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Abstract: Metabolic syndrome (MS) is an aggregation of coexisting conditions that can indicate an
individual’s high risk of major diseases, including cardiovascular disease, stroke, cancer, and type
2 diabetes. We conducted a cross-sectional survey to evaluate potential risk factor indicators by
identifying relationships between MS and anthropometric and spirometric factors along with blood
parameters among Korean adults. A total of 13,978 subjects were enrolled from the Korea National
Health and Nutrition Examination Survey. Statistical analysis was performed using a complex
sampling design to represent the entire Korean population. We conducted binary logistic regression
analysis to evaluate and compare potential associations of all included factors. We constructed
prediction models based on Naïve Bayes and logistic regression algorithms. The performance
evaluation of the prediction model improved the accuracy with area under the curve (AUC)
and calibration curve. Among all factors, triglyceride exhibited a strong association with MS
in both men (odds ratio (OR) = 2.711, 95% confidence interval (CI) [2.328–3.158]) and women
(OR = 3.515 [3.042–4.062]). Regarding anthropometric factors, the waist-to-height ratio demonstrated
a strong association in men (OR = 1.511 [1.311–1.742]), whereas waist circumference was the strongest
indicator in women (OR = 2.847 [2.447–3.313]). Forced expiratory volume in 6s and forced expiratory
flow 25–75% strongly associated with MS in both men (OR = 0.822 [0.749–0.903]) and women
(OR = 1.150 [1.060–1.246]). Wrapper-based logistic regression prediction model showed the highest
predictive power in both men and women (AUC = 0.868 and 0.932, respectively). Our findings
revealed that several factors were associated with MS and suggested the potential of employing
machine learning models to support the diagnosis of MS.

Keywords: metabolic syndrome; anthropometric factors; blood parameters; spirometric factors;
binary logistic regression; classification model; prediction model

1. Introduction

Metabolic syndrome (MS) is a collection of at least three of the five risk factors that increase
health problems (e.g., cardiovascular disease [CVD], stroke, cancer, and type 2 diabetes [T2D]) [1–4].
In the presence of MS, the risk of CVD is more than twofold, and the risk of T2D increases more than
tenfold [5]. Thus, MS is a major cause of death and a high-risk disease in many people. Favorably,
identifying the conditions and associated risk factors of comorbid severe illnesses is easy and
inexpensive. Further, these routine checkups are more likely to keep the perturbed physiology in
check as compared to the efforts necessary for overcoming a severe disease [6]. The incidence of MS is
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increasing worldwide. In the United States, it increases by 1–2% every year [7]. The incidence is also
steadily increasing in Asia-Pacific countries, such as China, Korea, and Taiwan [8]. MS is related to
several factors, and lung disease, in particular, is related to various diseases that can cause MS [9–11].

Numerous studies have supported the association between anthropometric factors and MS [12–17].
For instance, forearm circumference and bioelectric-impedance-measured visceral fat are associated with
MS. However, waist circumference (WC) is not. [12]. Some studies have shown several anthropometric
factors to be predictors of components of MS. As a result, no single index was consistently the strongest
predictor [13]. Waist-to-hip ratio (WHtR) is the most commonly associated risk factor for MS in
Japan, whereas WC and body mass index (BMI) had the strongest associations with MS among other
ethnicities [14,15]. Furthermore, WHtR was more strongly associated with MS than WC and BMI,
in the identification of metabolic risk factors [16].

The associations of blood parameters and spirometric factors with MS have also been
examined [18–24], wherein it was established that dietary patterns were associated with glucose
(GLU) intolerance and MS [18]. Additionally, abnormal white blood cell (WBC) count was a vascular
risk factor for MS [19]. Further, the incidence of MS was higher in subjects with chronic obstructive
lung disease than in those with normal lung function, as determined by the Global Initiative for
Chronic Obstructive Lung Disease (GOLD II–IV) guidelines. WC and blood pressure (BP) were also
associated with the disease [20]. Low pulmonary function was associated with restrictive lung disease
and MS risk factors [22]. Some studies have investigated the association between chronic obstructive
pulmonary disease (COPD) and MS in men and women [23]. Lin et al. [24] studied the association
between restrictive lung impairment and an increased risk of MS.

In medicine and genomics, numerous studies are conducted using machine learning
models [25–37]. However, research that compares and analyzes anthropometric factors,
blood parameters, urinary parameters, and spirometric factor anomalies for diagnosis of MS is
lacking. Such evaluation is critical because in Asian countries, particularly, MS has become a concern
due to rapid and constant changes in diet and lifestyle. Moreover, the study of MS has progressed
through the use of machine learning [38].

We analyzed the association between various indicators and MS. Further, we aimed to compare and
evaluate data sets for machine learning models to provide an algorithm for predicting MS. Measurements
of variables are presented with their respective p-values and odds ratios (ORs), calculated using binary
logistic regression analysis to identify the factors associated with MS. For evaluation of the machine
learning models, Naïve Bayes (NB) and logistic regression algorithm predictive models were created
for estimating predictive power. The results of this study provide basic knowledge on the association
between MS and anthropometric and spirometric factors that can be used to predict and facilitate the
prevention and management of MS. Moreover, the application of machine learning in medicine is
expected to support the diagnosis of MS.

2. Materials and Methods

2.1. Subjects and Dataset

We obtained the data for this study from the Korea National Health and Nutrition Examination
Survey (KNHANES V and VI) from 2010 to 2015. The KNHANES is a cross-sectional survey
conducted initially by the Korea Centers for Disease Control and Prevention [39–41]. Datasets from
the survey were approved by the Korea Ministry of Health and Welfare (2010-02CON-21-C,
2011-02CON-06-C, 2012-01EXP-01-2C, and 2013-07CON-03-4C). National Health and Nutrition
Examination was conducted without deliberation by the Research Ethics Review Committee, as it
corresponds to research conducted by the state for public welfare, according to Article 2 (1) of the
Bioethics Law and Article 2 (2) 1 of the Enforcement Regulations of the same law. The research was
conducted in accordance with principles of the Helsinki Declaration update of 2008. This study was
approved by the Institutional Review Board of the Korea Research Institute of Standards and Science,
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and included approval for the access and analysis of open-source data from the KNHANES V and VI
with a waiver for the documentation of informed consent (IRB No. KRISS-IRB-2019-14).

