
applied
sciences

Article

A Coordination Technique for Improving Scalability
of Byzantine Fault-Tolerant Consensus

Jungwon Seo 1 , Deokyoon Ko 2, Suntae Kim 3,* and Sooyong Park 4,*
1 Department of Computer Science & Engineering, Sogang University, 915 Ricci Hall, 35, Baekbeom-ro,

Mapo-gu, Seoul 04107, Korea; jungwon@sogang.ac.kr
2 NonceLab. Inc., 802 Seoul Blockchain Center, 78, Mapo-daero, Mapo-gu, Seoul 04168, Korea;

dykoh@noncelab.com
3 Department of Software Engineering, CAIIT, Jeonbuk National University, 567 Baekje-daero, deokjin-gu,

Jeonju-si, Jeollabuk-do 54896, Korea
4 Department of Computer Science & Engineering, Sogang University, 915A Ricci Hall, 35, Baekbeom-ro,

Mapo-gu, Seoul 04107, Korea
* Correspondence: stkim@jbnu.ac.kr (S.K.); sypark@sogang.ac.kr (S.P.); Tel.: +82-63-270-4788 (S.K.)

Received: 15 September 2020; Accepted: 24 October 2020; Published: 28 October 2020
����������
�������

Abstract: Among various consensus algorithms, the Byzantine Fault Tolerance (BFT)-based consensus
algorithms are broadly used for private blockchain. However, as BFT-based consensus algorithms
are structured for all participants to take part in a consensus process, a scalability issue becomes
more noticeable. In this approach, we introduce a consensus coordinator to execute a conditionally
BFT-based consensus algorithm by classifying transactions. Transactions are divided into equal and
unequal transactions. Moreover, unequal transactions are divided again and classified as common
and trouble transactions. After that, a consensus algorithm is only executed for trouble transactions,
and BFT-based consensus algorithms can achieve scalability. For evaluating our approach, we carried
out three experiments in response to three research questions. By applying our approach to PBFT,
we obtained 4.75 times better performance than using only PBFT. In the other experiment, we applied
our approach to IBFT of Hyperledger Besu, and our result shows a 61.81% performance improvement.
In all experiments depending on the change of the number of blockchain nodes, we obtained the
better performance than original BFT-based consensus algorithms; thus, we can conclude that our
approach improved the scalability of original BFT-based consensus algorithms. We also showed a
correlation between performance and trouble transactions associated with transaction issue intervals
and the number of blockchain nodes.

Keywords: consensus coordination; consensus algorithm; byzantine fault tolerance; PBFT; IBFT;
hyperledger besu

1. Introduction

Recently, blockchain is considered one of the core technologies that enable us to create a transparent
world with guaranteeing the integrity and transparency of data [1]. Significantly, researchers have
tried to apply the private blockchain technologies that facilitate data sharing among permissioned
participants to diverse areas such as business [2,3], and computer science [4–6]. However, due to the
scalability issue, the application of technologies is limited [7–10]. Although there are diverse factors
associated with scalability such as network bandwidth and cryptographic algorithms, a consensus
algorithm is a key factor that significantly influences the issue, ensuring that participants keep
maintaining the same data in distributed environments [11,12].

Among the consensus algorithms for private blockchains, the Byzantine Fault Tolerance (BFT)-based
consensus algorithms are broadly used. PBFT (Practical Byzantine Fault Tolerance) [13,14] is a popular and

Appl. Sci. 2020, 10, 7609; doi:10.3390/app10217609 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-3370-0551
http://dx.doi.org/10.3390/app10217609
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/21/7609?type=check_update&version=2

Appl. Sci. 2020, 10, 7609 2 of 20

representative example. In the BFT-based consensus algorithm, the number of network communications
among participants explodes with the increase in the number of participants. This is because all participants
in the BFT-based consensus algorithm should be involved to complete the process for each transaction,
and the process is even composed of diverse steps. This characteristic of the BFT-based consensus algorithm
may raise the performance and scalability issue of the algorithm, as the more participants are newly involved,
the slower the completion of the consensus process is [15].

