban planners and local administrators in
their actions.

Conversely, a few studies used subsidence susceptibility maps as an alternative to subsidence
hazard elements to estimate subsidence risk. These studies visualized the degree of subsidence risk due
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to mine development in five stages from very low to very high from a relative perspective. Tzampoglou
and Loupasakis [48] mapped mining geohazard susceptibility and risk around the Amyntaio open-pit
coal mine, West Macedonia, Greece, using GIS techniques. In this study, a subsidence susceptibility map
was produced by the semi-quantitative method weighted linear combination (weight of factors and rate
of each class within the factor). Subsequently, two thematic maps (i.e., land use and a road network)
were considered as exposure elements to assess the subsidence risk. However, the vulnerability of the
elements above was not considered in this study. Suh et al. [35] presented a GIS model to generate a
subsidence priority map representing the relative risk of mine subsidence to buildings, which included
residential and commercial buildings, playgrounds, gas stations, and other infrastructure. This study
evaluated a subsidence hazard map based on the FR model. Subsequently, the subsidence hazard map
was overlain with an exposure intensity map (building density) and vulnerability map (considering
the distributions of buildings and depths of drift lines) to generate a subsidence risk map (Figure 7).
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4.2.2. Agricultural Crop Area

A unique study that selected an agricultural crop area as an element exposed to the risk of ground
subsidence was also found. Darmody [49] modeled agricultural impacts of longwall mine subsidence
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in Illinois, United States, using a GIS approach and a predictive model of agricultural soil subsidence
sensitivity (SSS). The SSS model involves the integration of selected soil properties in a GIS to assign a
subsidence sensitivity score to a given area. This study predicted annual crop yield losses of 6.8% at a
suggested longwall mine area as a reference and revealed that mitigation of the affected areas would
reduce average annual crop yield losses to 1.2% for the entire longwall area (Table 6).

Table 6. Predicted annual corn yields before and after longwall mining in the permit area (Darmody [49]).

Mine Panel SSS Score *
Initial Yield Subsided Yields Mitigated Yields

Total (Mg) Mg/ha Total (Mg) Mg/ha % Loss Total (Mg) Mg/ha % Loss

1 9.9 312 6.43 297 6.12 4.8 309 6.38 0.7

2 10.7 327 6.37 309 6.01 5.6 324 6.31 0.9

3 8.7 268 6.32 256 6.03 4.6 266 6.28 0.7

4 10.4 349 6.55 331 6.22 5.1 346 6.50 0.7

5 8.9 281 6.25 270 5.99 4.1 280 6.21 0.5

6 8.6 267 6.57 257 6.25 4.7 268 6.52 0.6

7 8.9 259 6.63 242 6.20 6.5 256 6.56 1.1

8 10.0 321 6.31 308 6.05 4.2 319 6.28 0.6

9 12.9 394 6.78 366 6.31 7.0 390 6.70 1.1

10 11.8 346 6.48 322 6.03 6.8 342 6.41 1.1

11 15.1 477 7.15 439 6.58 7.9 470 7.05 1.4

12 16.9 508 7.66 460 6.93 9.5 499 7.52 1.7

13 16.5 528 8.01 480 7.27 9.1 519 7.87 1.7

14 16.0 551 8.17 504 7.48 8.5 542 8.03 1.7

15 15.7 535 8.04 490 7.37 8.4 526 7.91 1.6

16 13.4 528 8.06 498 7.59 5.8 523 7.98 1.1

17 13.6 462 7.78 433 7.29 6.2 456 7.68 1.2

All 12.3 6716 7.14 6262 6.65 6.8 6637 7.05 1.2

* Score based on the soil subsidence sensitivity model.

Although the subsidence susceptibility values from this type of predictive modeling are not
absolute and represent only a relative degree of hazard, they can provide a measure of subsidence
initiation localities and assist in designing an effective subsidence warning management system
(specifically, the area with high subsidence potential without past subsidence occurrences). Furthermore,
a subsidence risk map enables decision makers to make appropriate choices and take measures that
consider profit and loss. In this sense, these kinds of studies are important for both engineers and
planners involved in the design and implementation of hazard mitigation and management systems in
abandoned mine areas.