MS was defined by the presence of three or more of the five conditions mentioned below [42].
The conditions are as follows (Table 1):

Table 1. Conditions of metabolic syndrome.

Subject Conditions Disease

Waist circumference Men: ≥102 cm (≥40 inches)
Women: ≥88 cm (≥35 inches) Abdominal obesity

Blood pressure SBP: ≥130 mmHg
DBP: ≥85 mmHg Hypertension

Triglycerides ≥150 mg/dL (1.7 mmol/L) Hypertriglyceridemia

HDL-cholesterol Men: <40 mg/dL (1.03 mmol/L)
Women: <50 mg/dL (1.3 mmol/L) Dyslipidemia

Glucose ≥100 mg/dL Diabetes

SBP, systolic blood pressure; HDL-cholesterol, high-density lipid cholesterol; DBP, diastolic blood pressure.

We conducted an experimental study in three stages. First, we performed data integration based
on the measured data (spirometric factors) from 2010 to 2015. Second, we extracted data according to
the participants’ demographic and clinical characteristics, including age, sex, alcohol consumption,
smoking, income, anthropometric factors, blood parameters, and spirometric factors. MS was defined
relative to five conditions, and we performed data translation and clarification (addressing missing,
uncalculated, and unconverted values).

Finally, we performed data standardization for comparison and analysis. In the statistical analysis,
we implemented three methods to analyze the associations of various indices with MS. A t-test was
conducted to evaluate significant differences between men and women. We conducted a binary logistic
regression analysis to identify significant associations with the measured variables (anthropometric
and spirometric factors and blood parameters) and determined differences between normal subjects
and those with MS. We used an area under the curve (AUC) from the receiver operating characteristic
(ROC) curve to assess whether significant improvement in the identification of MS was achieved
based on anthropometric factors, blood parameters, and spirometric factors. Since no method exists to
calculate the AUC in a complex sampling analysis, we analyzed the recognized performance by the
general AUC analysis. Finally, we constructed a prediction model using machine learning algorithms
based on the feature selection method for predictive power by sensitivity, 1-specificity, precision, and
AUC [43]. Figure 1 shows the design of this study for preprocessing and statistical analysis.
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We focused on participants aged ≥ 40 years in this study because the prevalence of MS increases
rapidly in this age group [44]. This yielded a sample size of 26,499 subjects. We excluded subjects with the
following measurements: demographics (n = 3409), anthropometric factors (n = 85), blood parameters
(n = 4930), uric test results (n = 394), and spirometric factors (n = 3703). Thus, the study comprised
13,978 subjects, and the final dataset consisted of 9893 normal subjects (4489 men and 5404 women)
and 4085 subjects with MS (1749 men and 2340 women). Figure 2 presents a flow chart showing details
of the sample selection procedure.

Table 2 shows the demographic and clinical characteristics of each group and detailed descriptions
of all experimental factors in the t-test.

Table 2. Primary characteristics of all factors analyzed for metabolic syndrome.

Variable
Men Women

Normal Hypertension Normal Hypertension

Subjects, no. (%) 4489 (72.0%) 1745 (28.0%) 5404 (69.8%) 2340 (30.2%)
Age, mean (SD) † 57.01 (10.97) 58.95 (10.10) 55.32 (9.97) 62.36 (9.66)

Height (HT) (cm) † 168.48 (6.12) 168.08 (6.09) 155.9 (5.75) 154.54 (5.67)
Weight (WT) (kg) † 67.91 (9.24) 72.54 (10.49) 56.54 (7.38) 62.63 (9.24)

Waist circumference (WC), (cm) † 84.57 (7.58) 89.86 (7.83) 77.95 (7.53) 87.61 (8.44)
Waist-to-height ratio (WHtR) † 0.50 (0.05) 0.53 (0.04) 0.50 (0.05) 0.57 (0.06)

Body mass index (BMI) (kg/m2) † 23.88 (2.64) 25.61 (2.89) 23.25 (2.69) 26.19 (3.35)
Systolic BP (mmHg) † 121.00 (15.08) 128.81 (15.23) 117.35 (16.57) 129.49 (16.36)
Diastolic BP (mmHg) † 77.80 (9.83) 81.2 (11.33) 74.25 (9.22) 77.46 (10.32)

Glucose (mg/dL) † 100.62 (21.35) 120.6 (32.51) 94.02 (14.06) 114.63 (30.41)
Hemoglobin A1c (HBA1C) (%) † 5.80 (0.77) 6.42 (1.16) 5.68 (0.54) 6.40 (1.07)
Total cholesterol (TC) (mg/dL) * 190.93 (34.24) 187 (39.07) 198.13 (34.45) 197.13 (39.73)

High-density lipid cholesterol (HDL) (mg/dL) † 48.65 (11.1) 40.82 (9.55) 54.90 (12.05) 45.26 (9.73)
Low-density lipid cholesterol (LDL) (mg/dL) † 118.38 (32.66) 107.48 (33.28) 122.33 (32.13) 118.32 (34.97)

Triglycerides (TG) (mg/dL) † 136.99 (95.58) 242.71 (176.66) 104.62 (57.33) 182.03 (105.83)
Aspartate aminotransferase (AST), (IU/L) † 24.58 (12.95) 26.89 (13.47) 21.26 (11.89) 24.12 (11.10)
Alanine aminotransferase (ALT), (IU/L) † 24.05 (19.12) 28.94 (17.03) 17.80 (12.43) 23.83 (16.51)

