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Abstract: In recent years, the number of machine learning applications (especially those involving deep
learning) applied to predicting and discovering material properties has been increasing. This paper is
based on using microstructure and carbon content to train machine learning models to predict the
residual stress of carburized steel. First, a semantic segmentation model of the material organization
structure (SegModel-MOS) was constructed based on the AlexNet network and initially trained on
the PASCAL VOC2012 dataset. Then, the trained model was fine-tuned on an enhanced homemade
dataset consisting of optical microstructures. The experimental results show that SegModel-MOS can
distinguish acicular martensite, retained austenite, and lath martensite in microstructures. Finally, we
used both support vector machine (SVM) and decision tree (DT) algorithms to establish a mapping
relationship between the microstructure, carbon content, and residual stress to predict the residual
stress of steel from its microstructure and carbon content. The experiments verified that the prediction
model constructed in this study exhibits high accuracy and can directly predict residual stress without
requiring any long-term measurements. Thus, the developed model provides a new approach to the
study of residual stress in steel.
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1. Introduction

Carburized steel specimens are subject to complex friction, wear, and cyclic stresses during service.
The steel surface is most prone to fatigue failure [1–4]. Under certain load conditions, the maximum
stress of the part is also often generated on the part surface. Therefore, increasing the strength of
the surface of a part and increasing its residual compressive stress both play key roles in increasing
its fatigue life. Residual compressive stress can suppress the initiation of surface cracks, thereby
improving the fatigue life of manufactured parts [5,6]. However, because residual stress field tests
are lengthy and damage the component, we instead aimed to predict the residual stress of steel using
its microstructure and carbon content based on a data-driven method. This approach can be used to
conduct performance analysis for most low-alloy carburized steels. Thus, it provides a new method
for research into the performance of carburized steels.

At present, as material databases have increased, many machine learning applications have
been developed to predict the mechanical properties of materials. For example, Shen et al. [7],
during the heat treatment process, analyzed the alloying elements of steel, which are the parameters
that most directly determine structural aspects such as the content and morphology of martensite
matrix, retained austenite, and precipitates. An SVM-PM model was built using alloy elements to
predict hardness. Ampazis et al. [8] proposed using a support vector machine (SVM) to predict the
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degradation of mechanical properties of Al2024-T3 aluminum alloy used in aircraft due to surface
corrosion. However, both the chemical composition and microstructure of materials determine their
mechanical properties. The above studies considered only the influence of chemical composition on
mechanical properties; they did not consider the influence of organization on mechanical properties.
To establish the relationship among chemical elements, microstructure, and mechanical properties, the
microstructure must first be accurately identified. Thus, it is critical to be able to accurately segment
photos of steel microstructures [9–15].

A neural network establishes a mapping from a feature space to a target attribute without
considering any complex internal transformation laws; instead, it transforms the process into a set of
trainable weights that can theoretically approximate any type of nonlinear transformation. Therefore,
an increasing number of researchers have applied neural networks to various image segmentation tasks.
In the metallurgical field, Masci et al. [16] used a convolutional neural network (CNN) for segmentation
to discover defects in steel and laid the foundation for deep learning to identify microstructures. Later,
Bai Long et al. [17] used an SVM to extract the morphological features of cast iron. Dmitry et al. [18]
used a random forest (RF) statistical algorithm to identify steel microstructures; their method can
process large numbers of images rapidly. Azimi et al. [19] used a fully convolutional neural network
(FCNN) to perform pixel-level segmentation of steel microstructures. These studies laid the foundation
for the precise segmentation of microstructures.

However, the above studies used convolutional neural networks exclusively to recognize photos
acquired by scanning electron microscopy (SEM); they did not address recognizing complex optical
photos. Therefore, this study used a fully convolutional neural network combined with transfer
learning and residual blocks to semantically segment optical microscopy images [20,21]. During this
process, (1) transfer learning was used to solve the problem of insufficient network generalization
ability due to fewer training samples, and (2) the residual block prevented overfitting. After the
microstructure had been accurately segmented, an SVM classifier was used to predict the residual
stress of carburized steel.

