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Abstract: Data-driven machine learning techniques play an important role in fault diagnosis, safety,
and maintenance of the industrial robotic manipulator. However, these methods require data that,
more often that not, are hard to obtain, especially data collected from fault condition states and,
without enough and appropriated (balanced) data, no acceptable performance should be expected.
Generative adversarial networks (GAN) are receiving a significant interest, especially in the image
analysis field due to their outstanding generative capabilities. This paper investigates whether
or not GAN can be used as an oversampling tool to compensate for an unbalanced data set in
an industrial manipulator fault diagnosis task. A comprehensive empirical analysis is performed
taking into account six different scenarios for mitigating the unbalanced data, including classical
under and oversampling (SMOTE) methods. In all of these, a wavelet packet transform is used
for feature generation while a random forest is used for fault classification. Aspects such as loss
functions, learning curves, random input distributions, data shuffling, and initial conditions were also
considered. A non-parametric statistical test of hypotheses reveals that all GAN based fault-diagnosis
outperforms both under and oversampling classical methods while, within GAN based methods,
an average accuracy difference as high as 1.68% can be achieved.

Keywords: feature extraction; generative adversarial network; random forest; unbalance data;
fault diagnosis

1. Introduction

For data-driven machine learning techniques [1], it plays an important role in the machinery fault
diagnosis and prognostics [2,3]. Recently, deep learning [4] emerges as one that has been progressively
adopted to develop health monitoring systems for the machinery. One way of looking at deep learning
is as a feature engineering method [5] that automatically extracts features from the collected signals.
Propagating these signals from the input layer to layers with less and fewer neurons, the neural
network is forced to represent the input data space into a lower dimensional feature space, which,
in general, reduces overfitting and increases the accuracy.
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Deep learning models such as convolutional neural networks [6], deep autoencoders [7], deep belief
networks [8], and deep Boltzmann machines [9] have achieved outstanding results in fault diagnosis,
and other fields essentially due to the above-described dimensionality reduction effect. In the industrial
manipulator field, Nho Cho et al. [10] proposed an algorithm based on the multilayer perceptrons for the
manipulator actuator fault detection. Wang et al. [11] proposed a multi-data fusion with an optimized
convolutional neural network (CNN) for fault detection of rotating machinery. Ma et al. [12] proposed the
convolutional multi-time scale echo state network (ESN) to efficient classification. Three different ESNs
with different time scales were used to allow the recurrent neural network to successively refine the features
in a similar way of a kernel in a CNN. Due to the fast training of ESN, Long et al. [13] proposed a deep
echo state network optimized by particle swarm optimization to fault diagnosis of a wind turbine gearbox.
Hu et al. [14] present an approach with deep Boltzmann machine and multi-grained scanning forest to
effectively deal with industrial fault diagnosis. Wang et al. [15] proposed a new deep neural network model
based on a deep Boltzmann machine for condition prognosis. Lee et al. [16] proposed a real-time fault
diagnosis model using a deep neural network. Shao et al. [17] presented a continuous deep belief network
(CDBN) for bearings fault detection. Shen et al. [8] used a deep belief network with an optimized function
of Nesterov momentum (NM) for bearing fault diagnosis. Polic et al. [18] presented a new method of a
convolutional neural network encoder for feature extraction in tactile robotics. D’Elia et al. [19] based on
the study of how the power flows inside the time synchronous average of the ring gear and a modified
statistical parameter for planet gears fault diagnosis. Zaidan et al. [20] use a Bayesian hierarchical model
with utilizing fleet data from multiple assets to perform probabilistic estimation of remaining useful life for
civil aerospace gas turbine engines.

However, all the above models are critically dependent on a representative, balanced, large enough
data set that require data that, more often that not, are hard to obtain [21]. While data from a
healthy state are abundant, data from faulty states are rare, sparse, and hardly representative of
all possible faults. This could lead to low diagnosis precision in these intelligent fault diagnosis
techniques. Without appropriated data, these machine learning methods simply do not have acceptable
performance [22], and it is important to consider a method that mitigates such a data shortage.

As Robotic manipulators, they are wildly used in the industry as they can be used in a range of
tasks such as assembly, painting, or welding [23]. However, the transmission system of a manipulator
is prone to faults due to prolonged working periods [24]. Typically, these faults manifest in the
connection parts, bearings, gears, or gear shafts. A faulty manipulator will be less precise, less efficient,
less productive, and less secure—even though it could be a tricky task to obtain fault data for such
precision machinery. Therefore, the monitoring of the manipulator health condition with limited data
sources is of paramount interest.