Hemoglobin (HB) (g/dL) † 15.09 (1.23) 15.24 (1.30) 13.12 (1.11) 13.38 (1.08)
Hematocrit (HCT) (%) * 44.51 (3.33) 44.73 (3.53) 39.54 (2.91) 40.07 (2.93)

Blood urea nitrogen (BUN) (mg/dL) * 15.69 (4.2) 16.12 (5.12) 14.46 (4.01) 15.42 (4.74)
Creatinine (CRT) (mg/dL) * 0.97 (0.18) 1.01 (0.31) 0.72 (0.15) 0.76 (0.29)

White blood cell (WBC) (Thous/uL) † 6.34 (1.72) 6.84 (1.80) 5.55 (1.52) 6.23 (1.69)
Red blood cell (RBC) (Mil/uL) † 4.79 (0.41) 4.84 (0.43) 4.31 (0.32) 4.39 (0.35)

Uric acid pH (UPH) † 8.51 (1.87) 8.26 (1.86) 6.13 (1.17) 5.71 (0.85)
Uric specific gravity (USG) 5.74 (0.82) 5.59 (0.76) 5.83 (0.88) 1.02 (0.01)

Urine creatinine (UCRT) (mg/dL) 1.02 (0.01) 1.02 (0.01) 1.02 (0.01) 110.86 (61.25)
Forced vital capacity (FVC) (L) 161.08 (76.55) 158.58 (79.37) 118.83 (65.57) 2.75 (0.46)

Forced expiratory volume in 1 s (FEV1) 4.19 (0.70) 4.01 (0.68) 3.00 (0.49) 2.16 (0.42)
Ratio of forced expiratory volume in 1 s to forced

vital capacity (FEV1FVC) 3.14 (0.66) 2.98 (0.64) 2.39 (0.44) 0.79 (0.06)

Forced expiratory volume in 6 s (FEV6) (L) 0.75 (0.08) 0.74 (0.08) 0.79 (0.06) 2.67 (0.46)
Forced expiratory flow 25–75% (FEF25–75) (L/s) * 4.02 (0.71) 3.82 (0.68) 2.94 (0.50) 2.35 (0.99)

Peak expiratory flow (PEF) (L/s) * 2.81 (1.29) 2.8 (1.54) 2.49 (0.84) 5.78 (1.22)

* p < 0.05 and † p < 0.0001 indicate significant differences between men and women using the two-stage sample
t-test. All data are presented as means ± standard deviations (±SD). However, the subjects are presented as the
number of participants (%).

2.2. Measurements

All factors were measured according to established guidelines, as described previously [40,41].
Height measurements were quantified to the nearest 1 mm using a Seca 225 portable stadiometer
(Seca, Hamburg, Germany). Weight measurements were quantified to the nearest 0.1 kg using an
electronic scale (GL-6000-20; Caskorea, Seoul, Korea). WC measurements (between the sternum and
the hips) were quantified to the nearest 1 mm using Seca 200. BMI was calculated as weight/height2.
The WHtR (a new indicator in this study) was calculated as WC/height. Blood parameters were
measured using Hitachi Automatic Analyzer 7600-210 (Hitachi, Tokyo, Japan) with Pureauto SCHO-N
(Sekisui, Tokyo, Japan) and S TG-N, S AST, S ALT, S GLU, and Cholestest N HDL, LDL (Sekisui, Tokyo,
Japan). Glycated hemoglobin was measured using HLC-723G7 (Tosoh, Tokyo, Japan). White and red
blood cell counts were measured using XE-2100D (Sysmex, Tokyo, Japan). Spirometric factors were
measured using the Vmax series 2130 (SensorMedics, Yorba Linda, CA, USA). Spirometric factors
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measured included forced vital capacity, forced expiratory volume in 1s, ratio of forced expiratory
volume in 1 s to forced vital capacity, forced expiratory volume in 6s, forced expiratory flow 25–75%
(FEF25-75), and peak expiratory flow by pulmonary function test.
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2.3. Statistical Analysis

We used a complex sampling design to examine associations between MS and related factors.
Stratified two-stage sampling was performed with the primary sampling unit (PSU), cluster, and weight
values that are taken into consideration. The results could be biased due to the estimated factors,
variance in the means, and prevalence rate from simple random sampling. Thus, we performed a
complex sampling data analysis that utilized weighting, as described previously [40,41,45].

Statistical analyses were performed using SPSS 22 software for Windows (SPSS, Inc., Armonk, NY,
USA). Binary logistic regression was used to predict or classify machine learning and data mining fields,
but this algorithm is primarily used to analyze and examine the associations between diseases and
various factors in medicine, public health, and epidemiology studies. It can provide p-values, OR values,
and confidence intervals (CIs) for association analyses. Thus, it was suitable for this algorithm and
both crude and adjusted analyses of our data and objectives. In the adjusted analyses, we used age,
BMI, frequency of alcohol consumption, smoking, income, recognized stress rate, and education
level as the value adjustment factors. We analyzed and evaluated the association between normal
subjects and those with MS. We used the data mining tool of the Waikato Environment for Knowledge
Analysis (WEKA), constructed the prediction models, and evaluated the prediction performance.
We used 10-fold cross validation to efficiently distribute training, test data sets and evaluate prediction
models [46].

3. Results

3.1. Associations of MS with Anthropometric Factors, Blood Parameters, Urinary Parameters,
and Spirometric Factors

Shown in Tables 3 and 4 are the associations of MS with the anthropometric and spirometric
factors, and blood and urinary parameters in Korean men and women. Overall, 29.2% (N = 4085) of the
13,978 participants exhibited MS. The prevalence of MS was higher in women than in men (30.2% and
28.0%, respectively).
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Table 3. Associations of anthropometric factors, blood parameters, urinary parameters, and spirometric
factors with metabolic syndrome in men.