According to Northwood et al. [22], the amount of retained austenite and the residual stress
increase as the carbon content increases, and they decrease after tempering. Deng et al. [23] found that
as the carburizing temperature and carbon potential increase, the amount of carbon in the carburized
layer increases, which in turn leads to an increase in residual stress and inhibits the initiation of cracks.
Yang et al. [24] studied the calculation model for retained austenite, martensite, and residual stress
by using the finite element method under different carburizing processes. The results show that the
established model is effective at calculating the residual stress field of the martensitic transformation
during the quenching process of the steel specimen. However, the above description stems from only
a simple study of the relationship between residual stress and microstructure or residual stress and
carbon content; there has been no systematic study of residual stress and microstructure or carbon
content. Because residual stress depends primarily on the cooling process, the volume expansion of
the martensite transformation caused by the different surface carbon contents expands by different
degrees. In addition, after quenching, the surface of the martensite structure is inconsistent with that
of the transition layer and the core. Using the C content and the tissue gradient to predict residual
stress should improve the accuracy.

In the work detailed in this paper, the carbon content of the surface-to-subsurface areas of
the carburized and quenched surfaces of 23CrNi3Mo steel was gradually reduced. The volume
expansion caused by martensitic transformation was gradually reduced from the surface to the
core, resulting in greater residual compressive stress at the surface than in the core. The material
organization structure segmentation model (SegModel-MOS) model used for semantic segmentation
of optical micrographs was based on AlexNet and trained with 1200 homemade optical microstructure
images. The experimental results demonstrate that SegModel-MOS effectively identifies needle-shaped
martensite, residual austenite, and lath martensite from microstructure images. The main contributions
of this article are as follows:
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1. A high-precision semantic segmentation model for optical micrographs, named SegModel-MOS,
is established. This model combines migration learning and a residual network to achieve
accurate image segmentation after training with small numbers of data samples.

2. In this paper, the SVM algorithm is first used to establish a mapping relationship with the residual
stress based on the percentage and carbon content of acicular martensite, retained austenite, and
lath martensite steel microstructures; then, it predicts the residual stress.

2. Preparation of Optical Microstructure Pictures

2.1. Experimental Process

Five groups of 23CrNi3Mo steel rod-shaped samples with a diameter of 10 mm and a length of
50 mm were selected, and the rod surfaces were polished with 3000 grit sandpaper. The carburizing
experiment was performed at a fixed carburizing temperature of 930 ◦C, but the carburizing times
were varied. In Table 1, Processes 1 to 5 are carburizing heat treatment processes. After carburizing
was complete, the temperature was reduced to 860 ◦C for 0.5 h, and then the steel was oil-quenched.
The quenching temperature was selected (1) to reduce the sample deformation and (2) to reduce the
retained austenite content as much as possible. Thus, 860 ◦C was used as the quenching temperature
based on the phase transformation point, and the sample was maintained at this temperature for 0.5 h
to ensure a stable sample temperature. Subsequent tempering was performed at 200 ◦C for 2 h to
obtain a tempered martensite structure, reduce brittleness, and obtain excellent strength and toughness.
Generally, a tempering time no longer than 2 h results in minimal alteration of mechanical properties.
Therefore, tempering was performed at 200 ◦C for 2 h. Then, the sample was removed and air-cooled.

Table 1. Heat treatment process.