There have been several previous studies on improving scalability of BFT-based consensus
algorithms (see [16–23]). Some works tried to build sub-groups of blockchain nodes on a regular
basis and reduced the number of network communications by executing two-step execution of the
BFT-consensus algorithm: executing consensus inside sub-groups and conducting consensus between
representatives of each sub-group. While this approach increased the PBFT algorithm’s scalability,
it has a shortcoming that a new node cannot join any groups until new groups have been made.
Other works also tried to optimize the number of communications by modifying the PBFT protocol
with introducing a collector role or removing faulty nodes during consensus processes. Similarly,
some works tried to reduce the number of prime node elections for minimizing the node election
overhead. However, it is hard to expect the outstanding improvement of scalability through these
approaches. In addition to these, other approach tried to deploy a new hardware-based BFT algorithm
execution environment, but it has an apparent weakness that all nodes should prepare the specific
hardware environments in advance.

To address the above issues, we propose a coordination technique for scalable Byzantine
fault-tolerant consensus algorithms. The key idea is to introduce a Consensus Coordinator that controls
conditional execution of a BFT-based consensus algorithm after classifying transactions of all nodes
with respect to their equality. Our approach runs regularly associated with the block generation time
interval, consisting of four steps. First, it starts with electing a prime node among all blockchain nodes for
executing a BFT-based consensus algorithm and communicates with the consensus coordinator. Then,
the consensus coordinator collects transactions from a transaction pool of each node. In the third step,
the coordinator classifies transactions based on their equality and decides for executing a consensus
algorithm. In the case that all transactions are equal, the coordinator lets the prime node execute block
generation without executing a consensus algorithm, which is the completion of the synchronization
in a blockchain network. When some transactions are not equal, the coordinator divides transactions
into common and trouble transactions and requests the prime node to execute a BFT-based consensus
algorithm only for trouble transactions. The prime node notifies agreed transactions to the coordinator.
Finally, the coordinator sorts all common and agreed transactions by time order and requests the prime
node to generate a new block containing all of processed transactions.

For the evaluation of our approach, we conducted three experiments for answering three
research questions. We measured performance of the PBFT algorithm with and without our approach.
In an experiment, the PBFT equipped with our approach obtained an average of 4.75 times better
performance than only using the PBFT. In addition, we applied our approach to Hyperledger Besu using
the IBFT (Istanbul Byzantine Fault Tolerance) consensus algorithm and showed a 61.81% performance
improvement, compared to using only IBFT. We also presented correlation of performance and
trouble transactions associated with transaction issue interval and the number of blockchain nodes.
The contributions of our approach are summarized as follows:

• We propose a novel coordination technique to improve the scalability and performance of
consensus algorithms, which is applicable to diverse BFT-based consensus algorithms.

• Our approach was implemented and applied to PBFT and Hyperleder Besu consensus algorithm,
opened as an open source project for public access.

• We performed three experiments in response to three research questions and showed the feasibility
of our approach.

Appl. Sci. 2020, 10, 7609 3 of 20

The remainder of this paper is organized as follows. Section 2 presents BFT-based consensus
algorithms as background and related work for improving the scalability of BFT-based consensus
algorithms. Section 3 proposes our coordination technique and explains four steps for achieving the
scalable BFT-based consensus algorithm in detail. Section 4 presents the evaluation of our approach by
responding to our three research questions. Section 5 concludes our paper and discusses future works.

2. Background and Related Work

This section presents BFT-based consensus algorithms and their characteristics as background and
introduces some previous works regarding how to improve BFT-based consensus algorithms’ scalability.