Variable
Crude Adjusted

AUC
p-Value OR [95% CI] p-Value OR [95% CI]

Age <0.0001 1.272 [1.196–1.352] 0.555 [0.540–0.570]
Anthropometric factors

HT <0.05 0.918 [0.858–0.982] 0.8655 0.993 [0.914–1.078] 0.480 [0.464–0.496]
WT <0.0001 1.592 [1.485–1.706] 0.9151 1.008 [0.865–1.175] 0.623 [0.608–0.639]
WC <0.0001 2.069 [1.922–2.228] <0.0001 1.468 [1.287–1.674] 0.683 [0.668–0.697]

WHtR <0.0001 2.164 [2.006–2.334] <0.0001 1.511 [1.311–1.742] 0.694 [0.680–0.709]
BMI <0.0001 1.902 [1.763–2.052] 0.667 [0.652–0.682]

Blood parameters
GLU <0.0001 2.348 [2.048–2.691] <0.0001 2.165 [1.923–2.438] 0.776 [0.764–0.789]

HBA1C <0.0001 1.906 [1.703–2.133] <0.0001 1.797 [1.633–1.978] 0.712 [0.697–0.726]
TC 0.2372 0.957 [0.889–1.030] 0.0929 0.935 [0.865–1.011] 0.464 [0.448–0.481]

HDL <0.0001 0.385 [0.347–0.427] <0.0001 0.384 [0.342–0.431] 0.276 [0.261–0.290]
TG <0.0001 2.719 [2.350–3.146] <0.0001 2.711 [2.328–3.158] 0.787 [0.775–0.799]

AST <0.05 1.144 [1.025–1.276] <0.05 1.102 [1.018–1.193] 0.574 [0.558–0.590]
ALT <0.05 1.250 [1.052–1.484] 0.1358 1.134 [0.961–1.338] 0.619 [0.603–0.634]
HB <0.0001 1.155 [1.075–1.240] <0.05 1.095 [1.009–1.188] 0.533 [0.517–0.550]

HCT <0.05 1.088 [1.016–1.166] 0.5084 1.027 [0.950–1.109] 0.516 [0.500–0.532]
BUN <0.05 1.117 [1.044–1.195] 0.2716 1.042 [0.968–1.123] 0.516 [0.500–0.532]
CRT <0.05 1.199 [1.063–1.353] <0.0001 1.261 [1.172–1.358] 0.547 [0.531–0.563]
WBC <0.0001 1.316 [1.235–1.403] <0.05 1.134 [1.046–1.230] 0.587 [0.571–0.603]
RBC <0.05 1.143 [1.069–1.223] <0.05 1.134 [1.046–1.230] 0.532 [0.516–0.548]
Urinary parameters
UPH <0.0001 0.823 [0.767–0.883] <0.0001 0.852 [0.791–0.918] 0.451 [0.436–0.467]
USG 0.6728 1.014 [0.949–1.084] 0.6370 1.018 [0.945–1.096] 0.485 [0.469–0.501]

UCRT 0.6667 0.985 [0.919–1.056] 0.9480 1.003 [0.928–1.083] 0.484 [0.468–0.500]
Spirometric factors
FVC <0.0001 0.755 [0.706–0.807] <0.0001 0.839 [0.769–0.915] 0.423 [0.407–0.438]
FEV1 <0.0001 0.772 [0.723–0.825] <0.05 0.850 [0.770–0.940] 0.424 [0.408–0.439]

FEV1FVC <0.05 0.933 [0.875–0.994] 0.6219 1.021 [0.941–1.106] 0.471 [0.455–0.487]
FEV6 <0.0001 0.733 [0.685–0.784] <0.0001 0.822 [0.749–0.903] 0.413 [0.398–0.429]

FEF25–75 0.4195 0.971 [0.904–1.043] <0.05 1.123 [1.035–1.219] 0.475 [0.459–0.491]
PEF <0.05 0.882 [0.825–0.944] 0.4528 0.966 [0.884–1.057] 0.457 [0.441–0.473]

Adjusted for age, body mass index (BMI), alcohol consumption, smoking, income, recognized stress rate, and
education level. The results are from crude and adjusted analyses using binary logistic regression.

In men, among all factors, triglycerides (TG) (p < 0.0001, OR = 2.719, 95% CI [2.350–3.146]) presented
the strongest association with MS during crude analysis. Additionally, TG (adjusted p < 0.0001,
adjusted OR = 2.711 [2.328–3.158]) exhibited the strongest association after adjusting for age,
BMI, alcohol consumption, smoking, income, recognized stress rate, and education level.
Among anthropometric factors, WHtR demonstrated the strongest association with MS in crude
(p < 0.0001, OR = 2.164 [2.006–2.334]) and adjusted (adjusted p < 0.0001, adjusted OR = 2.069
[1.922–2.228]) analyses. In the second, WC had the next strongest association in the crude (p < 0.0001,
OR = 2.164 [2.006–2.334]) and adjusted (adjusted p < 0.0001, adjusted OR = 1.468 [1.287–1.674]) analyses.
Among blood parameters, TG (adjusted p < 0.0001, adjusted OR = 2.711 [2.328–3.158]) was the strongest
negative indicator of MS in both crude and adjusted analyses. GLU (p < 0.0001, OR = 2.348 [2.048–2.691])
was associated with MS in crude analysis. However, HDL (adjusted p < 0.0001, adjusted OR = 0.384
[0.342–0.431]) showed a negative association with MS in the adjusted analysis. Among urinary
parameters, uric acid pH (UPH) showed the highest negative association with MS in crude (p < 0.0001,
OR = 0.823 [0.767–0.883]) and adjusted (adjusted p < 0.0001, adjusted OR = 0.852 [0.791–0.918])
analyses. Among spirometric factors, forced expiratory volume in 6s (FEV6) was negatively associated
with MS in crude (p < 0.0001, OR = 0.733 [0.685–0.784]) and adjusted (adjusted p < 0.0001,
adjusted OR = 0.822 [0.749–0.903]) analyses, followed by forced vital capacity (FVC) in both crude
(p < 0.0001, OR = 0.755 [0.706–0.807]) and adjusted (adjusted p < 0.0001, adjusted OR = 0.839
[0.769–0.915]) analyses.
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Table 4. Associations of anthropometric factors, blood parameters, urinary parameters, and spirometric
factors with metabolic syndrome in women.

