
applied  
sciences

Article

On the Adoption of Global/Local Approaches for the
Thermomechanical Analysis and Design of Liquid
Rocket Engines

Michele Ferraiuolo 1,* , Michele Leo 2 and Roberto Citarella 2

1 Italian Aerospace Research Center (CIRA), via Maiorise snc, 81043 Capua, Italy
2 Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II 132,

84084 Fisciano (SA), Italy; m.leo26@studenti.unisa.it (M.L.); rcitarella@unisa.it (R.C.)
* Correspondence: m.ferraiuolo@cira.it; Tel.: +39-0823-623-933

Received: 8 September 2020; Accepted: 26 October 2020; Published: 29 October 2020
����������
�������

Abstract: Large Liquid Rocket Engines for Aerospace applications usually need to be cooled
regeneratively since they are characterized by high pressure levels and heat flux with the presence,
in the inner structure, of very high thermal gradients—thus necessitating the adoption of elastic-plastic
nonlinear material models to study the thermomechanical behavior of the chamber and its service life.
Tackling such nonlinearity makes the finite element analyses computationally intensive, particularly so
when dealing with three-dimensional models. In these instances, it is highly recommended to adopt
optimized numerical approaches that can save computation time while maintaining high levels of
accuracy. The aim of the present paper is to implement an iterative coupling technique between
two finite element models, a Global linear model and a Local nonlinear one, in the framework of
a Global/Local procedure, to improve the accuracy of the numerical simulations. Both conformal
and non-conformal meshes at the interface between the Global and the Local models have been
considered. The results show that, even with a very few iterations, significant accuracy improvements
are achieved.
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1. Introduction

The present work has been developed in the framework of the Hyprob project, funded by the
Italian Ministry of University and Research (MIUR) and led by the Italian Aerospace Research Center
(CIRA) [1]. The aim of the project was to design, manufacture and test a 3 tons thrust chamber adopting
liquid methane as refrigerant and fuel and liquid oxygen as an oxidizer [2–6].

The present study focus on the final Demonstrator, a regeneratively cooled thrust chamber.
The Demonstrator comprises an inner structure made of a copper alloy (CuCrZr), and an external
cold structure made of electrodeposited nickel (Figure 1). Carrying out a thermomechanical analysis
of the cooling channel can be very demanding from a computational point of view, since nonlinear
phenomena, such as plasticity, and time-dependent phenomena (e.g., creep) can come into play [7–12].
Consequently, there is a strong need to adopt simplified models or, in turn, numerical procedures that
can save computation time.
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Figure 1. Schematic representation of a liquid rocket engine thrust chamber. 

A common approach is based on a Global/Local sub-modelling that makes it possible to restrict 
the nonlinear analysis only to the areas where plastic strains are envisaged, without affecting the 
computational burden inherent the global model resolution [13,14].  

Generally, two separate finite element analyses on two separate models are conducted: a Global 
linear model with a coarse mesh and a Local nonlinear model with a fine mesh. A one-way approach 
is taken, where the displacements at the interface between the Global and Local models, evaluated 
by a finite element linear analysis of the Global model, are transferred to the Local nonlinear model 
as boundary conditions. Generally, in such an approach the Global model results affect the Local 
model analysis and not vice versa [14], but Gendre et al. proposed a two-way approach with the aim 
to improve the level of accuracy of the numerical results [15]. In the latter approach, the results of the 
Local model, in terms of nodal forces at the boundaries with the Global model, are subtracted from 
the nodal forces evaluated by means of the Global analysis and then applied as extra boundary 
conditions in the subsequent Global analyses. After a few iterations, the forces to apply at the 
boundary tend to zero; this means that convergence has been reached, as also demonstrated by a 
comparison with the results of a FEM Reference model. For the latter model, the mesh in the 
submodelled area exactly reproduces the mesh of the Local model, whereas the remainder of the 
domain reproduces that of the Global coarse model.  

Even if in this work FEM is used, such a submodelling procedure can also be based on the 
Boundary Element Method (BEM) [16–18].   

The two-way approach is very useful and efficient when local plasticization is envisaged, 
whereas one-way approaches could lead to very approximate results, since the nonlinear effects of 
the Local model on the Global one are not effectively taken into account. Such a procedure was 
employed only for conformal meshes in [15], namely the nodes of the Global and Local models are 
coincident at their interface. In this work, such constraints were removed, with the consideration of 
non-conformal meshes.  