Carburization Processes Oil Quenching
Temperature

(◦C)

Tempering
Temperature

(◦C)

Tempering
Time (h)Carburizing

Temperature (◦C)
Boost Stage

Time (h)
Diffusion Stage

Time (h)

Process 1

930

2 2

860 200 2

Process 2 2 4

Process 3 3 4

Process 4 4 4

Process 5 6 6

2.2. Optical Micrograph

Microstructure samples with a thickness of 10 mm were obtained along the cross-section of the
raw material bar by wire cutting. The observation surface was first ground with metallographic water
sandpaper (#800 to #5000) and then polished on a metallographic polishing machine with a 0.5 µm
diamond polishing agent. Then, the polished sample was placed in alcohol for ultrasonic cleaning
and dried with a hairdryer after cleaning, as shown in Figure 1, which depicts the microstructure
of a sample from the surface to the core. This experiment used five processes and obtained 1200
microstructure photos for SegModel-MOS training and testing.
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Bedroom machine tools were used to strip the carburized parts; each stripping thickness was the 

same as the residual stress stripping thickness. Then, the JS-HW2000A high-frequency infrared 

carbon and sulfur analyzer was used to measure the carbon content of each layer of metal powder. 

The measurement error of the analyzer is 0.0001–0.05%, and it measures the gradient change in the 

carbon content of the carburized layer. Figure 2 presents some of the data measurement points and 

the corresponding carbon content. During the carburizing process, a high concentration of activated 

carbon atoms forms on the surface of the workpiece, is adsorbed into the surface of the workpiece, 

and then diffuses to the core of the workpiece, gradually forming a carbon concentration gradient. 

 

Figure 2. (a) The measured points in sequence; (b) the change in the surface carbon content. 

Figure 1. Optical micrographs from the surface to the heart of the Process 1 sample: (a) carburized
surface layer; (b) transition layer; (c) black (acicular martensite); white (retained austenite); (d) yellow
(lath martensite).

2.3. Residual Stress and Residual Austenite Testing

The electrochemical method was used to strip the sample; then, the residual stress of each layer
was tested using the Italian GNR STRESS-X residual stress analyzer. The quenching stress field had
the characteristic of the stress gradient of the near-surface layer being relatively large. Therefore, when
designing the stripping thicknesses, the stripping thickness of the near-surface layer was small. As the
depth increased, the stripping thickness gradually increased. After measuring the residual stress of
each layer, the residual austenite was measured, and a dial gauge-height meter was used to measure
the height of the test before and after delamination.

2.4. Carburizing Layer Carbon Content Measurement

Bedroom machine tools were used to strip the carburized parts; each stripping thickness was
the same as the residual stress stripping thickness. Then, the JS-HW2000A high-frequency infrared
carbon and sulfur analyzer was used to measure the carbon content of each layer of metal powder.
The measurement error of the analyzer is 0.0001–0.05%, and it measures the gradient change in the
carbon content of the carburized layer. Figure 2 presents some of the data measurement points and
the corresponding carbon content. During the carburizing process, a high concentration of activated
carbon atoms forms on the surface of the workpiece, is adsorbed into the surface of the workpiece, and
then diffuses to the core of the workpiece, gradually forming a carbon concentration gradient.
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3. Method

3.1. Data Processing

1) Data processing: The image resolutions in the dataset were not uniform; their lengths and widths
ranged between 200 and 550 pixels. The minibatch training method requires the input image
size to be consistent; therefore, the input images needed to be cropped. First, the long side of
the image was left unchanged, and padding was added to both sides of the image (pixels with 0
values were added). Then, nearest-neighbor interpolation was used to scale the image to 384 ×
384. This processing step not only yields input images of the same size but also ensures that the
aspect ratio of the original image is unchanged and that the structural information of the target is
retained to the utmost degree. Although this method adds considerable padding, the network
treats it as redundant information; thus, the added pixels are not used during training. It should
be noted that the original images were also cropped, and the ground truth labels of the image
needed to be cropped accordingly.