Variable
Crude Adjusted

AUC
p-Value OR [95% CI] p-Value OR [95% CI]

Age <0.0001 2.070 [1.946–2.202] 0.696 [0.683–0.708]
Anthropometric factors

HT <0.0001 0.763 [0.719–0.808] <0.0001 1.188 [1.097–1.287] 0.429 [0.415–0.443]
WT <0.0001 2.197 [2.046–2.358] <0.0001 1.411 [1.212–1.643] 0.700 [0.687–0.713]
WC <0.0001 4.011 [3.647–4.411] <0.0001 2.847 [2.447–3.313] 0.808 [0.797–0.819]

WHtR <0.0001 4.166 [3.795–4.572] <0.0001 2.564 [2.194–2.996] 0.813 [0.802–0.823]
BMI <0.0001 2.922 [2.699–3.164] 0.758 [0.746–0.770]

Blood parameters
GLU <0.0001 4.593 [3.818–5.524] <0.0001 3.377 [2.828–4.033] 0.810 [0.799–0.821]

HBA1C <0.0001 3.504 [3.022–4.063] <0.0001 2.466 [2.161–2.813] 0.776 [0.765–0.788]
TC 0.1381 1.050 [0.984–1.119] 0.4955 0.974 [0.903–1.051] 0.486 [0.472–0.501]

HDL <0.0001 0.318 [0.290–0.348] <0.0001 0.348 [0.313–0.386] 0.255 [0.244–0.267]
TG <0.0001 3.723 [3.266–4.244] <0.0001 3.515 [3.042–4.062] 0.796 [0.785–0.807]

AST <0.0001 1.433 [1.274–1.612] <0.05 1.174 [1.055–1.306] 0.601 [0.587–0.615]
ALT <0.0001 1.588 [1.363–1.849] <0.0001 1.301 [1.153–1.467] 0.671 [0.658–0.684]
HB <0.0001 1.316 [1.229–1.409] <0.0001 1.206 [1.119–1.300] 0.567 [0.553–0.581]

HCT <0.0001 1.245 [1.165–1.330] <0.05 1.122 [1.046–1.204] 0.551 [0.537–0.565]
BUN <0.0001 1.247 [1.167–1.333] 0.6779 0.986 [0.920–1.056] 0.557 [0.543–0.571]
CRT <0.05 1.265 [1.057–1.515] <0.05 1.143 [1.006–1.299] 0.548 [0.533–0.562]
WBC <0.0001 1.431 [1.346–1.522] <0.0001 1.315 [1.225–1.413] 0.626 [0.613–0.640]
RBC <0.0001 1.305 [1.222–1.395] <0.0001 1.294 [1.206–1.389] 0.567 [0.553–0.581]
Urinary parameters
UPH <0.0001 0.862 [0.812–0.915] <0.0001 0.834 [0.781–0.891] 0.413 [0.400–0.427]
USG 0.4582 0.979 [0.926–1.035] 0.1512 0.951 [0.887–1.019] 0.464 [0.451–0.478]

UCRT <0.05 0.903 [0.852–0.957] 0.4165 0.971 [0.904–1.043] 0.485 [0.472–0.499]
Spirometric factors
FVC <0.0001 0.583 [0.544–0.624] <0.05 0.882 [0.809–0.962] 0.465 [0.452–0.479]
FEV1 <0.0001 0.590 [0.551–0.631] <0.05 0.898 [0.818–0.985] 0.351 [0.338–0.364]

FEV1FVC <0.0001 0.855 [0.806–0.907] 0.5393 1.024 [0.949–1.106] 0.352 [0.339–0.365]
FEV6 <0.0001 0.566 [0.528–0.607] <0.05 0.872 [0.798–0.954] 0.460 [0.447–0.474]

FEF25–75 <0.0001 0.843 [0.781–0.911] <0.05 1.150 [1.060–1.246] 0.344 [0.331–0.357]
PEF <0.0001 0.734 [0.689–0.781] 0.2660 1.045 [0.967–1.130] 0.433 [0.419–0.447]

Adjusted for age, body mass index (BMI), alcohol consumption, smoking, income, recognized stress rate, and
education level. The results are from crude and adjusted analyses using binary logistic regression.

Among all the factors analyzed in women, GLU (p < 0.0001, OR = 4.593 [3.818–5.524]) showed the
strongest association with MS. Moreover, TG (adjusted p < 0.0001, adjusted OR = 3.515 [3.042–4.062]) was
associated with MS in adjusted analysis. Among anthropometric factors, WHtR (p < 0.0001, OR = 4.166
[3.795–4.572]) was strongly associated with MS in crude analysis. WC (adjusted p < 0.0001, adjusted
OR = 2.847 [2.447–3.313]) was strongly associated in adjusted analysis. Among blood parameters, GLU
exhibited the highest association with MS in crude analysis. And TG was strongly associated in the
adjusted analysis. UPH (p < 0.0001, OR = 0.862 [0.812–0.915]) showed the strongest negative association
with MS among the urinary parameters in crude analysis. The association with UPH (adjusted p
< 0.0001, adjusted OR = 0.834 [0.781–0.891]) was maintained following adjusted analysis. Urine
creatinine (p < 0.05, OR = 0.903 [0.852–0.957]) was strongly associated with crude analysis; however,
this association disappeared following adjustment for confounders. FEV6 (p < 0.0001, OR = 0.583
[0.544–0.624]) showed highest negative association with MS among the spirometric factors in crude
analysis. Furthermore, FEF25-75 (adjusted p < 0.05, adjusted OR = 1.150 [1.060–1.246]) showed MS
association in adjusted analysis.