The iterative technique has already been applied with a good success rate in many engineering 
fields, such as the study of local plasticity, where geometrical refinements can also be taken into 
account, such as the analysis of crack propagation [19] and so on. Recently, Gosselet et al. adopted 
the same algorithm and provided some guidelines to minimize the number of iterations needed to 
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A common approach is based on a Global/Local sub-modelling that makes it possible to restrict
the nonlinear analysis only to the areas where plastic strains are envisaged, without affecting the
computational burden inherent the global model resolution [13,14].

Generally, two separate finite element analyses on two separate models are conducted: a Global
linear model with a coarse mesh and a Local nonlinear model with a fine mesh. A one-way approach
is taken, where the displacements at the interface between the Global and Local models, evaluated by
a finite element linear analysis of the Global model, are transferred to the Local nonlinear model as
boundary conditions. Generally, in such an approach the Global model results affect the Local model
analysis and not vice versa [14], but Gendre et al. proposed a two-way approach with the aim to
improve the level of accuracy of the numerical results [15]. In the latter approach, the results of the
Local model, in terms of nodal forces at the boundaries with the Global model, are subtracted from the
nodal forces evaluated by means of the Global analysis and then applied as extra boundary conditions
in the subsequent Global analyses. After a few iterations, the forces to apply at the boundary tend
to zero; this means that convergence has been reached, as also demonstrated by a comparison with
the results of a FEM Reference model. For the latter model, the mesh in the submodelled area exactly
reproduces the mesh of the Local model, whereas the remainder of the domain reproduces that of the
Global coarse model.

Even if in this work FEM is used, such a submodelling procedure can also be based on the
Boundary Element Method (BEM) [16–18].

The two-way approach is very useful and efficient when local plasticization is envisaged,
whereas one-way approaches could lead to very approximate results, since the nonlinear effects of
the Local model on the Global one are not effectively taken into account. Such a procedure was
employed only for conformal meshes in [15], namely the nodes of the Global and Local models are
coincident at their interface. In this work, such constraints were removed, with the consideration of
non-conformal meshes.

The iterative technique has already been applied with a good success rate in many engineering
fields, such as the study of local plasticity, where geometrical refinements can also be taken into
account, such as the analysis of crack propagation [19] and so on. Recently, Gosselet et al. adopted the
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same algorithm and provided some guidelines to minimize the number of iterations needed to reach
convergence [20]; furthermore, they developed an overlapping version of the method with the aim to
use the algorithm for fully non-conformal meshing.

In the present work, the authors have implemented the iterative algorithm for both conformal
and non-conformal meshes, adopting a finite element commercial code (ANSYS) to study the
thermomechanical behavior of the cooling channel of a regeneratively cooled thrust chamber. The aim
of the present study is to demonstrate that the iterative Global/Local procedure can provide considerable
advantages when investigating test-cases where the nonlinear phenomena are sufficiently spread
throughout the domain and not confined to a very restricted area. The algorithm script is written in
Ansys Parametric Design Language (APDL) and is non-invasive, since it does not require any change
in the governing equation.

The paper content is organized as follows: the thermal and mechanical governing equations are
described in the next section, while a detailed illustration of the iterative algorithm is given in the
following section; then, the numerical models adopted are described and the results of the numerical
analyses are compared with those obtained with the Reference model; finally, the conclusion and the
future perspectives are reported in the last section.

2. Mathematical Model

2.1. Heat Conduction Model

The heat conduction problem of the cooling channel is described by the following partial
differential equation:

∇
2T =

1
a
∂T
∂θ

(1)

where a represents the thermal diffusivity, T(x, y, z; θ) is the temperature, and θ is the time [21].
Perfect thermal contact is considered between the copper alloy, electroformed copper,

and electroformed nickel, with consequent continuity at their interface of heat flux and temperature:

ki
∂Ti
∂n

= k j
∂T j

∂n
(2)

Ti = T j (3)

where i and j are two generic materials in contact [7,8]. The heating coming from the hot gases of
the combustion chamber and the cooling by the coolant flow are applied by means of convective
boundary conditions:

− k
∂T
∂n

= h(Tw − T∞) (4)

where h represents the convective heat transfer coefficient, Tw is the wall temperature, and T∞ is the
adiabatic wall temperature [22].