2.1. Background: BFT-Based Consensus Algorithms

BFT (Byzantine Fault Tolerance)-based consensus algorithms indicate a group of consensus
algorithms for resolving the byzantine general problem regarding how to achieve a consensus of data
in an environment where normal and malicious nodes are mixed [24]. The representative example
is PBFT (Practical Byzantine Fault Tolerance) [13,14] in the Hyperledger Fabric 0.6 (Hyperledger
Fabric later changed the PBFT into Raft since version 2.0 [25]), and diverse variations of PBFT such as
Tendermint in Cosmos [26], Hotstuff in Libra [27], and IBFT in Hyperledger Besu [28] are broadly used.
BFT-based consensus algorithms’ characteristics are the fast finality of a transaction, which indicates
that the transaction is immediately finalized once the transaction is issued by a client and validated
by N = 3 f + 1 participants. However, in other consensus algorithms such as PoW and PoS, a client
should wait until their transaction is contained in a new block after issuing transactions. In Bitcoin,
for example, it takes 1 h to finalize transactions theoretically. In the worse case, it often takes more time
when a block is forked. Despite the fast finality of BFT-based consensus algorithms, it is inevitable
to decrease performance and scalability when the number of nodes is increased. This is because all
participants should join the consensus process, and two over three nodes should agree with transactions
by communicating with each other in four steps: pre-prepare, prepare, commit, and reply (Figure 1). Thus,
this mechanism always causes the scalability issue depending on the number of nodes [15].

Figure 1. The consensus process of the PBFT consensus algorithm.

2.2. Related Work

Many approaches have been suggested to improve the scalability of BFT-based consensus
algorithms. Most of their methods tried to reduce the number of network communications. To control
the number of nodes participating in the consensus protocol, Feng et al. suggested the SDMA (Scalable
Dynamic Multi-Agent)-PBFT approach that reduces the number of participants [16]. The approach
builds sub-groups among the peers and elect an agent as a primary node in each sub-group. Then,

Appl. Sci. 2020, 10, 7609 4 of 20

it carries out the consensus process in sub-groups at first, and the second consensus process is
performed only among the agents. While this approach increases the PBFT algorithm’s scalability by
reducing communication paths from the established blockchain network, it has a shortcoming that a
new node cannot join any previously established groups until new groups have been made.

Similar to Feng et al.’s approach, Luu et al. proposed SCP (Scalable Byzantine Consensus Protocol)
by executing the first consensus algorithm within sub-groups and the second consensus algorithm
among group leaders from a result of the first execution [17]. The approach builds sub-groups by
generating a random group number based on their IP address, public key, and nonce, while Feng et al.’s
approach builds sub-groups by making the spanning-tree from a root node. Although this research
contributed to reducing communication paths, it still has a similar problem that new nodes cannot
easily join a blockchain network as in the approach of Feng et al.

As another approach, some research tried to optimize the number of communications by
introducing collector role or removing faulty nodes during consensus processes. Kotl et al. proposed
a new BFT-based consensus protocol, named Zyzzyva, where the number of non-faulty nodes
for PBFT adaptively changes from N = 3 f + 1 into N = 2 f + 1 when a faulty node is detected
during a consensus process [18]. Gueta et al. suggested that SBFT (State-of-the-art Byzantine Fault
Tolerant) [19] reduces the number of communication paths among nodes by collecting messages in
a consensus process into two collector nodes and validates messages in limited places. Similar to
Gueta et al.’s approaches, Jiang et al. suggested HSBFT (High Performance and Scalable Byzantine
Fault Tolerance), which makes a prime node to play a collector role that collects all messages and
validates them [20]. HSBFT has a prime node electing process based on a node stable table containing
identity number, state, IP, and public key. Based on the table, HSBFT excludes unstable nodes and
optimizes communication paths. Although three approaches reduce the number of participant nodes
and communication paths, it is hard to expect an outstanding improvement regarding scalability
or performance.

In addition, Lei et al. proposed RBFT (Reputation-based Byzantine Fault Tolerance) algorithm
for reducing communication paths in a private blockchain [21]. Each blockchain node computes their
reputation score based on evaluation of their behaviors (e.g., a good behavior for generating a new
block) and the number of permitted votes of each node is different depending on the reputation score.
Votes are used to decide pass of PBFT’s steps by checking if the number of votes is over a specific
threshold. Although it can reduce the number of communications, only limited nodes can have an
out-sized influence on the voting process.