In the overall crude analysis, TG presented the strongest association with MS in men, whereas GLU
exhibited the strongest association in women. WHtR was associated with both men and women,
but WC was associated with adjusted analysis. FEV6 was also associated with both men and women.
In the adjusted analysis, FEV6 and FEF25–75 associated with MS. These results suggested sex-based
differences in blood parameters; however, other risk factors showed similar results in both sexes.
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From the AUC analysis, Figures 3 and 4 show the predictive power of anthropometric and
spirometric factors, blood and urinary parameters for MS in Korean men and women. Among all
factors, TG (AUC = 0.787 [0.775–0.799]) showed strong predictive power in men, whereas WHtR
(AUC = 0.813 [0.802–0.823]) demonstrated the highest AUC value in women. GUL and HBA1C
exhibited strong predictive powers among the blood parameters in men (AUC = 0.776 [0.764–0.789]
and AUC = 0.712 [0.697–0.726], respectively) and women (AUC = 0.810 [0.799–0.821] and AUC = 0.776
[0.765–0.788], respectively). Among the spirometric factors, FEV6 and FVC showed strongest negative
predictive power for men (AUC = 0.413 [0.398–0.429] and AUC = 0.423 [0.407–0.438], respectively) and
women (AUC = 0.460 [0.447–0.474] and AUC = 0.465 [0.452–0.479], respectively).
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3.2. Comparison of the Predictive Power of MS with Anthropometric Factors, Blood Parameters,
Urinary Parameters, and Spirometric Factors

Each prediction model was constructed using NB and logistic regression algorithms by a subset
of features using the wrapper and filter feature selection method for performance evaluation of the MS
prediction model for both men and women. Table 5 shows detailed results of feature selection by the
wrapper and filter method. The model built by Wrapper NB in men included 13 features: age, WT,
WC, SBP, GLU, HDL, TG, ALT, WBC, USG, UCREA, FVC, and FEV6. Our results revealed a higher
predictive power in women than in men for NB and logistic regression predictions.

Table 5. Feature selection using the wrapper and filter method for each model.

Sex Method Num. of Features Features

Men
Wrapper

Naïve Bayes 13 Age, WT, WC, SBP, Glucose, HDL, TG, ALT, WBC,
USG, UCREA, FVC, FEV6

Logistic Regression 15 HT, WC, WHtR, SBP, DBP, Glucose, HBA1C, TC,
HDL, TG, HB, HCT, CREA, WBC, RBC

Filter CFS 8 WHtR, SBP, Glucose, HDL, TG, AST, CREA, RBC

Women
Wrapper

Naïve Bayes 9 WC, WHtR, SBP, DBP, Glucose, HDL, TG, RBC, UPH

Logistic Regression 12 Age, WT, WC, SBP, Glucose, TC, HDL, TG, AST,
BUN, UPH, FEV1FVC

Filter CFS 11 WC, WHtR, SBP, Glucose, HBA1C, HDL, TG, ALT,
CREA, WBC, FEF25-75

CFS: Correlation-based feature selection.

The performance of models was compared and evaluated based on sensitivity, 1-specificity,
F-measure, AUC, area under the precision-recall curve (AUPRC), and root mean square error
(RMSE) [47]. As shown in Table 6, for men, the sensitivity, 1-specificity, and F-measure of the
prediction model (Wrapper LR [Logistic Regression]) were 0.926, 0.449, and 0.882 in the normal group
and 0.551, 0.074, and 0.633 in the MS group, respectively. Among women, the sensitivity, 1-specificity,
and F-measure were 0.930, 0.261, and 0.911 in the normal group and 0.739, 0.070, and 0.778 in the MS
group, respectively.

Table 6. Predictive power analysis of the four models in men and women.

Sex Prediction Model Class Sensitivity 1-Specificity Precision F-Measure

Men

Wrapper NB Normal 0.904 0.488 0.826 0.863

Metabolic 0.512 0.096 0.674 0.582

Wrapper LR Normal 0.926 0.449 0.841 0.882

Metabolic 0.551 0.074 0.742 0.633

Filter NB Normal 0.919 0.598 0.798 0.854

Metabolic 0.402 0.081 0.659 0.499

Filter LR Normal 0.924 0.469 0.835 0.877

Metabolic 0.531 0.076 0.730 0.615

Women

Wrapper NB Normal 0.905 0.262 0.888 0.896

Metabolic 0.738 0.095 0.770 0.754

Wrapper LR Normal 0.930 0.261 0.892 0.911

Metabolic 0.739 0.070 0.821 0.778

Filter NB Normal 0.923 0.334 0.864 0.893

Metabolic 0.666 0.077 0.788 0.722

Filter LR Normal 0.927 0.275 0.886 0.906

Metabolic 0.725 0.073 0.811 0.766

This table was created using data transformed by standardization. The results of detailed classification performance
were grouped by class (normal and metabolic groups) using a confusion matrix. NB: Naïve Bayes, LR: logistic
regression, metabolic: metabolic syndrome.
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As shown in Table 7, among the men MS prediction models, Wrapper_LR’s AUC [95% CI],
AUPRC [95% CI], R2 [95% CI], and RMSE [95% CI] were the predictive power with 0.868 [0.860–0.876],
0.712 [0.701–0.723], 0.960 [0.955–0.965], and 0.358 [0.346–0.370], respectively. Among the women,
Wrapper_LR’s AUC, AUPRC, R2, and RMSE were the predictive power with 0.932 [0.926–0.938],
0.851 [0.843–0.859], 0.986 [0.983–0.988], and 0.308 [0.298–0.318], respectively. The wrapper_LR showed
the best performance among other prediction models in both men and women. For men, the MS
prediction model (the wrapper-based logistic regression) showed the strongest predictive power
(AUC = 0.868), as detailed in Figure 5. In women, the wrapper based logistic regression model showed
the highest predictive power (AUC = 0.932).