2.2. Structural Model

The governing equation for the structural problem is expressed by:

σi j,i + Xi = 0 (5)

where σij is the Cauchy stress tensor, Xi the body force per unit volume [14]. In order to solve the
structural problem, Equation (5) must be coupled with the compatibility equations, the constitutive
laws and the relationship between the thermal strain tensor and temperature variation

(
T − Tre f

)
,

where Tre f represents the reference temperature, which is the temperature at which no thermal strains
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are envisaged. Furthermore, in order to take into account the nonlinear behavior, the total mechanical
strain ε is decomposed into elastic εel

i j and plastic εpl
i j components [23–25]:

εi j = εel
i j + ε

pl
i j (6)

The nonlinear model identified adopts the Von Mises yield criterion, the bilinear kinematic
hardening rule, and the Prandtl–Reuss flow rule; a further description of the present model can be
found in [26–29].

The yield criterion defines the limit of elasticity, namely, it delimits the surface that separates the
elastic stress field, inside the yield surface, from the plastic stress field which lies outside the yield
surface [29]. Plastic strains will be detected when the equivalent stress σe equals the yield value σy.
The yield surface can be expressed as follows:

F(σ, k,α) = 0 (7)

where k is the plastic work, and α the back stress tensor modelling the translation of the yield surface.
The plastic work is formulated as:

k =

∫
σT[M]dεpl (8)

where [M] is a diagonal matrix [30]:

[M] =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2


The back stress tensor α is:

α =

∫
Cdεpl (9)

where C is a material parameter [10].
For a one–dimensional plasticity model, the stress–strain relations, when considering a bilinear

kinematic hardening model (see also Figure 2), are expressed as:

σ =

 Eε i f γ = 0
EK

E+Kε i f γ > 0
(10)

where γ is the absolute value of the plastic strain rate and K is the plastic modulus [28].
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Finally, the flow rule specifies the interdependence occurring between the plastic strain increase
and the deviatoric stresses. With regard to the Prandtl–Reuss flow rule, a linear relationship between
the plastic strain increment and the deviatoric stresses is considered [31]:

dεi j = Si jdλ (11)

where dεi j are the plastic strain increments, Si j the deviatoric stresses, and λ the plastic multiplier
obtained by imposing that the stress state lies on the yield surface during plastic flow. The elastic–plastic
model here described is applied only for the copper alloy liner structure which is expected to undergo
plastic strains since it is exposed to high thermal loads in the inner surface of the thrust chamber.

3. Iterative Coupling Algorithm

In what follows a detailed description of the submodelling “two–way” approach is given (see
Figures 3 and 4). Three numerical models must be defined:
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1. Global Model—it is a global elastic model with a coarse mesh;
2. Local Model—it is a submodel with a fine mesh in which elastic–plastic behavior is considered;
3. Reference Model—it is a nonlinear model in which the discretization corresponds to that of the

Local Model in the submodelled domain and to that of the Global Model in the remaining part of
the domain.

As shown in Figure 4, the steps to be followed in the coupled solution loop are:

1. a global elastic analysis is performed on the Global model with a coarse mesh,
2. the interface displacements uΓ and nodal forces Fg

Γ are collected (Γ is the interface curve),

3. a local nonlinear analysis is performed on the submodel applying uΓ as boundary conditions at
the interface Γ (external boundary for the submodel),

4. nodal forces Fl
Γ, evaluated by the local analysis, are collected and subtracted from Fg

Γ obtaining
∆F = Fg

Γ − Fl
Γ,

5. if ||∆F||2 is greater than a prescribed limit �, then the process comes back to step 1 where ∆F is
applied to the Global model at the interface Γ,

6. if ||∆F||2 is lower than a prescribed limit �, the final solution is identified,

where ||∆F||2 represents the Euclidean norm of the residual forces. Convergence can also be
checked by evaluating the Euclidean norm of the interface displacements ||U||2, evaluated by means of
a numerical analysis of the Global Model.

When non–conformal meshes are adopted for the Global and Local Models, specific algorithms are
adopted to map displacements from the Global to the Local Model and forces in the inverse direction.
The mapping algorithm adopted by ANSYS is a triangle-based linear interpolation [32].

4. Numerical Model

The partial differential equations governing the thermal and mechanical problems are solved
by means of the finite element method. A stepwise approach has been chosen to apply the
thermomechanical loads because of the nonlinearity of the structural problem (details on the approach
adopted can be found in [7]). The Newton–Raphson method has been employed to solve each load step.