2) Data enhancement: Although the CNN greatly reduces the number of parameters that must be
learned due to its weight sharing function, the number of parameters in the network still reaches
hundreds of millions. This enormous number of parameters requires large amounts of data;
training from too few data samples will lead to insufficient network generalizability, overfitting,
and other problems. To enrich the data samples, the following data augmentation operations
were performed on the training set: (1) horizontal flipping: during the training process, each
iteration flipped the image left or right at a probability of 0.5; (2) panning: the input image was
randomly translated horizontally and vertically within a range of 20 pixels; (3) rotation: the image
was rotated randomly at an angle, ranging from −20 to 20◦; (4) noise: Gaussian random noise
with a mean of 0.2 and a variance of 0.3 was added to the image.

3) Data set labeling and production: To identify steel microstructures, it was first necessary to use a
labeling tool such as LabelMe to manually mark the positions of acicular martensite, retained
austenite, and lath martensite in the original image data, as shown in Figure 3. A total of 1200
material microstructure pictures were marked. During the marking process, the microstructure
label information of the microstructure was stored in an XML file format that included the path
and file name of the original picture, the size of the picture, the label names “Acicular martensite”,
“Retained austenite”, and “Batten martensite” (the same categories as in SegModel-MOS training)
and the positional information of each label box. The file format complied with the PASCAL
VOC data format, which includes two main folders: Annotations and JPEGImages. The former is
mainly used to store the XML files containing the tags, and the latter is used to store the original
image data. Finally, the PASCAL VOC data format was converted into a TFRecord data file,
which is a binary file that combines images and labels together to make better use of the memory
in TensorFlow [25] and achieve fast copy, move, store, read, and other data operations.
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3.2. The Structure of the Material Organization Structure Segmentation Model (SegModel-MOS)

Semantic segmentation is an important field in computer vision that refers to identifying image
content at the pixel level by marking the object category to which each pixel in the image belongs.
Common applications include self-driving cars [26–30] and medical image diagnosis [31–33]. In 2014,
Long and others at the University of California, Berkeley proposed a fully convolutional network
(FCN) [34] that allowed a CNN to perform dense pixel prediction without a fully connected layer,
which popularized CNNs. The easiest way to build a neural network architecture for semantic
segmentation tasks is to simply stack multiple convolutional layers (of the same sizes to retain the
required dimensions) and output the final segmentation graph. This approach learns a mapping
from the input image to its corresponding segmentation through the continuous transformation of
feature maps.

In this study, a segmentation model for the material organization structure (SegModel-MOS)
was built on AlexNet, as shown in Figure 4. Our goal was to segment the content types in the SEM
image rather than classify the image. Thus, we removed the last fully connected layer and the last
convolutional layer of the AlexNet network and added residual blocks between the convolutional
layers of the AlexNet to prevent overfitting. The deconvolution operation was performed in the
remaining layers of the network, as shown in Figure 4. First, a convolution layer was added based on
L1, and then bilinear interpolation deconvolution was performed with a step size of 2 on the output of
the convolution layer. Another convolution layer was then added based on L2. Then, the output of the
convolution layer and the deconvolution result of L1 were added and fused, and bilinear interpolation
deconvolution with a step size of 2 was performed. Finally, a convolutional layer was added based on
L3. The output result of this convolutional layer was added and fused with the deconvolution result of
L2, and then a bilinear interpolation deconvolution layer with a step size of 8 was applied. After each
convolution layer, a linear rectifier unit (ReLU) was used as the activation function. Table 2 lists some
of the parameters of the SegModel-MOS network.
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Figure 4. Material organization structure segmentation model (SegModel-MOS) architecture.

Table 2. SegModel-MOS parameters.