Some research tries to minimize the number of prime node election processes for enhancing
scalability. Gao et al. proposed a trust eigen-based PBFT consensus algorithm, which is called
T-PBFT [22]. In the approach, they tried to minimize the number of the prime node elections based on
each node’s trust evaluation. Before starting the PBFT consensus process, the proposed eigen trust
model evaluates all nodes’ trust scores and makes a group called a primary group. Then, the consensus
process is composed of two steps: (1) the consensus within the primary group; and (2) the consensus
between the remaining nodes and the primary group. It can improve scalability by reducing change
the proportion of the single primary node. However, its number of communications is the same as the
PBFT, so it is hard to expect a distinct improvement of scalability.

A new hardware-based execution environment is also introduced for improving performance of
the BFT-based consensus algorithm. Liu et al. proposed a hardware-based BFT algorithm execution
environment, which is named Fast BFT [23]. All nodes use a hardware chip (e.g., Intel SGX) for using
TEE (Trusted Execution Environment) to execute the consensus algorithm and the TEE supports public
key operation (e.g., multi signatures) during the consensus process. They also suggested the new Fast
BFT algorithm that reduces verification steps by collaborating with TEE. While they improved the
BFT algorithm’s scalability, their assumptions that all nodes should be executed upon TEE must be
their limitations.

Appl. Sci. 2020, 10, 7609 5 of 20

3. A Coordination Technique for Scalable BFT Consensus

This section presents a coordination technique for achieving the scalability of BFT-based consensus
algorithms. Our approach is composed of two parts: Our Coordination Technique and BFT-based
Consensus Algorithm (Figure 2). The BFT-based Consensus Algorithm part located at the bottom of the
figure indicates traditional BFT-based algorithms such as PBFT and IBFT. It is composed of one prime
node that controls consensus process and other general nodes similar to general BFT-based blockchain
platforms. Each node has BFT-Module controlling the consensus process and generating new blocks and
Transaction Pool maintaining unconfirmed transactions. Thus, the BFT-Module accesses transactions of
the transaction pool regularly and executes a BFT-based consensus algorithm. Once all nodes have
been achieved, the consensus of transactions, the BFT-Module produces a new block after accumulating
agreed transactions.

Our Coordination Technique part corresponds to the top of the figure, and it is also located to
the part above the BFT-based Consensus Algorithm part. In the technique, we newly introduce the
Consensus Coordinator that controls each node’s BFT-based consensus algorithms’ conditional execution
depending on the equality of transactions. Our consensus coordination technique consists of four
steps. (1) The prime node is elected among all participating nodes. (2) The coordinator collects all
transactions that existed in the transaction pool of each node. (3) The coordinator checks the equality of
transactions and classifies transactions into common and trouble transactions. For trouble transactions,
the coordinator requests a prime node to execute a consensus algorithm and obtains agreed transactions.
(4) The coordinator merges common and agreed transactions and requests the controller of all nodes
to execute block generation with merged transactions. In the following subsections, the steps are
described in more detail.

Figure 2. Overview of the coordination technique for scalable BFT-based consensus.

3.1. Step 1. Electing a Prime Node

The first step is to elect a prime node among all participant nodes. The elected prime node
plays a role of interacting with a consensus coordinator. This election step runs each regular t time
(we assumed that all nodes have the same time unit through a logical clock or a physical clock
algorithm (e.g., [29–31])). Once all steps are completed, this prime node election step is carried out
again. The algorithm of this step is shown in Algorithm 1.