The following assumptions have been considered:

• One-way coupling between the thermal and the structural problem, namely, the temperature field,
evaluated by the thermal analysis, is applied as body loads for the structural nonlinear analysis.
On the other hand, since for this kind of problem the displacement/strain field does not have
a significant impact on the temperature field, as demonstrated in several works [33], the thermal
analysis is not repeated.

• Small deformations, that is, a geometrical linear model is adopted.

The iterative “two–way” approach has been considered only for the structural analysis where
nonlinear phenomena come into play, while for the thermal analysis, no iteration is needed as already
demonstrated in [14].

4.1. Boundary Conditions

The test case considered to demonstrate the advantages of adopting iterative submodelling
approaches is a cooling channel of a regeneratively cooled thrust chamber of the final demonstrator of
the Hyprob Project. The size, heat fluxes, and pressures considered are those encountered during the
“hot phase”, which represents the stage where the combustion of the hot gases causes a significant
increase in the chamber pressures and temperatures during a typical fire ground test.

The thrust chamber section considered is that illustrated in Figure 1 and is located in the
cylindrical part of the chamber: here, heat fluxes are not as high as in the throat section, but the
coolant is characterized by higher temperatures and the channel section is considerably larger than the
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throat one; consequently, it is worthwhile analyzing, from a thermal and mechanical point of view,
the behavior of the cooling channel in that portion of the chamber.

A simplified rectangular representation of the cooling channel, instead of trapezoidal geometry,
has been chosen for this study, in order to minimize the geometrical and discretization operations.
Such approximation is considered acceptable as the aim of the current work is to demonstrate the
usefulness and the advantages of the implemented methodology rather than accurately reproducex
the real component functioning. Finally, displacements on the top of the channel have been restrained
in the vertical direction (y axis) to avoid a structural lability of the system.

In order to save computation time, a half cooling channel, for both the thermal and the structural
analyses, has been modelled taking advantage of the symmetry conditions (see Figure 5). The geometric
parameters of the cooling channel are summarized in Table 1:
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Figure 5. Cooling channel geometry and thermo–mechanical boundary conditions.

Table 1. Geometric parameters of the cooling channel.

a (mm) b (mm) s (mm) t1 (mm) t2 (mm)

2 0.62 0.9 0.5 1.5

Plane strain conditions have been applied for the two–dimensional analysis.
The thermal and structural loads are respectively represented by the body temperature distribution

in the hot phase and the maximum pressure in the cooling channels. Further details on pressure and
heat flux laws during a fire test can be found in [5].

The results of the Computational Fluid Dynamic (CFD) analyses provide the convective boundary
conditions to be applied on the internal surface of the combustion chamber and inside the cooling
channel. The convective heat transfer coefficients and the adiabatic wall temperatures considered in
the thermal analyses are summarized respectively in Tables 2 and 3: hC

hot and hC
cold are respectively

the convective coefficients for the combustion gases and the coolant, while TC
hot and TC

cold are the
combustion gases and coolant bulk temperatures (the subscripts “hot” and “cold” refer respectively to
the hot gases and cooling channel sides).
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Table 2. Heat Transfer coefficients (W/m2 K).

hC
hot

(
W

m2 K

)
hC

cold
(

W
m2 K

)
5600 280.000

Table 3. Combustion gases and coolant bulk temperatures.

TC
hot(K) TC

cold(K)

3600 370

Steady state thermal analyses and static structural analyses have been performed.
The chamber pressure is 5.5 MPa, while the coolant pressure is 7.2 MPa.
An iterative submodelling approach has been applied to both two–dimensional and

three–dimensional models. The three–dimensional model has been obtained by a 20 mm extrusion of
the cooling channel (see Figure 6) in the axial z direction of the thrust chamber. Axial displacements
for the nodes of the faces at z = 0 and z = 20 mm have been restrained (uz = 0).

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 22 

Plane strain conditions have been applied for the two–dimensional analysis. 
The thermal and structural loads are respectively represented by the body temperature 

distribution in the hot phase and the maximum pressure in the cooling channels. Further details on 
pressure and heat flux laws during a fire test can be found in [5]. 

The results of the Computational Fluid Dynamic (CFD) analyses provide the convective 
boundary conditions to be applied on the internal surface of the combustion chamber and inside the 
cooling channel. The convective heat transfer coefficients and the adiabatic wall temperatures 
considered in the thermal analyses are summarized respectively in Tables 2 and 3: ࢚࢕ࢎ࡯ࢎ and ࢊ࢒࢕ࢉ࡯ࢎ 
are respectively the convective coefficients for the combustion gases and the coolant, while ࢚࢕ࢎ࡯ࢀ 
and ࢊ࢒࢕ࢉ࡯ࢀ	are the combustion gases and coolant bulk temperatures (the subscripts “hot” and “cold” 
refer respectively to the hot gases and cooling channel sides). 