Layer Input Shape Filter Kernel Size Stride Output Shape

L1
Conv [batch, 14, 14, 1024] 21 (3, 3, 1024) (1,1) [batch, 16, 16, 21]

Deconv [batch, 16, 16, 21] 21 (3, 3, 21) (2,2) [batch, 34, 34, 21]

L2
Conv [batch, 32, 32, 512] 21 (3, 3, 512) (1,1) [batch, 34, 34, 21]

Deconv [batch, 34, 34, 21] 21 (3, 3, 21) (2,2) [batch, 70, 70, 21]

L3
Conv [batch, 64, 64, 256] 21 (3, 3, 256) (1,1) [batch, 70, 70, 21]

Deconv [batch, 70, 70, 21] 21 (3, 3, 21) (8,8) [batch, 500, 500, 21]
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3.3. SegModel-MOS Training

(1) Model training: The SegModel-MOS model was first trained on the PASCAL VOC2012 [35]
dataset. After the model had been trained for 800 steps, its verification set accuracy was 85%. At that
point, the model began to overfit, and the validation set accuracy underwent a downward trend.
After the model has been trained to 3000 steps, the accuracy of the model test was 80%. During
the model training process, in this study, we saved the trained model at each step. Using an early
termination criterion [36], we selected the model version before it began to overfit (that is, the version
where the model was trained for 800 steps) and conducted migration learning using our own method.
The enhanced data of the acquired microstructure map were used to train the model. Taking 80%
of the enhanced dataset as training data and 20% as test data, the model was trained and validated
numerous times, and the neural network hyperparameter learning rate, optimization algorithms, and
batch size were searched. First, the initial value for each hyperparameter was set based on empirical
intuition; then, a greedy algorithm was used to gradually adjust each hyperparameter. Finally, the
network weights with the best performances on the test set were identified, as shown in Table 3 below.
From Table 3, the best hyperparameters for the model are as follows: the batch size of 32, the learning
rate of 0.01, and the use of the Adam optimization algorithm.

(2) Network model improvements: To enable the SegModel-MOS model to identify and classify
the material microstructures and improve the classification accuracy, this study improved the network
based on both the initial dataset and the network trained via migration learning. Based on the average
size of the microscope images, we changed the input image size of the network to 256 × 256 × 3. After
this change, the microscope images were similar in size to their manual enlargements. This change
not only improved the quality of manual marking but also made local features easier to identify and
improved the network feature extraction effect. In addition, the color category of the dataset in this
article contained only three colors: black, white, and yellow. Thus, the output category of the softmax
layer of the last layer was changed to 3.

Table 3. Test result record during model training.

Optimization Algorithms Learning Rate Batch Size Test Set Ratio Test Set Accuracy

Adam

0.1 4 20% 93.7%

0.01 4 20% 91.6%

0.001 4 20% 92.8%

0.0001 4 20% 91.0%

0.01 8 20% 94.7%

0.01 16 20% 93.9%

0.01 32 20% 95.2%

Momentum

0.1 4 20% 92.4%

0.01 4 20% 92.9%

0.001 4 20% 93.9%

0.0001 4 20% 93.7%

0.01 8 20% 91.1%

0.01 16 20% 92.7%

0.01 32 20% 89.3%

(3) Network improvement based on transfer learning: When the raw PASCAL VOC2012 data
were used to train the initial SegModel-MOS model, the optimal hyperparameters were found, and the
optimal recognition model obtained was transferred to the microscopic image recognition task. During
the migration process, the top part of the network (including the global average pooling layer and
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logistic regression layer of the last layer) was removed, and feature migration was performed. Based
on the task differences, the top-level part still used a random initialization strategy to adapt it to the
color classification task after sufficient training. Then, based on the network structure, the features
in some layers were frozen, and the remaining layers were fine-tuned to ensure high accuracy while
reducing the number of network parameters and model complexity, as shown in Figure 5, which
depicts a model segmentation comparison.
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4. Results and Discussion

4.1. Picture Segmentation

In the use phase of SegModel-MOS, each image must be divided into nine parts for segmentation,
as shown in Figure 6, to maintain the consistency between the size of the input data and that of the
training data. This process also increases the segmentation accuracy of SegModel-MOS.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 16 

 

accuracy while reducing the number of network parameters and model complexity, as shown in 

Figure 5, which depicts a model segmentation comparison. 