Appl. Sci. 2020, 10, 7609 6 of 20

Algorithm 1 [All Nodes] Electing Prime Node

1: random = Random(seed) % N(Node)
2: if random equals to Nodei then
3: sigprime = Signature (Nodei, seed)skprime
4: notify (sigprime, pkprime) to CC
5: end if

Electing the prime node starts with a seed which is a previous block hash value, and modulates
the random number with the seed by total number of nodes N(node) to get a prime node number.
The hash value of a previous block must be the same throughout all nodes because they are already
agreed in a previous round. In the case that the result random from the random algorithm is equal
to a unique number of each node Nodei that is assigned before, a node is elected as a prime node.
After signing its node number Nodei and seed with its private key skprime, it notifies the consensus
coordinator CC with the result of sign sigprime and its public key pkprime.

3.2. Step 2. Collecting Transactions from Transaction Pool

Once the coordinator gets the prime node election notification from the prime node, it collects all
transactions from each node’s transaction pool as the second step. This collection step is presented
in Algorithm 2. The input parameters of this step are sigprime and pkprime from the prime node.
Then, the coordinator checks elected prime node’s validity by generating a random number with the
delivered seed and Nodei (see Lines 3–5). If the generated random is equals to Nodei received from the
prime node, the consensus coordinator requests all nodes to send all transactions accumulated in the
transaction pool of each node between the previous time timep to the current time timec. When random
is different from Nodei, the coordinator terminates all coordination steps of this round and waits for
the next idle state.

Algorithm 2 [Coordinator] Collecting Transactions from TxPool

1: Inputs:
sigprime, pkprime

2: Initialize:
Txs← {}

3: Nodei, seed = Signature(sigprime)pkprime
4: random = Random(seed) % N(Node)
5: if random equals to Nodei then
6: for i=0, i ≤ N(Node) , i++ do
7: Txsi ← request Nodei to send Tx(timep∼timec) of TxPooli
8: end for
9: else

10: Terminate
11: end if

3.3. Step 3. Processing Equal/Unequal Transactions

Based on collected transactions from each node, this step decides the execution of the BFT-based
consensus algorithm. Figure 3 shows processing steps for collected transactions. At first, the coordinator
checks if all transactions collected from each node are equal to those from other nodes. Thus, when all
transactions are equal, it executes the Handling Equal Transactions step, and then this third step is
terminated. When transactions are not the same, it first classifies transactions into common and trouble
transactions. The coordinator then requests the prime node to execute a consensus algorithm only for
trouble transactions and gets agreed transactions. Finally, the coordinator merges and sorts common
and agreed transactions in time order.

Appl. Sci. 2020, 10, 7609 7 of 20

Figure 3. Steps for processing collected transactions.

3.3.1. Step 3.1 Handling Equal Transactions

The coordinator performs this step if all transactions from each node are equal. Algorithm 3 shows
detailed steps for handling equal transactions. To check transactions’ equality, a set of transactions
from each node is converted into a hash function (see Lines 3–5) first, and their equality is compared.
Due to the characteristic of the hash function, their hash values must be the same if all transactions are
the same.

Algorithm 3 [Coordinator] Handling Equal Transactions

1: Inputs:
Txs = {Txs0, Txs1, ...Txsn}

2: Initialize:
TxsList← {}

3: for i=0, i ≤ N(Node) , i++ do
4: TxsListi ← Hash(Txsi)
5: end for
6: if All hashs of TxsList are eqaul then //Handle Equal Transactions
7: isCon f irmed, sig′prime, pkprime ← request Nodeprime to confirm Txs0
8: if isCon f irmed == true then
9: request All Nodes to generate a new block with Txs0 and sig′prime

10: timep ← timec
11: else
12: Terminate
13: end if
14: else//For Unequal Transactions
15: handle Unequal Transactions(Txs)
16: end if

If all transactions are the same, the coordinator requests the prime node NodePrime to confirm
transactions Txs0 and the prime node responses to the confirmation of transactions. This confirmation
step is necessary for mutual trust between the coordinator and the prime node on integrity of
transactions from the coordinator. The response from the prime node includes isCon f irmed, sig′prime,
and pkprime. Among the responses, sig′prime results from execution Signature(Txs0)skprime

of the prime
node (see Lines 7–8).