Table 2. Heat Transfer coefficients (W/m2 K). ࢚࢕ࢎ࡯ࢎ ൬ ࢊ࢒࢕ࢉ࡯ࢎ ൰ࡷ	૛࢓ࢃ ൬  ൰ࡷ	૛࢓ࢃ

5600 280.000 

Table 3. Combustion gases and coolant bulk temperatures. (ࡷ)ࢊ࢒࢕ࢉ࡯ࢀ (ࡷ)࢚࢕ࢎ࡯ࢀ 
3600 370 

Steady state thermal analyses and static structural analyses have been performed. 
The chamber pressure is 5.5 MPa, while the coolant pressure is 7.2 MPa. 
An iterative submodelling approach has been applied to both two–dimensional and three–

dimensional models. The three–dimensional model has been obtained by a 20 mm extrusion of the 
cooling channel (see Figure 6) in the axial z direction of the thrust chamber. Axial displacements for 
the nodes of the faces at z = 0 and z = 20 mm have been restrained (࢛௭ = 0). 

 
Figure 6. Three–dimensional model. 

Figure 6. Three–dimensional model.

Figure 7 shows the cooling channel geometry and the positions of the interface between the global
and local models considered.
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Five kinds of local models have been chosen:

• Local Model 1—extends between y = 0 and y = 0.5, in such a way that the interface with the
Global Model occurs in an area where plastic strains are expected;

• Local Model 2—with the interface placed in correspondence of what presumably is the limit
between linear (elastic behavior) and nonlinear (elastic–plastic behavior) areas;

• Local Model 3—such that the interface occurs where no plastic strains are envisaged;
• Local Model 4—extends between y = 0 and y = 1.5;
• Local Model 5—extends between y = 0 and y = 1.8.

The aim is to demonstrate that even considering local models with interfaces with the Global
Model that are far away from the nonlinear areas, at least one iteration is needed to meet the chosen
convergence criterion; then, it will be shown that the iterative approach has advantages with respect to
the “non–iterative approaches” adopted by finite element commercial codes.

Some other parameters have also been defined to measure the level of accuracy of the
Global/Local solutions:

ηε =
|

∣∣∣∣εpl
GL − ε

pl
R

∣∣∣∣|k∣∣∣∣∣∣∣∣εpl
R

∣∣∣∣∣∣∣∣
k

(12)

ησ =
|

∣∣∣σVM
GL − σ

VM
R

∣∣∣|k∣∣∣∣∣∣σVM
R

∣∣∣∣∣∣
k

(13)

• ε
pl
GL is the equivalent plastic strain calculated by the Global/Local approach,

• ε
pl
R is the equivalent plastic strain calculated by the Reference Model,
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• σVM
GL is the Von Mises stress evaluated by the Global/Local approach,

• σVM
R is the Von Mises stress evaluated by the Reference Model,

• k can be equal to 2 (Euclidean norm) or∞ (infinite norm).

The Euclidean norm provides useful data to understand the level of accuracy of the entire Local
Model, whereas the infinite norm describes the maximum deviation (in absolute value) from the
Reference Model. For the sake of simplicity, the results will be reported in terms of infinite norms.
In the results section, in order to have homogeneous results, stresses and plastic strains on the interface
nodes are not taken into account when calculating ηε and ησ , since their deviation from the results of
the Reference Model are expected to be much higher than the deviation evaluated on the internal nodes.

As mentioned above, conformal and non–conformal meshes have been adopted: in the former
case, the algorithm is expected to work in a very stable way, since no mapping is needed at the
interface where displacements and nodal forces should be transferred from one model to another; in
the latter case, interpolation errors could occur and, then, the curve representing the residuals might
not be monotonically convergent towards the final solution. For that reason, three different levels of
“non–conformity” have been chosen in order to understand which is the lowest ratio, νn, between the
number of nodes at the interface, on the Global Model side, NG, and on the Local Model side, NL,
such as to guarantee a monotonic convergence behavior of the algorithm and accurate results:

νn =
NG

NL (14)

The evaluation of the lowest value of νn allows minimizing the discretization level and, then,
the computation (CPU) time needed to perform the numerical analyses.