   

Figure 5. (a) Original image; (b) segmented image without the improved network model; (c) 

segmented image with the improved network model. 

4. Results and Discussion 

4.1. Picture Segmentation 

In the use phase of SegModel-MOS, each image must be divided into nine parts for 

segmentation, as shown in Figure 6, to maintain the consistency between the size of the input data 

and that of the training data. This process also increases the segmentation accuracy of SegModel-

MOS. 

 

Figure 6. Splitting method when inputting microstructure images into SegModel-MOS, (a) Original 

Picture; (b) Crop picture; (c) segmentation Picture. 

Figure 7 contains a partial subset of each sample from the surface to the centripetal part and 

shows the segmentation effect of SegModel-MOS on the image. In the image, black represents 

Figure 6. Splitting method when inputting microstructure images into SegModel-MOS, (a) Original
Picture; (b) Crop picture; (c) segmentation Picture.



Appl. Sci. 2020, 10, 7759 9 of 16

Figure 7 contains a partial subset of each sample from the surface to the centripetal part and
shows the segmentation effect of SegModel-MOS on the image. In the image, black represents acicular
martensite, white is retained austenite, and yellow denotes lath martensite. After carburizing and
quenching, the heart structure is a slat-like distribution of low-carbon martensite, which has high
strength and good impact toughness. After tempering the sample at 200 ◦C for 2 h, the martensite in
the surface carburized layer is easily eroded and blackened. In contrast, the retained austenite does
not erode easily and appears white. Therefore, in the daily metallographic examination, it is generally
believed that the white areas crossed by the martensite needles retain austenite. However, it should be
noted that the white areas retain austenite with a small amount of carbide on the surface, which is
also white.
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Figure 7. The segmentation effect of SegModel-MOS: Acicular martensite (black), retained austenite
(red), and lath martensite (green). (a–f), the images range from the surface of the carburized layer to
the core; (h–m), SegModel-MOS model segmentation picture.

4.2. Comparison of Measured and Predicted Values of Retained Austenite

To verify the effect of metallographic image segmentation, the residual austenite was measured
with an Italian GNR STRESS-X residual stress analyzer, and the results were compared with the
predicted values. Figure 8a,b presents the carburized layer at 0–200 µm, Figure 8c,d shows the
carburized layer at 0–300 µm, and Figure 8e shows the carburized layer at 0–400 µm with the residual
austenite. The differences between the measured and predicted values range between approximately
1% and 3.5%. This finding is attributed to the fact that in a carburized sample, the carbon content of
the surface layer is a hypereutectoid carburized area, and white carbide will appear mixed between
the needle-shaped martensite and residual austenite, as shown in Figure 8f. The precipitated carbides
are observed, and the precipitated carbides on the surface layer are calculated by image segmentation
to account for 1%–3.5%. To eliminate the influence of surface carbides, Figure 8a–e demonstrates that
deep learning exhibits a high accuracy rate for image segmentation in the areas after the subsurface of
the sample, and the error between the measured and predicted values of residual austenite is very
small. An increase in the carbon content in the steel reduces the temperature at which martensite
begins to form, leading to austenite stabilization and increasing the amount of retained austenite.
The carbon content of the carburized layer gradually decreases from the surface to the center; therefore,
the amount of retained austenite in Figure 8 gradually decreases from the surface to the center.
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4.3. Prediction Results and Analysis of Residual Stress