For mitigating this, some fault diagnosis works resorted to the SMOTE. SMOTE stands for
Synthetic Minority Oversampling Technique and aims at compensating for the data unbalance of a
given class by increasing the number of samples in that class. Roughly, it creates a new synthetic sample
by interpolating two existing similar samples of the same class, the new sample having the same class
of the two originating samples [25]. SMOTE is a popular method but sometimes, by increasing the
number of samples, it will also increase the overlapping between classes. An alternative approach to
cope with the unbalanced data set problem is to resort to deep learning and in particular to generative
adversarial networks (GAN). The idea is to use the generative model of a GAN to generate enough
samples for effective training of the diagnoser. GAN was first proposed by Goodfellow [26] and
consists of two adversarial models (neural networks): a generator and a discriminator.

The learning process can be described as a min-max game. The generator produces synthetic
examples while the discriminator tries to decide whether the current input is either a real or a synthetic
example. Both models improve their performance simultaneously up to a Nash equilibrium using a
gradient-based optimization technique. The number of GAN applications has been steadily increasing.
A sample of recent applications is offered next. In the image processing field, Ledig et al. [27] presented
SRGAN, a generative adversarial network for image super-resolution. Isola et al. [28] demonstrated
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that the conditional adversarial network is a promising approach for image-to-image translation tasks.
Based on the above comment, Zhu et al. [29] presented an approach for learning to translate an image
from a source domain to a target domain in the absence of paired examples. Shao et al. [30] develop an
auxiliary classifier GAN (ACCGAN) to learn from mechanical sensor signals and generate realistic
one-dimensional raw data. Li et al. [31] proposed a novel fault detection method for 3D printers using
GAN which consider only normal condition signals with outstanding performance. Mao et al. [32]
used a GAN for an unbalanced data driven fault diagnosis of rolling bearings. In addition, for rolling
bearings, Jiang et al. [33] proposed a novel anomaly detection approach based on GAN with only
health data. Li et al. [34] applied a GAN for the feature space learning in fault diagnosis of 3D printers
using only one sample of each faulty state. Wang et al. [35] proposed a method based on a conditional
variational auto-encoder and a generative adversarial network for unbalanced fault diagnosis of a
planetary gearbox.

To the best of our knowledge, no work reported model based generation of synthetic samples
for fault diagnosis of robotic manipulators. Hence, the main contributions of our work are: (1) The
application of GAN to generate synthetic examples (signals) representing fault states for mitigating
the presence of an unbalanced data set in a fault diagnosis task of an industrial robotic manipulator.
More concretely, GAN generates a synthetic wavelet packet transform based feature of a vibrational
signal as acquired by an accelerometer; (2) A comprehensive study taking into account six different
scenarios for mitigating the unbalanced data, including classical under and oversampling (SMOTE)
methods as well as for assessing the effect of factors such as generator selection, the number of training
examples in each class, data shuffling in training data, the distribution used for sampling input random
data and initial conditions.

The rest of this paper is organized as follows. The proposed GAN based fault diagnosis scheme is
specified in Section 2. The manipulator experiment was presented in Section 3. The fault diagnosis of
the manipulator was analyzed in Section 4 to validate the experiment result. Finally, the conclusions
and the future work were detailed in Section 5.

2. Methodology

2.1. Feature Extraction

Wavelet packet transform (WPT) can be viewed as a time frequency conversion technique of a
non-stationary signal [36]. It complements the shortage of wavelet transforms that only decomposes
the low frequency components but cannot extract high-resolution on high frequency components.
The discrete wavelet transform of the discrete signal f (t) is given by [37]:

wm,n(t) =< f (t), Ψm,n(t) >=
1√
m

∫ +∞

−∞
Ψm,n(

t− n
m

) f (t)dt, (1)

where m is the scaling factor and n is the sifting factor, which are given, respectively, by:

m = am
0 , (2)

n = b0am
0 . (3)

When a0 = 2, b0 = 1, (1) can be re-written as

Ψm,n(t) = 2−
m
2 Ψ(2−mt− n) (4)

In the wavelet transform, the signal u(t) can be separated in the Hilbert space by a scaling and by
a wavelet function. The scaling function Φ(t) corresponds to the low frequency part of the original
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signal while the wavelet function ϕ(k) corresponds to the high frequency part of the original signal
with initial conditions:

Ψ0
m,n(t) = Φ(t) (5)

Ψ1
m,n(t) = ϕ(t) (6)

Figure 1 shows a 3-level decomposition of a WPT of a signal u(t). This is decomposed in a
high-frequency part hk(t) and in a low-frequency part gk(t). Each part is computed by a filter, i.e.,

hk(t) =
tk + tk+1

2
, (7)

gk(t) =
tk − tk+1

2
, (8)

The function using the above filters can be given by:

u2n(t) = ∑
k

hkun(2t− k), (9)

u2n+1(t) = ∑
k

gkun(2t− k) (10)

h(h(h(k))) g(h(h(k))) h(g(h(k))) g(g(h(k)))

h(h(k) g(h(k))

h(k)

u(k)

h(h(g(k))) g(h(g(k))) h(g(g(k))) g(g(g(k)))

h(g(k) g(g(k))

g(k)

Figure 1. The decomposition levels of a wavelet packet transform of the signal u(t).