4.2. Numerical Discretization

Four-node plane elements and eight-node hexahedral elements have been respectively chosen
for the two–dimensional and three–dimensional analyses of the local models, with triangular and
tetrahedral elements respectively employed in the transition area near the interface, in the Global
coarse model and reference model, when conformal meshes have been built. Figure 8 shows the
discretization of Global, Local, and Reference models, with the interface for the Local Model 2 placed
at y = 0.9.
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The numbers of elements considered for the Reference, Global, and Local model illustrated in
Figure 8 are:

• 20000 (Reference Model)
• 3700 (Global Model)
• 16300 (Local Model)

The minimum element edge length is 0.06 mm for all the local and reference models considered in
the present work and 0.1 mm for the Global models.

4.3. Material Properties

Tables 4–9 summarize the physical and mechanical properties of the copper alloy (CuCrZr), the
electrodeposited Oxygen-Free High-thermal conductivity Copper (OFHC), and Nickel.

Table 4. Physical and Thermal properties of the copper alloy (CuCrZr).

Temperature (K) Density
(kg/m3)

Thermal
Conductivity

(W/mK)

Specific
Heat

(J/kgK)

Thermal
Expansion
Coefficient

(1/K)

300 8933 320 390 15.7 × 10−6

600 8933 290 390 17.9 × 10−6

900 8933 255 400 18.7 × 10−6

Table 5. Mechanical properties of the copper alloy (CuCrZr).

Temperature (K) E (Gpa) Poisson’s
Ratio

Yield Stress
(MPa)

Ultimate Stress
(MPa)

300 130 0.3 4339 4779
500 106 0.3 3833 4029
700 87 0.3 313 3294
900 44 0.3 1563 1754

Table 6. Physical properties of electrodeposited OFHC.

Temperature (K) Density
(kg/m3)

Thermal
Conductivity

(W/mK)

Specific
Heat

(J/kgK)

Thermal
Expansion
Coefficient

(1/K)

300 8913 390 385 17.2 × 10−6

Table 7. Mechanical properties of the electrodeposited OFHC.

Temperature (K) E (Gpa) Poisson’s
Ratio

Yield Stress
(MPa)

Ultimate Stress
(MPa)

28 118 0.34 68 413
294 114 0.34 60 208
533 65 0.34 50 145
755 40 0.34 38 80
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Table 8. Physical properties of the electrodeposited Nickel.

Temperature
(K)

Density
(kg/m3)

Thermal
Conductivity

(W/mK)

Specific
Heat

(J/kgK)

Thermal
Expansion
Coefficient

(1/K)

300 8913 90 444 12.2 × 10−6

Table 9. Mechanical properties of the electrodeposited Nickel.

Temperature (K) E (Gpa) Yield Stress (MPa) Ultimate Stress (MPa) Poisson’s Ratio

28 193 344 551 0.3

5. Results and Discussion

The present iterative algorithm has been applied to two–dimensional and three–dimensional
finite element models. Such an approach becomes advantageous when the size of the Local Model is
very small with respect to the Global Model.

Mesh convergence studies have been conducted on all the finite element models adopted.
Furthermore, the elastic–plastic model considered in the present work has already been compared
to other models that can be found in literature works; in particular, stresses and strains are in good
accordance (the percentage difference is about 10%) with those achieved with more sophisticated
elastic–plastic models, as already demonstrated in [8].

The iterative algorithm was first implemented and assessed for the two–dimensional model,
which is not very demanding from a computational point of view, in order to find an optimum value
for parameter νn. Once νn has been identified, iterative Global/Local three–dimensional analyses
are conducted.

The convergence criterion adopted in the following analyses is based on the Euclidean norm of
the displacements, prescribing that the maximum between the Euclidean norms of the displacements
in the horizontal, vertical, and axial directions (corresponding respectively to x, y, and z axes) be lower
than a threshold value ε:

φ = max
{
||ux||2, |

∣∣∣uy
∣∣∣|2, ||uz||2

}
< ε (15)

where ε has been chosen to be equal to 10–4.

5.1. Two–Dimensional Global/Local Analyses

The maximum temperature value (740 K) is detected on the inner wall of the cooling channel,
which is exposed to the hot combustion gases (see Figures 9 and 10). Figure 10 shows the Von Mises
stresses and the Equivalent Plastic Strains contour plots for the Reference Model: as expected, plastic
strains are detected only in the area enclosed by the red rectangle.
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Trade-Off Analysis with Non-Conformal Meshes

A trade-off analysis has been conducted varying the parameter νn defined in Equation (14).
Four values have been chosen for the analysis:

1. νn = 0.5
2. νn = 0.70
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3. νn = 0.85
4. νn = 1

The configuration with νn = 1 is representative of a Local Model with conformal mesh at the
interface with the Global Model.