Appl. Sci. 2020, 10, 7609 8 of 20

When the prime node confirms all equal transactions, the coordinator requests all nodes of
blockchain network to generate a new block. Then, the controller receives the request and delegates
the request to the BFT-Module to generate a new block. All nodes’ timep is updated with the current
timec for designating the starting period for the next round (see Line 10). If the prime node does not
confirm transactions, this round is terminated and timep remains at the previous time. In addition,
when some of the transactions are different, the coordinator performs the handle unequal transactions
step presented in the next subsection.

3.3.2. Step 3.2 Handling Unequal Transactions

This step is executed by the coordinator when some of the transactions are not equal. This step is
composed of three sub-steps: (1) classifying transactions; (2) executing a consensus algorithm; and (3)
sorting all transactions.

(1) Classifying Transactions: In this step, the coordinator classifies all transactions into common
transactions and uncommon transactions throughout all transactions from each node. For uncommon
transactions, we rename them as trouble transactions. Algorithm 4 shows the classification step.
The output of the classification is stored in Listcomm and Listtr. The classification step is very intuitive.
With the boolean flag isCommon, it iterates all transactions of each node and checks if a transaction
exists in their transaction lists (see Lines 3–18).

Algorithm 4 [Coordinator] Classifying Transactions

1: Inputs:
Txs = {Txs0, Txs1, ...Txsn}

2: Initialize:
Listcomm ← {}, Listtr ← {}, Listagg ← {}

3: for i=0, i ≤ N(Node) , i++ do
4: for j=0, j ≤ N(Txsi) , j++ do
5: isCommon← true
6: for k=0, k ≤ N(Node) & i 6= k, k++ do
7: if Txj does not exist in Txsk then
8: isCommon← f alse
9: break

10: end if
11: end for
12: if isCommon == true then
13: Listcomm ← Txj
14: else
15: Listtr ← Txj
16: end if
17: end for
18: end for
19: Listagg ← request Nodeprime to execute a Consensus Algorithm(Listtr)

(2) Executing a Consensus Algorithm: For trouble transactions, Listtr from the previous sub-step,
the coordinator requests the prime node to execute a consensus algorithm and obtains a list of agreed
transactions Listagg from the prime node, denoted on Line 19 Algorithm 4. It should be noted that
any BFT-based consensus algorithms can be applied in this step. All transactions in Listtr cannot
be contained in Listagg, because some of the transactions might not be completed in the consensus
algorithm. At that time, transactions not agreed upon are removed according to the BFT-based
consensus algorithm.

(3) Sorting All Transactions: Based on common transactions Listcomm and agreed transactions Listagg,
the coordinator merges and sorts them in time order in this step. Then, the coordinator requests the prime

Appl. Sci. 2020, 10, 7609 9 of 20

node to confirm merged transactions similar to the process of equal transactions (see Algorithm 5, Line 5).
The sig′′prime is produced by the prime node using Signature(SortedListcsn)skprime

. If transactions are
confirmed, the coordinator requests all nodes to generate a new block with the SortedListcsn, and all
nodes’ timep is updated by the current time timec.

Algorithm 5 [Coordinator] Sorting the Merged Transactions
1: Inputs:

Listcomm, Listagg
2: Initialize:

Listcsn ← {}, SortedListcsn ← {}
3: Listcsn ← (Listcomm ∪ Listagg)
4: SortedListcsn ← sort (Listcsn)
5: isCon f irmed, sig′′prime, pkprime ← request Nodeprime to confirm SortedListcsn
6: if isCon f irmed == true then
7: request All Nodes to generate a new block with SortedListcsn and sig′′prime
8: timep ← timec
9: else

10: Terminate
11: end if

3.4. Step 4. Generating a New Block

The last step is to generate a new block that is relied on blockchain platforms. The coordinator
does not intervene in this final step. Thus, all nodes create a new block with transferred transactions
and a previous block’s hash. The controller, for requesting the BFT-Module to generate a new block
and accessing transaction pools, is developed for each blockchain platform and our approach can
apply to diverse BFT-based consensus algorithms.