As illustrated in the figure, this procedure can be recursively applied to both low and
high-frequency parts. However, the number of decomposition levels will be limited by the actual
application. Due to its smoothness and nonlinear characteristics, in this paper, we applied the
Daubechies WPT with seven levels (Db7).

We further compute an informative statistics from the WPT as follows [38]:

p(m) =

√√√√ N

∑
n=1

(wm,n(t))2 (11)

where N denotes the number of data in each node of the 7th decomposition level and wm,n(t) and is
given by (1). Hence, a feature vector p can be defined for the signal u(t) as follows:

u(t)↔ p = [p(1), p(2), . . . , p(d)]T (12)

where d is the number of features, i.e., with seven levels d = 27 = 128.

2.2. Generative Adversarial Network

A Generative adversarial network consists of two models: the generative model G(z) and the
discriminative model D(x). The goal of the generative model is to produce synthetic samples such
that the discriminate model could not distinguish them from the real samples. At the same time,
the objective of the discriminative model is to accept real samples and reject synthetic ones with the
highest possible accuracy. In equilibrium, the discriminative model cannot identify the source of the
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data, meaning that synthetic data are indistinguishable from real data. Figure 2 shows a block diagram
of a GAN as used in this work

D(x)Random 
Gaussian

distribution

P

z G(z)

0

1
or

Real data with WPT feature 
extraction

Leaky ReluG(x)

Figure 2. A block diagram of a GAN as used in this work.

For learning, a GAN implements an adversarial competition between the generator G(z) and
the discriminator D(x). Initially, a real sample u(t) is processed by the above described WPT feature
extraction technique, and (12) is set as the real input of D(x). A random signal z(n) with a given
distribution is input into the generator which in turn produces a synthetic feature vector G(z).
The discriminator is trained with a target value of 1 when a real sample is presented at its input,
and with 0 for a synthetic example. This process repeats until a Nash equilibrium is reached. In general
terms, the GAN optimization problem can be given by: In general terms, the GAN optimization
problem can be given by:

G∗ = arg min max V(G, D) (13)

where max stands for the maximization of the probability of the generator G while min refers to the
minimization of the probability in the discriminator D; V(G, D) is the GAN objective function that can
be given by:

V(G, D) = E
x∼Pdata

[log(D(x))] + E
x∼PG

[log(1−D(G(z)))] (14)

where Ex∼Pdata represents the expectation of real probability distribution, whereas Ex∼PG represents
the expectation of the random distribution. Since x and z are real-value random variables on the
probability space, the expect values of x and z can defined as the integral of x and z, respectively.
Therefore, (14) can be re-written as

V(G, D) =
∫

x
[Pdata(x) log D(x) + PG(x) log(1−D(x))]dx (15)

where
∫

x Pdata(x)dx stands for the expectation of Ex∼Pdata(.) and
∫

x PG(x)dx denote the expectation of
Ex∼PG (.). Let f (x) = Pdata(x) log D(x) + PG(x)log(1−D(x)); then, the derivative of f (x) is given by

ḟ (x) =
Pdata(x)
log D(x)

+
PG(x)

log(1−D(x))
(16)

where Pdata(x) is the distribution of the real data while PG(x) is the distribution of generated data.
When ḟ → 0, D tends to the maximum value, which is given by

D∗ =
Pdata(x)

Pdata(x) + PG(x)
(17)

When PG(x) = 0, D∗ becomes 1 meaning that the discriminator can effectively recognize synthetic
data, when PG(x) is close to Pdata(x), D∗ tends to the optimal value of 0.5, which means that synthetic
data are indistinguishable from real data. Plugging in (17) into (15), one has:
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V(G, D∗) =
∫

x
[Pdata(x) log

Pdata(x)
Pdata(x) + PG(x)

+ PG(x) log(1 − Pdata(x)
Pdata(x) + PG(x)

)]dx (18)

As the objective of generative part is to shrink the distance between real and generated data,
the loss function of generative model can be defined as

V(G, D∗) =
∫

x
[PG(x)log(1− Pdata(x)

Pdata(x) + PG(x)
)]dx (19)

Under the above loss and, in general, the training process of a GAN is not stable and gives
rise to model collapse. To mitigate this problem, the Wasserstein GAN was proposed where the KL
divergence of the classic GAN was replaced by the 1-Wasserstein distance [39]. The Wasserstein GAN
loss function is therefore given by:

V(G, D) = E
x∼Pdata

[D(x)] + E
x∼PG

[(D(G(z))] (20)

This change in the loss function can make the convergence of the generator faster, but it can
be further improved. In [40], an improved Wasserstein GAN was proposed in which an additional
gradient penalty was added to (20), i.e.,

V(G, D) = Ex∼Pdata [D(x)] + E
x∼PG

[(D(G(z))] (21)