In what follows, the results, in terms of ηε and ησ, for all the values of νn and for all the local
models, will be shown with the aim to identify the value of νn that guarantees a monotonic convergence
towards the Reference Model corresponding values.

Figure 11 shows the convergence history for all the local models considered: the number of
iterations needed to reach convergence, under the same Local Model, for conformal and non-conformal
meshes is very similar; for instance, for Local Model 1 the number of iterations sufficient to reach
convergence is 9 for conformal meshes and 10 for non-conformal meshes.Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 22 
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The variations of ηε and ησ vs. the current iteration for all the cases examined are shown in the
next figures. In particular, Figure 11 shows that for Local Model 1 the improvement of the results
accuracy by the iterative procedure vs. “one-way” approach (no iterations), is very similar for all the
configurations examined; however, it is clear that only the configuration with νn = 0.85 is such that
ηε values are monotonically convergent towards smaller values, while for the other configurations
a minimum value is detected after 4–5 iterations (see Figure 12). Then, the configuration νn = 0.85 is
compared with the conformal mesh configuration (νn = 1), showing very similar values (see Figure 13).
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In general, it is evident that the adoption of the present iterative procedure allows for a significant
decrease of ηε (from 14.5% to about 8% after only four iterations), while ησ remains almost constant.
Similar considerations can be made for the other Local Models.
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With regard to Local Model 2, it is clear that ηε values for all the configurations decrease to
acceptable values after only 2–3 iterations (see Figure 14). On the other hand, the deviations from the
Reference Model Von Mises stress values are very small.
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Figure 14. Global/Local performance with respect to the reference Model—comparison between
different levels of non–conformal meshes—Local Model 2.

The configurations with νn = 0.85 and νn = 0.7 have a very similar behavior, monotonically
convergent towards the Reference Model values. Considering Local Model 2, the Global/Local analyses
provides accurate results after very few iterations (see also Figure 15) when the number of nodes
on the Global Model side of the interface is 85% of the number of nodes on the Local Model side of
the interface.
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The present iterative procedure for Local Model 3 is very efficient since ηε rapidly decreases after
only two iterations; for instance, the configuration with νn = 0.85 is such that, after only two iterations,
ησ and ηε values become lower than 2 % and 0.3 %, respectively. The configurations with νn = 0.5 and
νn = 0.7 ensure good results even if ηε slightly increases after the first iteration (see Figures 16 and 17).
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With regard to local models 4 and 5, the results, in terms of convergence history, ησ and ηε, are very
similar to those obtained with “Local Model 3”. Table 10 summarizes the ηε values obtained when
adopting local models 4 and 5.

Table 10. ηε values for Local Model 4 and Local Model 5.

Local Model 4 Local Model 5

ηε(%)–iteration 0 10 8

ηε(%)–iteration 1 5 4.8

5.2. Three–Dimensional Global/Local Analyses

Three–dimensional investigations have been also carried out with the aim to have an estimate of
how much computation time could be saved employing a Global/Local two–way approach. In fact,
in general, Global/Local approaches become useful and advantageous, from a computation time point
of view, when large three–dimensional models must be investigated.

For the three–dimensional model obtained by means of an extrusion along the chamber z axis
direction, thermal and structural loads (convective heat fluxes for the thermal model and temperatures
and pressures for the structural model) are considered constant along such a direction; then, the resulting
temperatures, displacements, and stresses will vary only in the x and y directions.