4. Evaluation

This section describes our experiments’ results designed to evaluate our approach. For this
evaluation, we established the three research questions below and carried out three experiments in
response to research questions.

• RQ1: How much can the scalability of PBFT be increased through our proposed approach?
• RQ2: What is the correlation between the trouble transactions and performance?
• RQ3: How much can our approach improve the scalability of IBFT of Hyperledger Besu?

4.1. RQ1: How Much Can the Scalability of PBFT Be Increased through Our Proposed Approach?

This first research question is intended to figure out how much our suggested approach achieves
our research aim which is to improve the scalability of the BFT-based consensus algorithm. We selected
and implemented the PBFT consensus algorithm for this research question, which is the most popular
BFT-based consensus algorithm. Then, we measured the performance of the PBFT equipped with and
without our approach. Furthermore, we increased the number of nodes to figure out the scalability of
our approach.

Experimental setting for RQ1. To respond to RQ1, we built the PBFT network (Our source
code for implementing the PBFT network is available at https://github.com/jungwonrs/JwRalph_
Seo/tree/master/lab/Agent_Consensus) based on the Castro and Liskov’s research [13,14].
Initially, we structured four nodes and issued transactions every 10 ms for 10,000,000 (ms), so that we
transmitted one million transactions for 2 h 40 min. In addition, we set a block generation time to
be 10 ms, which implies that each node generates a new block every 10 s with transactions in their
transaction pools (by using the sensitivity analysis, we obtained 10 s as the best block generation time

https://github.com/jungwonrs/JwRalph_Seo /tree/master/lab/Agent_Consensus
https://github.com/jungwonrs/JwRalph_Seo /tree/master/lab/Agent_Consensus

Appl. Sci. 2020, 10, 7609 10 of 20

for the best performance.). Then, we measured the total elapsed time until the consensus process of
transactions is complete and computed an average elapsed time. We prepared 81 physical computers
and deployed 80 PBFT nodes and one consensus coordinator into each computer. The hardware
specification of each computer was Intel i5-3570 3.4 GHz CPU with 4GB RAM, and Windows 10
OS installed.

Experimental Result for RQ1. Figure 4 shows the result of the experiment. In the initial experiment
with four nodes, the PBFT with the consensus coordinator expressed in CC + PBFT achieved 0.0328 s
for each transaction on average, while PBFT without our approach denoted as PBFT showed 0.1237 s.
The gap of the elapsed time of two approaches grew as the number of nodes increased. When the
number of nodes reached 80, the elapsed time of PBFT and CC + PBFT became 1.1191 and 6.2212 s,
respectively. Thus, the PBFT equipped with our approach obtained 3.77 times (=0.1237/0.0328) higher
performance than PBFT with the initial four nodes. The performance gain was increased so that the
PBFT with our approach achieved 5.56 (=6.2212/1.1191) times higher performance with 80 nodes. In all
experiments throughout node changes, the performance of the PBFT with our approach increased an
average of 4.75 times compared to the use of the PBFT alone. Therefore, we can recognize that our
approach contributed to improving the performance of the PBFT consensus algorithm.

Figure 4. Elapsed time comparison between PBFT and PBFT equipped with the Consensus Coordinator (CC).

In addition to this, we observed that the elapsed time increase rate of the PBFT is bigger than that
of CC + PBFT. While the increase rate of the PBFT from 4 to 80 nodes is 50.29 times (=6.2212/0.1237),
that of the CC + PBFT is 34.12 (=1.1191/0.0328). It implies that our approach contributes to improving
PBFT consensus algorithm’s scalability depending on the increase of nodes compared to only using
the PBFT. The reason for the increase of the elapsed time of PBFT is because all nodes in the PBFT
algorithm should participate in consensus process and the number of communications. In addition,
the consensus process should always be executed for all transactions (i.e., one million transactions).
However, our approach checks the equality of transactions and executes the consensus process only
for trouble transactions. Thus, depending on the proportion of trouble transactions associated with the
number of the nodes, the elapsed time of CC + PBFT is increased but not as steeply as that of PBFT.