Table 7. Performance analysis results of the four models in men and women.

Sex Prediction Model AUC AUPRC R2 RMSE

Men

Wrapper NB 0.830 [0.821–0.839] 0.616 [0.604–0.628] 0.899 [0.892–0.907] 0.396 [0.384–0.408]

Wrapper LR 0.868 [0.860–0.876] 0.712 [0.701–0.723] 0.960 [0.955–0.965] 0.358 [0.346–0.370]

Filter NB 0.830 [0.821–0.839] 0.604 [0.592–0.616] 0.802 [0.792–0.812] 0.407 [0.395–0.419]

Filter LR 0.863 [0.854–0.872] 0.703 [0.692–0.714] 0.952 [0.947–0.958] 0.361 [0.349–0.373]

Women

Wrapper NB 0.908 [0.902–0.914] 0.788 [0.779–0.797] 0.969 [0.965–0.973] 0.341 [0.330–0.352]

Wrapper LR 0.932 [0.926–0.938] 0.851 [0.843–0.859] 0.986 [0.983–0.988] 0.308 [0.298–0.318]

Filter NB 0.911 [0.905–0.917] 0.783 [0.774–0.792] 0.915 [0.908–0.921] 0.352 [0.341–0.363]

Filter LR 0.929 [0.923–0.935] 0.843 [0.835–0.851] 0.986 [0.983–0.988] 0.311 [0.301–0.321]

The results are shown as each values with corresponding 95% CI. NB: Naïve Bayes, LR: logistic regression, R2:
coefficients of determination for calibration curve.

Figure 6 shows the calibration curve for each prediction model. The x-axis of the calibration plot
is a predicted class, and the y-axis is plotted as the true class. In men, Wrapper_LR suggests a better
calibration plot than Wrapper_NB. In women, Wrapper_LR suggests a better calibration plot than
Wrapper_NB. In the feature selection method, the wrapper showed better results for prediction model
development than CFS.
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4. Discussion

In this study, anthropometric and spirometric factors and blood parameters were examined as
potential risk factors for MS. In a previous report on anthropometric factors and MS, Sagun et al. [12]
conducted a study involving 387 subjects admitted to the obesity outpatient department of Istanbul
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Medeniyet University Goztepe Training and Research Hospital in Turkey. The purpose of their study
was to evaluate associations of WC, hip circumference, WHtR, waist-to-hip ratio (WHR), mid-upper
arm circumference, forearm circumference, calf circumference, and body composition with MS.
The OR of visceral fat, hip circumference, forearm circumference, and WHR were 2.19 [95% CI,
1.30–3.71], 1.89 [1.07–3.35], 2.47 [1.24–4.95], and 2.11 [1.26–3.53], respectively. WC was not related to
MS. However, forearm circumference and bioelectric-impedance-measured visceral fat were associated
with the disease.

Mooney et al. [13] determined that other anthropometric factors, such as WC, WHtR, percent body
fat, fat mass index (FMI), and fat-free mass index (FFMI), were consistently better predictors as
MS-associated factors than BMI. They obtained their data from 12,294 adults who took part in annual
physical examinations provided by EHE International, Inc., New York, NY, USA. They showed that
each anthropometric factor was related to metabolic risk factors using Pearson correlation analyses,
linear regression analyses, and ROC curves, and no single index exhibited the strongest prediction
consistently. BMI was identified as the strongest predictor of BP.

Hsieh et al. [14] investigated the association of anthropometric factors, such as BMI, WC, and WHtR,
with MS in 8278 Japanese subjects (6141 men and 2137 women). The AUC values for BMI, WC, and WHtR
were 0.677 [95% CI, 0.644–0.691], 0.687 [0.673–0.700], and 0.696 [0.682–0.710] respectively. WHtR was
the most commonly associated risk factor in screening Japanese individuals for MS.

Shen et al. [15] evaluated whether WC correlated more strongly with MS components than
percent fat and other related anthropometric factors, such as BMI, in 1010 healthy white and
African-American men and women. Their results demonstrated that WC was most strongly associated
with MS, followed by BMI.

Rodea-Montero et al. [16] identified the associations between anthropometric factors and MS
in 110 Mexican obese adolescents. BMI, WC, and WHtR were evaluated as anthropometric factors.
The investigators used ROC curves to identify significant predictors. The AUC values of BMI, WC,
and WHtR were 0.651 [95% CI, 0.547–0.755], 0.704 [0.604–0.804], and 0.652 [0.544–0.759], respectively.
They found that WHtR was associated more strongly than WC and BMI for identifying metabolic risk.

Williams et al. [18] demonstrated the association between GLU and MS. Their study enrolled
802 subjects aged 40–65 years who were randomly selected from a population-based sampling frame.
Their study identified four dietary patterns using principal component analysis. These dietary patterns
were related to other lifestyle factors, such as the socioeconomic group, smoking, alcohol intake, and
physical activity. In component 1, there was a negative association with diabetes as one of the causes
of MS. According to the results, dietary patterns were associated with GLU intolerance and MS.

Lao et al. [19] investigated the association between white blood cell (WBC) count and MS in
old Chinese patients. The analyzed dataset (obtained from a medical checkup record) consisted of
3020 men and 7256 women aged 50–85 years. Vascular risk factors (e.g., WC, BMI, TG, TC, LDL,
C-reactive protein, SBP, and DBP) were associated with WBCs both in men and women. The risk of MS
increased significantly with higher WBC counts (OR = 1.86 [1.43–2.42]). There was a strong association
between WBC count and vascular risk factors of MS.