5. Discussion

The limitations and future improvements of GIS-based mine subsidence studies to date are
described in this discussion.

5.1. Uncertainty of Subsidence Inventory Data and Time Effect

Input data (i.e., subsidence inventory map and influencing factor map) must be accurate and
reliable because they can have a significant influence on the subsidence prediction result. However,
numerous GIS-based subsidence studies investigated in this paper have data uncertainty problems
from two perspectives.

The first is the diversity of mining subsidence types. In general, mine subsidence occurs in various
forms such as continuous (trough) settlement, discontinuous (sinkhole) subsidence, cracks, curvature,
and other phenomena. The cause and degree of damage for each type differ. Therefore, the diversity
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of the types of ground subsidence should be considered in the subsidence inventory data. However,
most of the studies investigated so far only visualize the zoning information of ground subsidence.
Therefore, it is necessary to classify the types of ground subsidence, analyze their cause, and predict
the possibility of future occurrence. The second is the elapsed time effect (timing of the creation)
of the underground mining cavities. According to published literature on the relationship between
subsidence and time [1,50,51], the strength of the rock in the upper part of the underground cavity
decreases owing to various causes, such as sagging caused by a loss of bearing capacity and changes in
the groundwater level over time. In other words, even if it is safe, the probability of ground subsidence
will increase over a long period of time (e.g., residual subsidence). Therefore, it is necessary to consider
factors such as the elapsed time after the mine is abandoned in addition to the location data of the
underground cavity in future studies. This part is also related to the development of 4D GIS that
considers temporal aspects in 3D space.

5.2. Lack of Interpretation of the Cause of the Prediction Accuracy Difference (Applicability of Analytic Methods)

Most of the studies discussed in this review have presented the prediction accuracy for composed
subsidence prediction maps based on specific analytical methods or approaches. In comparative
studies [32–38], the prediction accuracies based on two or more methods applied to subsidence
prediction mapping were compared, and some papers have compared their prediction accuracy with
those of other studies to verify the superiority of the proposed analytical methods or approaches.
However, it is difficult to find studies that faithfully present the interpretations or evidence for why
method ‘A’ has a higher prediction accuracy than method ‘B’. The use of method ‘A’ is often mentioned as
more appropriate in the study area or in the subsidence prediction study because the prediction accuracy
of method ‘A’ is higher. Alternatively, these studies may contain the interpretation that machine
learning or deep learning techniques consider more factors than the general probability/statistical
technique in which the characteristics of the contributory factors are not considered.

To enhance GIS-based subsidence research, it is necessary to determine the correct answer to this
research gap. The prediction accuracy can be varied according to the reliability of the subsidence
occurrence data, cell size, characteristics of the study area, influential factors, and the characteristics of
the applied technique. However, it is crucial to carefully investigate the characteristics and applicability
of each analysis technique applied to subsidence data. To this end, it is necessary to identify the
cause of the difference in the prediction accuracies and the applicability of the analytical methods by
producing subsidence test sites and GIS data, and by applying various analytical methods under the
same conditions.

5.3. Subsidence Map for Evaluation or Prediction

Most mining subsidence studies have generated subsidence susceptibility maps over specific study
areas by analyzing correlational information (values or equations) between maps of past subsidence
occurrences and the contributory factors. Subsequently, they tend to present subsidence inventory maps
overlain on generated subsidence susceptibility maps and simply analyze whether the locations of past
subsidence occurrences matched regions with high subsidence potential. Certainly, such verification
assists in the examination of the prediction accuracy and reliability of GIS analysis models used in
these studies. However, this type of interpretation is simply ‘evaluation’ and does not encompass
‘prediction,’ Perhaps logically, regions of past subsidence are shown to have high subsidence potential
in a subsidence susceptibility map irrespective of the method used, because it was used to derive the
correlation. Moreover, the danger associated with regions of subsidence identified from the subsidence
inventory map is already known. To extend the function of the generated map from ‘evaluation’ to
‘prediction,’ interpretation and discussion regarding areas with high subsidence potential, without past
subsidence occurrences, should be addressed in future studies. These regions should also be included
as locations where detailed site investigations or engineering measures are required to minimize the
risks associated with ground instability.
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5.4. Why Is Subsidence Risk Mapping Difficult?