4.3.1. Residual Stress Prediction Principle

Residual stress is caused by stresses that include thermal and phase transition stresses. There are
two explanations for the residual stress in the quenched part. One explanation involves the thermal
stress caused by the temperature difference between the surface and the core of the quenched part, and
the second explanation involves the structural stress caused by the phase change and the integrated
value. However, because the surface of the sample is carburized, the carbon content of the carburized
layer changes only gradually; the carbon content is high at the surface but low in the core. The change
in carbon content plays a leading role in the residual stress value. Therefore, the residual stress is
mainly attributable to the cooling process, and the volume expansion of the martensite transformation
varies due to the differences in carbon content in different parts of the surface layer. In addition, after
quenching, the surface morphologies of the martensite and transition layers are inconsistent and form a
structural gradient. The carburized surface layer consists of acicular martensite and residual austenite,
the transition layer consists of acicular martensite and batten martensite plus some residual austenite,
and the core consists of batten martensite and a small number of residual austenite bodies. After the
martensite transformation occurs during quenching, the martensite solid-solution carbon content in
the surface carburized layer is high, resulting in increased hardness compared with the core after
quenching and the formation of a hardness gradient. When the high carbon content of the surface layer
is martensitic, it undergoes a greater volume expansion than that of the low-carbon-content core. Thus,
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a residual compressive stress gradient is formed. Therefore, the carbon content and microstructure
can be used to predict the residual stress. This article trained a model using 1200 sets of data from
Process 1 to Process 5 ranging from the surface to the heart. Some of these data are shown in Table 4.
Each dataset is a 256 × 256 pixel picture; based on deep learning image segmentation, each picture
is analyzed for acicular martensite, retained austenite, lath martensite, and the residual stress at the
corresponding points.

Table 4. 23CrNi3Mo carburized steel Process 1 data.

Depth (um) C (%) Acicular
Martensite (%)

Retained
Austenite (%)

Lath
Martensite (%)

Residual
Stress (MPa)

98 0.60 0.78 0.22 0 −334

232 0.56 0.79 0.21 0 −377

305 0.53 0.80 0.20 0 −343

456 0.48 0.76 0.19 0.05 −242

538 0.46 0.69 0.18 0.13 −210

610 0.43 0.62 0.17 0.21 −185

687 0.40 0.54 0.17 0.29 −161

759 0.37 0.50 0.16 0.34 −155

887 0.31 0.38 0.14 0.48 −125

985 0.27 0.28 0.11 0.61 −77

1089 0.23 0.15 0.06 0.79 −69

4.3.2. Prediction of Residual Stress Based on the SVM Model

First, the data were preprocessed and normalized to eliminate dimensional differences between
the parameter ranges and improve the accuracy of the SVM model:

Z =
X − µ
σ

(1)

where Z denotes the normalized data, X is the original data from the datasets, and µ and σ represent
the mean and standard deviation of the original data, respectively.

The use of kernel functions to embed samples into the high-dimensional feature space is crucial
to constructing a generalizable SVM model. This paper adopted a radial basis function (RBF) kernel
suitable for nonlinear problems. The generalizability of the SVM based on RBF is controlled by a key
parameter, namely C [37], which is the penalty parameter in the SVM objective function and is set to a
constant greater than zero. Setting parameter C to a too-large value leads to overfitting, while setting
C to a too-small value leads to underfitting. The search process to find the optimal parameters was
conducted for 500 generations, and the search range for the parameter C was 0–500.

The dataset obtained in the experiment contained a total of only 1200 samples. Because the
number of samples in the current work was quite limited, the performance of the trained model varied
substantially based on the division of the training and test sets. In addition, a random division of the
dataset can easily lead to unbalanced data distributions and inaccurate model performance evaluations.
Therefore, this study used 10-fold cross-validation to evaluate model generalizability. We adopted
R-squared (R2) and mean absolute error (MAE) as the evaluation indicators:

R2 = 1−

∑m
i=1 (yi − ŷi)

2∑m
i=1 (yi − yi)

2 (2)



Appl. Sci. 2020, 10, 7759 13 of 16

MAE =
1
m

m∑
i=1

∣∣∣yi − ŷi
∣∣∣ (3)

where m is the number of samples, yi is the true value, ŷi is the predicted value, yi is the average of the
real labels of m samples, and i is the sample label.