+λE[(|δD(αx− (1− αG(z)))| − 1)2]

where α is a user-defined scaling factor and λ stands for the gradient penalty coefficient.
In another approach, Cabrera et al. [41] proposed a metric aiming at keeping track of the best

current generator while training progresses. The metric is given by:

||Dr −Dg|| = (Rmean − Gmean)
2 + (Rstd − Gstd)

2 (22)

where Rmean and Gmean are the centroids of the real and generated data clusters, respectively, while Rstd
and Gstd are the real and generated data dispersion (standard deviation), respectively. The smaller (22)
the closer the generated data are from real data. In each training step, (22) is computed for the
current generator, and the generator exhibiting the lower current distance is viewed as the best current
generator. Hereafter, we refer to this process as (model) generator selection.

A Vapnik Loss Inspired GAN

The loss function is a key issue for model selection. Therefore, we are adopting a recently proposed
loss function within the GAN and more concretely within the Wasserstein GAN framework. This loss
function, first proposed by Vapnik et al. [42], considers the geometry distance between the predict and
original data. In brief, the classical loss function used in regression, given a set of N examples, can be
given by:

Lc =
1
N

N

∑
i=1

(h(xi)− yi)
2 +

1
N

N

∑
i=1

N

∑
j=1

(h(xi)− yi)I(h(xi)− yi) (23)

where xi and yi are the i-th independent and dependent observation, respectively, h(x) is the regressor
hypothesis, and I is the identity matrix. Based on the VC theory, in [42], the identity matrix is replaced
by the so-called V-matrix, i.e., (23) becomes:

Lv =
1
N

N

∑
i=1

N

∑
j=1

(h(xi)− y)V(h(xi)− y) (24)
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where V is the V-matrix. For data in Rd, the V-matrix can be computed for all i, j = 1, . . . , d as

V(i, j) =
d

∑
k=1

(ck −max(xk
i − xk

j )) (25)

where d denotes the number of data dimensions, 0 ≤ xi ≤ ci and c1, . . . , cd are non-negative constants.
This approach has shown good results in the regression problems. Motivated by both the theoretical
background and the experimental results obtained in regression problems, including in the framework
of SVR [43], we are proposing to apply this loss function in the framework of GAN as a regularization
term in (22), which becomes:

R fv(G, D) = Ex∼Pdata [D(x)] + Ex∼PG [(1D(x)] + λE[(|δD(αx− (1− αG(z)))| − 1)2] + Lv (26)

where Lv is of the form (24).

2.3. Random Forests for Fault Classification

Ensemble learning uses a group of algorithms to get a better prediction than any of its base
algorithms. A random forest (RF) is a homogeneous ensemble classifier that uses a set of decision
trees (DT) [44,45]. Each DT is grown independently using the Bagging technique. In addition, and to
increase diversity (reducing the correlation between trees), an RF grows each tree from a random
selection of data features. Once trained, an RF uses a majority voting mechanism for making its
classification (or regression) prediction.

The CART algorithm is frequently used to grow a decision tree. In the CART algorithm, the Gini
index is the metric used for selecting the data set feature to be used in a given node of the tree. Given a
node m and the estimated probability p(c|m)(c = 1, 2, 3, . . . , C), the Gini impurity index is defined as:

G(m) = ∑
c1 6=c2

p(c1|m)p(c2|m) = 1−
C

∑
c=1

p2(c|m) (27)

Let n be the splitting point of node m that separates the node into two portions in in which a proportion
Pa of the samples in m is assigned to ma and a proportion Pb is assigned to mb, i.e., Pa + Pb = 1. Thus,
the decrease in the Gini impurity index is defined as follows:

δG(m, n) = G(m)− PaG(ma)− PbG(mb) (28)

The optimal feature j∗ and the optimal splitting point n∗ that produce the largest decrease in the
Gini impurity corresponds to

n∗, j∗ = arg max δG(m, n) (29)

The flowchart for building an RF is shown in Figure 3.

Training 
samples

Random select 
samples with Bagging 

technique

Subset 1
Consctruct DTs

Tree 1

Tree 2

Tree s

Majority 
Voting

Final 
Class

Subset 2

Subset S

Figure 3. Steps for building a random forest.
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2.4. Data Generation for Fault Classification

Based on the feature extraction process that uses Wavelet Packet Transform, illustrated in
Section 2.1, the GAN network described in Section 2.2 and a random forest classifier detailed in
the previous section, one can setup the learning scheme for the manipulator fault diagnoser. As shown
in Figure 4, a real data observation of from each class is sent to the WPT to extract the vector of
features (12). Meanwhile, a random signal z is input into the generator that will produce a vector of
synthetic features G(z).

 

z
ReLu

Generator

Discriminator

Re
al

 d
at

a

W
av

el
et

 p
ac

ke
t 

tra
ns

fo
rm

Ra
nd

om
 F

or
es

t

Z

Real 
data
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Figure 4. The learning scheme of the fault diagnoser.