Table 11 summarizes the number of nodes of the finite element models analyzed and the CPU
time needed to perform one iteration of the Global/Local analysis. For Local Model 2, the adoption
of the iterative Global/Local approach is very advantageous since only four iterations are necessary
to obtain a displacement residual ϕ lower than 10–4; then, the total computation time is 104 s when
adopting conformal meshes at the interface and 88 s for non–conformal meshes. Those CPU times are
considerably shorter than those needed for a single thermo–mechanical analysis of the Reference Model.
With regard to Local Model 3, there is no CPU time saving when adopting non–conformal meshes with
respect to conformal meshes. However, the present iterative method allows for a considerable time
saving since convergence is reached after only two iterations, that is, 100 s for the Global/Local analysis
and 150 s for the analysis of the Reference Model. Similar considerations can be conducted for Local
Models 4 and 5. On the contrary, Local Model 1 needs 10 iterations to reach convergence for conformal
meshes and 18 iterations for the non–conformal meshes; then, the CPU time for both conformal and
non–conformal mesh configurations becomes much longer than that required for a single analysis of
the Reference Model, equal to 500 s and 684 s, respectively. Then, for the Local Models built considering
an interface with the Global Model in an area where plastic strains are expected, the adoption of
non–conformal meshes does not provide appreciable benefits with respect to the conformal mesh
configurations. Moreover, the computational burden for the Reference Model resolution is not relatively
high, considering that a relevant number of iterations is needed in the Global/Local analysis to obtain
results as accurate as those achieved with the Reference Model. In order to make the iterative approach
advantageous, acceleration techniques should be implemented to minimize the number of iterations,
e.g., making them, in this case, less than three.
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Table 11. Computation time—Three–dimensional Global/Local analyses.

Local
Models

Nodes:
Global
Coarse
Model

(Conformal
Mesh)

Nodes:
Global
Coarse
Model

(Non–
Conformal

Mesh)

Nodes:
Local Model

CPU Time
(Conformal

Mesh)
(s)

CPU Time
(Non–

Conformal
Mesh)

(s)

CPU Time
(Reference

Model)
(s)

y = 0.5 4800 4700 10,000 50 38 150
y = 0.9 4600 3864 15,000 26 22 150
y = 1.2 4600 3864 17,500 50 48 150
y = 1.5 4600 3864 18,200 52 50 150
y = 1.8 4600 3864 18,800 53 50 150

6. Conclusions and Future Activities

In the present work, an iterative Global/Local procedure has been implemented in a finite element
commercial code, in order to study the thermo-mechanical behavior of the cooling channel of a liquid
rocket engine thrust chamber. Typically, iterative and non-iterative Global/Local approaches have been
employed in the past to study very narrow portions of the model where stress concentrations and
plastic strains were expected; on the contrary, in the present work, the authors have investigated how
the iterative approach works when the extent of nonlinear areas/volumes is very large if compared
with the entire model considered. Then, for the test case chosen, the results have demonstrated the
usefulness of the iterative Global/Local procedure—in fact, even considering very large local models,
one iteration is needed to meet the chosen convergence criteria. This means that the elastic-plastic
test-case under investigation is such that the effects of non-linearities affect the stress/strain fields of
areas that are far away from nonlinear areas. Furthermore, the computational cost of a single numerical
solution carried out adopting the Reference model is still higher than the computational cost needed
to solve one iteration of the Global/Local analysis. Then, the adoption of the iterative approach is
advantageous and allows for a significant computation time saving. That said, when the interface
between the global and the local model is inside the nonlinear portion of the model, several iterations
are needed to reach convergence; then, the approach is no longer advantageous.

The authors have also investigated how the discretization of both Global and Local models at
their interface affects the accuracy and the computation time.

The results of the test cases examined have shown that, when the local models are significantly
larger than the local nonlinear areas, the choice of non-conformal meshes could allow for just a 5%
computation time saving if compared with that needed for a configuration with conformal mesh.

As a future activity, the authors are planning to implement more sophisticated coupling techniques
that can handle very different meshes at the interface between Global and Local models, allowing for
additional computation time savings. Furthermore, the present Global/Local procedure could
become more convenient if nonlinear models, taking into account creep and viscoplastic phenomena,
are considered.
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Nomenclature

T temperature
θ time
σi j Cauchy Stresses tensor
Xi body force per unit volume
εel

i j elastic strain tensor

εpl
i j plastic strain tensor

k plastic work
α back stress tensor
E Young Modulus
K plastic modulus
Si j deviatoric stress tensor
λ plastic multiplier
Γ interface curve/surface

Fl
Γ

vector of nodal forces on surface Γ (local model)

Fg
Γ vector of nodal forces on surface Γ (global model)

uΓ displacement on Γ
||∆F||2 Euclidean norm of the vector Fl

Γ–Fg
Γ

hC
hot convective coefficients for the combustion gases

hC
cold convective coefficients for the coolant

TC
hot combustion gases bulk temperature

TC
cold coolant bulk temperature

ηε non–dimensional parameter to measure strain accuracy
ησ non–dimensional parameter to measure stress accuracy
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