Clearly, the number of case studies on subsidence risk investigated in this study is small compared
with that of subsidence susceptibility/hazard mapping studies. A prediction of the geohazard (including
subsidence) risk is still a highly difficult task. This difficulty can be ascribed to several reasons.

The first is because of difficulties associated with the analysis of the temporal probability of
a subsidence event. As mentioned in Section 5.1, the probability of subsidence occurrence caused
by underground cavities varies depending on the elapsed time after creation, and it is difficult to
accurately determine the time of subsidence in rural areas. The second is because of the difficulties
associated with the evaluation of subsidence vulnerability at risk. The vulnerability of an element at
risk can be affected by the element’s own characteristics (e.g., strength of the buildings) as well as the
subsidence hazard. Hence, it is difficult to determine whether the degree of vulnerability is caused by
a subsidence event or its own characteristics if a full investigation is not conducted. These aspects are
similar to the difficulty of mapping landslide risk [52]. Third, the damaged area of mine subsidence
may not be sufficiently wide. Compared with other geological disasters such as landslides, floods,
and earthquakes, the influential ground area affected by mining activities is relatively small. For these
reasons, the number of studies on subsidence risk mapping is considerably smaller than that of studies
based on risk from other geological disasters.

6. Conclusions

In this study, the types and characteristics of GIS-based engineering geology maps were introduced,
and various analytical methods and mapping cases for mine subsidence were reviewed. The typical
procedure for mapping the mine subsidence susceptibility was presented, and various influential
factors and analytic techniques considered in the evaluation, e.g., verification methods, grid cell sizes,
and countries, were carefully investigated. Moreover, the method of mapping the subsidence risk
was introduced, and the elements exposed to the risk and the type of final result were summarized.
GIS technology has been proven to be effectively used in the process of processing and analyzing the
mine subsidence from the geospatial perspective.

However, numerous studies on subsidence susceptibility mapping, which show the zonation of
the relative spatial probability of future subsidence events, are incorrectly described as the subsidence
hazard mapping in their title, which indicates the annual probability of a subsidence event. As such,
researchers must pay attention to their choice of terminology when formulating their final map or title.
In addition, as various deep learning techniques have recently been developed, it will be necessary to
apply these techniques in mining subsidence prediction and to identify why a specific model is the
most appropriate for subsidence prediction. Moreover, the published literature studies investigated in
this paper do not include all studies on mining subsidence GIS. For example, numerous published
literature sources where the GIS technique was applied to the mining subsidence were excluded
because they are not included in the three map types according to the classification of engineering
geological maps. In future research, it would be interesting to extend the scope of mining subsidence
GIS research from various perspectives.

Although the subsidence susceptibility values from the various types of geospatial predictive
models are not absolute and represent only a relative degree of hazard, they provide a measure of
subsidence initiation localities and assist in the design of effective subsidence management systems.
Furthermore, a subsidence risk map enables decision makers to select appropriate decisions and to take
suitable measures from an economic perspective considering profit and loss. In this sense, these types
of studies are helpful for both engineers and planners involved in the design and implementation of
risk mitigation and management strategies in mining areas.
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Abbreviations

The following abbreviations are used in this manuscript:

GIS Geographic information system
InSAR Interferometric synthetic aperture radar
UAV Unmanned aerial vehicle
RMR Rock mass rating
SSI Subsidence susceptibility index
CFD Cumulative frequency diagram
SRC Success rate curve
AUC Area under the curve
WoE Weight of evidence
FR Frequency ratio
ANN Artificial neural network
ANFIS Adaptive neuro-fuzzy inference system
DT Decision tree
CHAID Chi-squared automatic interaction detector
QUEST Quick, unbiased, and efficient statistical tree
NCB National coal board
FMF Fuzzy membership function
AHP Analytic hierarchy process
LR Logistic regression
BLR Bayesian logistic regression
SVM Support vector machine
LMT Logistic model tree
ADT Alternate decision tree
BN Bayes net
NB Naïve Bayes
MLP Multilayer perceptron
LB Logit boost
GWR Geographically weighted regression
ROC Receiver operating characteristic
CFD Cumulative frequency diagram
SRC Success rate curves
N/A Not applicable
SSS Soil subsidence sensitivity
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