The goal of the discriminator D(x) is to distinguish between the real vector of features, outputting
a 1, and the synthetic vector of features, outputting a 0. The learning process described in Section 2.2
is applied. Once both the generator and discriminator are trained, the generator can be used to
generate as many synthetic data as required. Notice that the learning process and subsequent synthetic
generation are carried out for each faulty class, i.e., for each class, we need to increase the number of
observations. Finally, (health and faulty) real data together with faulty generated data are used in the
random forest classifier for fault classification. Based on the above description, the procedure can be
outlined in the following flow chart (Figure 5).

Split
Training set

70%

Testing set
30%

WPT

WPT

Health data

Faulty data Train GAN 
with each class

Generate 
sythetic faulty 
data trhrough a 
trained GAN

Balanced data set

Random Forest Fault diagnosis 

Abundant Healthy data 

Rare Faulty data 

Imbalanced 
Data set

Evaluate

Figure 5. The flow chart of the procedure of the proposed approach.

In addition, this whole process is illustrated in Figure 6.
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Accelerometer

Altitude sensor

Data acquisition system

Laptop

Manipulator

Figure 6. The complete data pipeline for fault diagnosis of the manipulator.

3. Experiment

3.1. Experimental Test-Rig

Experiments were carried out in the gear shaft system of a Brtirus1510A 6 degrees of freedom
industrial manipulator. The gear system, which is the main driver component of the manipulator,
consists of two planetary gears and two sun gears. The objective is to monitor the health state of
gears by measuring the vibrational signals using an PCB 622B01 accelerometer. The accelerometer was
installed on the basis of the sixth axis of the manipulator. See Figure 7 for its exact location. Cracking,
pitting, and broken tooth are the main gear fault types in manipulators. Table 1 shows the fault type
we are interested in. Figure 8 shows an example of each one of the four types of faults.

The robot is moved by the motors, and the teaching box gives the instructions to the robot to
start its next movement. At the beginning of the process, the robot is in its original position of 0
degree. Firstly, it will start back and forth movement from −115 degrees to 140 degrees of the limit
range point in the first axis. Secondly, the same movement and the same limit range which is from
−50 degrees to 35 degrees. Thirdly, the robot will move from −60 degrees to 90 degrees. Fourthly,
the same configuration of movement is from −180 degrees to 180 degrees. Fifthly, the movement range
will be decreased such that the range is from −90 degrees to 90 degrees. Finally, the robot will move
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from −180 degrees to 180 degrees and stop in the original place. This series of dynamic movement is
only one experiment process. In the next step, we replace the faulty part in Table 1 to restart the above
movement for the next experiment. Finally, the signal in each channel is collected by the NI acquisition
system which is an analog-to-digital conversion system that the digital samples are collected with an
interface on the laptop.

 

Accelerometer

Altitude sensor

Data acquisition system

Laptop

Manipulator

Figure 7. Monitoring the health state of the gears using vibrational signals acquired by an accelerometer
located in the basis of the sixth axis of the manipulator.

Table 1. Different fault patterns in the industrial manipulator.

Fault Id Part Fault Type

A None Healthy
B Sun gear 1 Pitting
C Sun gear 1 Broken tooth
D Planetary gear 1 Cracking

(a) (b) (c) (d)

Figure 8. Examples of each one of the 4 monitoring conditions: (a) Healthy state; (b) Pitting in Sun
gear 1; (c) Broken tooth in Sun gear 1; and (d) Cracking in Planetary gear 2.

3.2. Collected Vibration Signals

As mentioned above, the experimental measurements include four fault types shown in Table 1.
The sampling rate is 100 kHz. The duration of each measurement is 20 s. The sampling interval was
set to 0.2 s. Thus, 20,000 observations were obtained in each fault type, and 20 k points are chosen for
each observations. Therefore, a dataset of 80,000×20 k can be acquired during the experiment. Figure 9
shows an example of a vibration signal acquired in each one of the fault types.
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(a) (b)

(c) (d)

Figure 9. Vibration signals acquired in the following fault conditions: (a) Healthy state; (b) Pitting in
Sun gear 1; (c) Broken tooth in Sun gear 1; and (d) Cracking in Planetary gear 2.

For hold-out validation, the data set was divided into two disjoint subsets, the training and the
test (sub)sets. The training set has 70% of data while the test set has the remaining 30%. Table 2 shows
the number of observations for each one of these sets.

Table 2. Number of observations in the training and test sets used for hold out validation. The training
set is clearly unbalanced.