Funakoshi et al. [20] investigated the association of airflow obstruction with MS in Japanese
men. Their dataset consisted of 7189 subjects aged 45–88 years from spirometric lung function tests
at medical checkups. The airflow obstruction was divided into two parts (GOLD I and GOLD II–IV)
according to GOLD guidelines. The incidence rate of MS was higher in subjects with GOLD II–IV than
in those with normal lung function (OR = 1.33 [1.01–1.76]). Additionally, the MS component WC was
associated with MS (OR = 1.76 [1.24–2.50]) and BP (OR = 1.37 [1.08–1.74]).

Paek et al. [22] evaluated the association between impaired lung function and metabolic risk factors,
enrolling 4001 subjects aged > 18 years in 2001 from the KNHANES dataset. Using multiple linear
regression, they analyzed the association of low pulmonary function with MS. They also examined
the associations of restrictive lung disease and obstructive lung disease with MS using multiple
logistic regression adjusting for WHtR, sex, age, smoking, physical activity, alcohol consumption, and
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socioeconomic status. WC, SBP, and TG were associated with FVC. They showed that the association
of low pulmonary function with MS risk factors and restrictive lung disease (OR = 1.40 [1.01–1.98])
was also related to MS.

Park et al. [23] investigated the association between chronic obstructive pulmonary disease
(COPD) and MS. Their dataset comprised 1215 subjects aged > 40 years from the KNHANES in 2001.
The prevalence of MS was significantly high among COPD patients in both men and women (33.0% and
48.5% higher, respectively). In men, the risk of COPD (OR = 2.03 [1.08–3.80]) was associated with MS
and abdominal obesity (OR = 1.95 [0.93–4.11]).

Lin et al. [24] studied the relationship between impaired lung function and MS in adults.
Their study assessed 46,514 patients (21,669 men and 24,845 women) aged > 20 years, recruited from
four nationwide MJ Health Screening Centers in Taiwan. The investigators examined associations
between lung function test results and MS using multivariate logistic regression. They demonstrated
the association between restrictive lung impairment and an increased risk of MS (p < 0.01, OR = 1.221),
adjusting for age, sex, BMI, smoking, alcohol consumption, and physical activity.

This study showed results similar to those of previous studies [12–24] regarding the association
of MS with anthropometric, blood, urinary, and spirometric factors. Specifically, TG exhibited the
strongest association among all parameters in both men and women. With regard to anthropometric
factors, WHtR showed the strongest association in both men and women. Concerning blood parameters,
GLU showed a strong positive association. With respect to urinary parameters, UPH showed a negative
association with MS. Regarding spirometric factors, FEV6 and FVC exhibited negative associations
with MS.

Choe et al. [38] constructed and analyzed the five MS prediction models including the
MLP (multilayer perceptron), NB, RF (random forest classification), CT (decision tree), and SVM
(support vector machine). As for the AUC, the NB model showed the highest predictive power
at 0.690. Kopitar et al. [47] evaluated and validated T2DM (type 2 diabetes mellitus) prediction
model including lm (linear regression model), Glmnet (regularized generalized linear model),
RF, XGBoot (extreme gradient boosting), and LightGBM (light gradient boosting machine) by RMSE,
AUC, AUPRC, R2, and calibration plot. RF showed the best performance according to RMSE. In our
study, as for the results of performance analysis and calibration plot, the wrapper_LR model showed
the best performance in both men (AUC = 0.868) and women AUC = 0.932), respectively.

Overall, our current findings show that anthropometric, blood, urinary, and spirometric factors
might be involved in the induction of MS. Specifically, there was increased association of WC and
WHtR, and decreased association of TG, UPH, FEV6, and FVC with MS. The wrapper based logistic
regression model showed a high predictive power for both men and women.

Collectively, all the studies, including ours, identified different potent indicators of MS,
demonstrating that no single factor could serve as an effective marker for the identifying MS.
This confirms the concept that co-occurring conditions contribute to development of the disease.
Thus, a subgroup of individuals with shared pathophysiology, and hence a common strong indicator,
might be at high risk of a specific comorbid disease. Therefore, subgroup stratification of MS might be
necessary for partitioning risk factor clusters involved, which should provide insight into personalizing
pharmacological and lifestyle modifications as treatment approaches for managing the condition.

This study had several limitations: First, it was difficult to determine cause-and-effect associations
due to the cross-sectional design of the study. Second, our results were limited to Korean adults because
of the KNHANES dataset employed. Nonetheless, despite the identification of specific indicators of
MS, which confirmed the findings of previous reports utilizing machine learning, our results indicated
sex-based differences in MS risk factors.

5. Conclusions

MS is closely related to well-known major diseases, such as CVD, stroke, cancer, and T2D.
Thus, it is increasingly attracting attention as an objective health indicator worldwide. In this
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study, we investigated the associations between MS and anthropometric factors, blood parameters,
and spirometric factors, and evaluated their predictive performance using prediction models.
Binary logistic regression analysis was used for statistical analysis, and the wrapper and filter methods
were used for feature selection. Based on the selected factors, prediction models were constructed
using NB and logistic regression algorithms. The results showed that WHtR, WC, TG, GLU, UPH,
FEV6, and FVC were associated with MS. In particular, TG in men and GLU in women were both
highly significant risk factors in participants with MS. According to AUC analysis, TG in men and
WHtR in women showed strongest predictive powers for the disease among all factors. FEV6 and FVC
represented high predictive power among the spirometric factors. The wrapper-based logistic regression
prediction model showed highest predictive performance in both men and women. In the calibration
curve for verification of the predictive model, the wrapper_LR showed the highest performance in men
and women. Thus, our results provide fundamental clinical information supporting the prevention
and management of MS, and our model shows potential as a large-scale screening tool.
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