To further verify the model prediction effect, we introduced a decision tree model to predict
the residual stress. First, the hyperparameters of the model were optimized; then, the same 5-fold
cross-validation approach was used to compare the measured and predicted residual stress values in
the test dataset with the fitted straight line shown in Figure 9.
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Figure 9. Comparison of the predicted residual stress values of support vector machine (SVM) and
decision tree (DT) models with the experimental values: (a) SVM model 5-fold cross-validation results;
(b) DT model 5-fold cross-validation results.

Figure 9 shows the 5-fold cross-validation results for the SVM and decision tree (DT) models. Most
of the points in the test dataset lie either on or very close to the straight line with a slope of 1, which
strongly indicates that most of the predicted values are in good agreement with the experimental values.
This finding demonstrates that both the SVM and DT models have good generalizability and achieve
high prediction accuracy. Figure 9 shows that the values of SVM and DT model R2 are 0.975 and 0.953,
respectively, and their MAE values are 7.52 MPa and 12.45 MPa, respectively. The results predicted by
the SVM model are presented in Figure 9a, where the absolute error between the experimental and
predicted values of 178 out of 240 samples is within a 10.0 MPa range, and the maximum absolute error
is 15.5 MPa. The results predicted by the DT model are presented in Figure 9b, where the absolute
error between the experimental and predicted values of 132 out of 240 samples is within 10.0 MPa,
and the maximum absolute error is 25.5 MPa. In summary, the SVM and DT models exhibit minimal
deviations between the predicted and measured values of residual stress; however, the R2 and MAE
results of the SVM model are significantly better than those of the DT model, indicating that the SVM
model is more suitable for the entire dataset.

4.4. Discussion

In this study, the SegModel-MOS network was used to segment optical microstructure images, and
the SVM algorithm was used to predict the residual stress, constituting a new method for measuring
residual stress in the future. However, the mapping relationship between the optical image and the
residual stress was not established directly, mainly because the data in the optical image were limited,
and the training model could easily overfit. In the future, we will seek to establish the mapping
relationship between the optical images and residual stress directly. This initial network model has
high requirements for the input images, and its computational burden is relatively high; however,
the model can appropriately reduce the pixels, increase the number of residual network layers, and
reduce the amount of calculation. In addition, the carbon content and microstructure of steel not only
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are related to the residual stress but also exhibit a strong correlation with the mechanical properties.
The mechanical properties of alloy steel mainly depend on the carbon content, alloying elements,
and heat treatment process. Therefore, we propose a deep learning model to predict the mechanical
properties of alloy steel and improve the fatigue life of the samples. The SVM model uses carbon
content and microstructure to predict residual stress with high accuracy, while the SegModel-MOS
model uses migration learning to segment the microstructure of carburized steel and then uses machine
learning to predict the residual stress. This approach can also be used to analyze the performance of
other carburized steels, providing a new method for use in carburized steel performance research.

5. Conclusions

1) This paper proposes a new method to predict residual stress using a semantic segmentation model
(SegModel-MOS). After training on the PASCAL VOC2012 dataset, the network was trained on
optical microscope images to achieve precise segmentation, revealing the residual austenite and
measuring the content percentages. The results demonstrate that the accuracy of the model’s
microstructure segmentation reaches 95.2%.

2) SVM and decision tree algorithms were used to build a mapping relationship between the
carbon content, microstructure, and residual stress of steel. The SVM and DT models used 5-fold
cross-validation to improve model generalizability, achieving final residual stress prediction R2

values of 0.975 and 0.953 and the MAE values of 7.52 MPa and 12.45 MPa, respectively. The SVM
model performed significantly better than the DT model. This finding demonstrates that carbon
content and microstructure exhibit high accuracy and generalization ability for predicting residual
stress. This method can also be used to predict the residual stress of other carburized steels; thus,
it constitutes a new approach to residual stress measurement.
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