Fault Id Training Set Test Set

A 14,000 6000
B 140 6000
C 140 6000
D 140 6000

4. Results and Discussion

4.1. On Different Scenarios for Dealing with the Unbalanced Data Set

Several scenarios were considered to assess the effectiveness of the proposed model. In all these
scenarios, we all used an RF with 1000 trees for classification. The different scenarios identified as
follows: RF-i denotes a random forest trained with the unbalanced dataset described by Table 2;
RF-b2 denotes a random forest trained with a subsampled balanced dataset with only 140 observations
per condition; RF-GAN and RF-GAN2 stands rand forests trained with data sets that have the real
14,000 healthy observations and 14,000 faulty observations, the only difference between these scenarios
is that RF-GAN uses the technique described in Section 2.2 to select the best current model for
generating samples while RF-GAN2 uses the model obtained in the last iteration (i.e., iteration 20,000)
of training process to generate the samples. RF-GAN1 is similar to RF-GAN with the difference that
only 13,860 synthetic faulty states were generated while the remaining 140 are the original faulty states
presented in the training data set. For comparison purposes, we also considered a random forest
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trained with a data set previously processed by SMOTE, a popular oversampling method for dealing
with unbalanced data sets.

In all GAN based models, the generators are multi-layer-perceptrons with a 64:1014:128 fully
connected topology while discriminators are also multi-layer-perceptrons with 128:1024:2048:1 fully
connected topology. These were selected empirically after some preliminary tests. The Adam optimizer
is used with its key parameter settings of β1 = 0.9, β2 = 0.999 and ε = 1 × 10−8. The learning rate for
the generators is set to 1 × 10−5, while, for the discriminators, is set to 1 × 10−4. The α and λ are set to
1 × 10−4 and 1.0, respectively. A maximum number of 10,000 iterations was set for training.

Figure 10 shows the distribution of the obtained accuracy for each scenario using boxplots.
A boxplot summarizes a data distribution stressing five of its characteristic values: minimum,
lower quartile, median, upper quartile, and maximum value. The red line denotes the median
value. The distribution pertains to 20 independent repetitions.
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Figure 10. Boxplots exhibiting the relative distributions of accuracy obtained with the different
scenarios considered for fault classification. See text for details.

The results presented in Figure 10 were analyzed by the Friedman test, a non parametric statistic
test of hypotheses to evaluate whether or not there is a statistically significant difference between
the results (boxplots) of the different scenarios. The Friedman null hypothesis is that there is no
statistically significant difference between the results of the different scenarios. Given a significant
level, α, this hypothesis cannot be rejected whenever the pFriedman, the p-value generated by the test,
satisfies pFriedman > α. The null hypothesis is rejected otherwise, meaning that there is a statistically
significant difference between the analyzed scenarios. In such a case, we can detect which of the
scenario is responsible for such difference resorting to a pairwise posthoc test. A ranking can be
obtained by counting the number of times that a method was a winner in the pairwise comparison.
See [46,47] for further details. Here, we are using the usual α = 0.05 and the Wilcoxon test as posthoc.
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Applying Friedman to the results in Figure 10 yielded pFriedman= 1.865× 10−19 < 0.05, meaning there
is a statistically significant difference between the six scenarios. Table 3 shows the subsequent posthoc
results. From these, one should conclude that there is no statistically significant difference between
scenarios RF-GAN and RF-GAN1 and that these outperform all the others. This is an interesting
observation as both RF-GAN and RF-GAN1 use the technique described in Section 2.2 to select the
best current generator and that the only difference between these scenarios is that in RF-GAN all the
faulty state data are synthetic while in RF-GAN1 only 13,860 faulty examples are synthetic while the
remaining 140 are the original faulty states presented in the training data set. This further endorses the
quality of the obtained generators.

Table 3. Wilcoxon posthoc pairwise tests for the different scenarios.

Pair p-Value Winner

RF-i vs. RF-b2 8.857 × 10−5 RF-b2
RF-i vs. RF-GAN 8.857 × 10−5 RF-GAN
RF-i vs. RF-GAN1 8.857 × 10−5 RF-GAN1
RF-i vs. RF-GAN2 8.857 × 10−5 RF-GAN2
RF-i vs. SMOTE 8.857 × 10−5 SMOTE
RF-b2 vs. RF-GAN 8.857 × 10−5 RF-GAN
RF-b2 vs. RF-GAN1 8.857 × 10−5 RF-GAN1
RF-b2 vs. RF-GAN2 8.857 × 10−5 RF-GAN2
RF-b2 vs. SMOTE 1.204 × 10−5 SMOTE
RF-GAN vs. RF-GAN1 0.079 –
RF-GAN vs. RF-GAN2 8.857 × 10−5 RF-GAN
RF-GAN vs. SMOTE 8.857 × 10−5 RF-GAN
RF-GAN1 vs. RF-GAN2 8.845 × 10−5 RF-GAN1
RF-GAN1 vs. SMOTE 8.844 × 10−5 RF-GAN1

RF-GAN/RF-GAN1

The average accuracy of RF-i was 87.88% while, with an undersampling balanced dataset, RF-b2
reached 94.5%. RF-GAN had an average accuracy of 97.06%, RF-GAN1 97.75%, and RF-GAN2 95.38%.
SMOTE had an averaged accuracy of 95.17% . We observe that the GAN based average accuracies are
all higher than the unbalanced (RF-i), undersampling (RF-b2), and oversampling (SMOTE) scenarios.
Within the GAN based scenarios, RF-GAN has shown a difference of 1.68% relatively to RF-GAN2 in
terms of average accuracy.

Curiously enough, we observed no advantage on the application of (24). For the moment, we keep
in mind that (26) is not the only possibility to used the Vapnik-loss in a GAN and that other forms are
currently being studied.

4.2. On of the Performance in Each Class

To further analyze the above results, the recall indicator of each fault class is studied. As it is
shown in Figure 11, the recall indicator in the RF-i model of the health state reaches 100% while, for the
other three faulty classes, comes down to 63.88% in gear pitting; 84.3% in gear broken tooth, and 63.35%
in gear cracking for an average of 77.88%. This clearly shows the effect of the unbalanced data set.
For RF-GAN, the recall indicator in each class is 99.53%, 99.73%, 99.63%, and 99.87%, respectively.
In RF-GAN1, the recall indicator in each class is 98.63%, 98.67%, 98.28%, and 95.40%, respectively.
For the RF-GAN2 model, the recall indicator in each class is 99.30%, 93.08%, 98.15%, and 90.08%,
respectively. The high recall indicators are due to the existence of sufficient examples in each class.
This is also visible in the recall of SMOTE.
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Figure 11. Recall indicators for the different scenarios: (a) RF-i; and (b) RF-b2; (c) RF-GAN;
(d) RF-GAN1; (e) RF-GAN2; and (f) SMOTE.

The fit score is another metric that can be used to compare the relative performance of the
different scenarios in each class. From Figure 12, one can see that the performance of RF-i as measured
by the F1-score is 70.38% in fault A, 77.54% in fault B, 90.03% in fault C, and 76.49% in fault D.
The performance of RF-b2 in each faulty condition is 91.05% in fault A, 92.25% in fault B, 96.50% in
fault C and 94.3% in fault D, respectively. The performance of RF-GAN is 98.52% in fault A, 98.83%
in fault B, 95.66% in fault C and 95.23 in fault D. The performance of RF-GAN1 is 98.55% in fault A,
98.95% in fault B, 96.87% in fault C and 96.62 in fault D. The performance of RF-GAN2 is 95.70% in
fault A, 96.54% in fault B, 90.01% in fault C, and 94.57% in fault D. For SMOTE, the performance is
89.72% in fault A, 93.08% in fault B, 97.56% in fault C, and 95.28% in fault D.

For completeness, the confusion matrices are presented in Figure 13. All these matrices consider
the 6000 test observations as per Table 2. For RF-i (Figure 13a), one can see a high number of
misclassifications in non-healthy states due to the unbalanced training set. These misclassifications are
strongly reduced (especially in the GAN-based scenarios) when enough data are generated and used
for training.

4.3. On the Training Set

4.3.1. Learning Curves

The performance of the proposed model under different data set sizes is now considered. Figure 14
shows the average performance over 20 independent runs in the testing set for the scenario RF-GAN
when only a given percentage of faulty observations are available for training. More concretely,
the following percentages were considered i =1, 2, 4, 6, 8, 10, 20, 60, 80, and 100 %. For instance,
when i = 4%, the number of training examples in each faulty state is 14, 000× 0.04 = 560.



Appl. Sci. 2020, 10, 7712 15 of 21

100

0

80

60

40

20

Av
er

ag
e 

ac
cu

ra
cy

 (%
)

C0 C1 C2 C3 Average
Each class using RF-i scenario

(a)

100

0

80

60

40

20Av
er

ag
e 

ac
cu

ra
cy

 (%
)

C0 C1 C2 C3 Average
Each class using RF-�� scenario

(b)

100

0

80

60

40

20Av
er

ag
e 

ac
cu

ra
cy

 (%
)

C0 C1 C2 C3 Average
Each class using RF-��� scenario

(c)

100

0

80

60

40

20Av
er

ag
e 

ac
cu

ra
cy

 (%
)

C0 C1 C2 C3 Average
Each class using RF-���� scenario

(d)

100

0

80

60

40

20

C0 C1 C2 C3 Average
Each class using RF-���� scenario

Av
er

ag
e 

ac
cu

ra
cy

 (%
)

(e)

100

0

80

60

40

20

C0 C1 C2 C3 Average
Each class using Smote scenario

Av
er

ag
e 

ac
cu

ra
cy

 (%
)

(f)

Figure 12. F1-score for scenario: (a) RF-i; and (b) RF-b2; (c) RF-GAN; (d) RF-GAN1; (e) RF-GAN2; and
(f) SMOTE.
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Figure 13. The confusion matrix for: scenario: (a) RF-i; and (b) RF-b2; (c) RF-GAN; (d) RF-GAN1;
(e) RF-GAN2; and (f) SMOTE.
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Figure 14. Learning curve of scenario RF-GAN for i =1, 2, 4, 6, 8, 10, 20, 60, 80, and 100% of the
training set.

It can be seen that the average accuracy increased from 56.25% to 97.05% by increasing the
availability of faulty data from 1% (140 examples) to 100% (14,000 examples) in each fault type.
There was a strong increased in performance up to 20%; after that point, the improvement in accuracy
was slower and slower until about 80%. After this value, the improvement was neglectable. That is,
adding more data after a certain point hardly improves the performance.

4.3.2. Shuffling Data

When generating training examples from a GAN based model, shuffling the training data are a
key important factor for obtaining an acceptable performance. Figure 15 illustrates the importance
of data shuffling. The results presented in this figure were obtained with exactly the same RF-GAN
configuration, the only difference being the way data are presented to the GAN for training. For non
shuffled data, the model is simply not able to generate no matter the other initial conditions (weights).
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Figure 15. The effect of shuffling input data for training a GAN based model: (a) with shuffling and (b)
without shuffling.
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4.4. On the Distribution Used for Sampling Random Inputs

In a GAN based model, the z signal presented to the generator (recall Figure 4) can be drawn from
any distribution. However, for this particular application, some distributions are better than others
for the training process. Figure 16 shows the classification results for RF-GAN when (a) z is sampled
from the standard normal distribution (0 mean and variance 1) and (b) a uniform distribution in [−1,1].
Undoubtedly, the former outperforms the latter.
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Figure 16. The effect of the distribution used for sampling the input z of the GAN generator:
(a) standard normal distribution and (b) normalized uniform distribution.

4.5. On the Initial Conditions

GAN is trained using a gradient based method that is sensitive to initial conditions (weights).
Figure 17 illustrates the impact of the initial conditions on the fault classification results. As shown
in that figure, RF-GAN was able to produce an acceptable accuracy for any of the initial set of
weights used. However, and as expected for local optimization methods, in 30 independent runs
(initializations), it was possible to identify a particular set of initial random weights that outperformed
all the others.
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Figure 17. The effect of initial weights (generated from different random generator seeds) on the
classification accuracy of RF-GAN.
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5. Conclusions

Robotic manipulators are wildly used in the industry and their maintenance and monitoring
systems are resorting more and more to data intensive machine learning methods. Methods such
as multilayer perceptrons, convolutional neural network, echo state networks, or deep Boltzmann
machines have all been used for such endeavors. However, all of these methods rely on a representative,
balanced, and large enough training set, which, due to the very nature of (some) faults, is very hard to
collect from the equipment. Motivated by the recent success of generative adversarial network (GAN),
in this work, we have exploited, for the first time, this type of generative model as an oversampling
method for fault classification in an industrial robotic manipulator.

A comprehensive empirical analysis was performed taking into account six different scenarios
for mitigating the unbalanced data, including classical under and oversampling (SMOTE) methods.
In all of these, a wavelet packet transform combined with GAN is used for feature generation while a
random forest is used for fault classification. Studies were also conducted for assessing the sensibility
of aspects such as generator selection, the number of training examples in each class, training data
shuffling, the distribution used for sampling input random data, and initial conditions.

The main conclusion is that it was possible to increase the performance of the fault diagnoser for
an industrial robotic manipulator for any of GAN based models over classical undersampling and
oversampling (SMOTE) methods. This is accomplished at the expense of a much higher design and
computational effort. Training a GAN is not an easy task due to the model collapse and other factors,
and it is certainly a quite time-consuming process. After training a GAN for each fault, one will have a
set of generators able to produce as much synthetic data as required in an efficient way though.

Within the GAN based models, those that keep track of the best current generator during training
yielded the best results. No statistically significant difference was observed between the scenario that
uses exclusively synthetic data for the faulty states and the scenario that uses the available real data
for such states. This is yet another piece of evidence on the quality of the obtained GAN generators.

In many cases like prognostics and health management (PHM), enough data can effectively
improve the fault monitoring capability of the industrial system. However, it can not completely
be executed due to a lack of faulty data. GAN is an efficient tool to get rid of the limitation of data
imbalance state, which can enhance the monitoring capability in PHM. Therefore, this approach can
provide a data background for PHM. However, this approach still has limitations, one is that this
model can only learn the data distribution from a limited faulty data source while there are many
kinds of faulty data in the industrial system. For the new faulty data, they need to be sent to this
model to learn the new distribution again to generate enough data that will bring time cost for training.
Another one is that this approach is trained by sending one single faulty class as an input to GAN in
order to obtain a generator. This means we need to train several GAN models for several faulty classes,
which is computationally demanding and time consuming.
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