Appl. Sci. 2020, 10, 7609 11 of 20

4.2. RQ2: What Is the Correlation between the Trouble Transactions and Performance?

The second research question is for finding out how much our approach can contribute to the
performance improvement of the BFT-based consensus algorithm. In the real-world, all blockchain
nodes issue transactions, respectively, and it may rarely happen that all transactions in a transaction
pool are equal. According to Donet and Pérez-Solà’s experiment [32], transaction propagation time in
the Bitcoin network composed of 344 nodes took 35 min on average, which means that transactions
in each node’s transaction pool are commonly different. In this research question, we build an
environment where each node has many trouble transactions as in the real-world by controlling the
interval of the transaction issue time and computed correlation between the elapsed time and the
proportion of trouble transactions as τ.

Experimental setting for RQ2. To simulate the environment, we started with the experimental
setting for RQ1 with the same hardware specification and issued one million transactions by controlling
interval of transaction issue time from every 15 to 1 ms. Then, we measured a total elapsed time and
obtained an average elapsed time for each transaction by dividing the total elapsed time by the number
of transactions, as shown in Table 1. In addition to this, we observed the proportion of the trouble
transaction τ in the consensus coordinator to obtain the correlation between trouble transactions and
the elapsed time.

Experimental results for RQ2. Table 1 shows the result of the experiment. In the table,
Columns 15 ms, 10 ms, 5 ms, 2 ms and 1 ms denote the time interval of the transaction issue and we
only selected some of the representative time intervals. We computed τ by averaging the proportion
of trouble transactions in a transaction pool collected from each node for every timep ∼ timec period
(i.e., 10 s). Based on the τ, we highlight cells with the same colors associated with its τ value
(see Color Legend in the table). When the number of nodes is 16, and a transaction is issued every
15 ms, our approach obtained 0.099 s for each of the average time interval (see the italic in the table).
Depending on decreasing the transaction issue time interval, the average elapsed time and τ were
increased. In addition, an increase in the number of nodes causes an increase in the average elapsed
time and τ.

Table 1. The average elapsed time per transaction and the proportion of trouble transactions (τ).

N(Node) 15 ms 10 ms 5 ms 2 ms 1 ms
16 0.099 0.120 0.244 0.330 0.406
28 0.186 0.253 0.316 0.405 0.521
40 0.232 0.438 0.533 0.753 0.835
52 0.462 0.813 1.100 1.308 1.672
64 0.714 1.000 1.355 1.915 2.511
76 0.713 1.805 2.106 2.781 3.155

Color Legend τ = 0.1x τ = 0.2x τ = 0.3x τ = 0.4x τ > 0.5x

From the result, we established the correlation between τ and the average elapsed time for a
transaction Avg.Elap.Timetx based on the transaction issue time interval tit and the number of nodes
N(Node) as Equation (1). The equation implies that the average elapsed time is δ times proportional to
the proportion of the trouble transaction τ. In addition, τ is inversely proportional to the transaction
issue interval tit and it has logarithmic relation with the number of nodes N(Node). In the experiment,
we obtained δ = 2.5, α = 2, and β = 0.1, which indicates that the proportion of the trouble transaction
strongly affects the average elapsed time for each transaction.

Avg.Elap.Timetx ≈ δ ∗ τ ≈ α
1
tit

+ βlog(N(Node)) (1)

Appl. Sci. 2020, 10, 7609 12 of 20

4.3. RQ3: How Much Can Our Approach Improve the Scalability of IBFT of Hyperledger Besu?

We established the third research question regarding the applicability of our approach to
the real-world open-source blockchain framework using another BFT-based consensus algorithm.
We selected Hyperledger Besu, a popular implementation of Ethereum client that supports public
and private blockchain. It uses IBFT (Istanbul Byzantine Fault Tolerance) that enhances the
performance by decreasing the number of nodes for transaction confirmation from 3 f + 1 to 2 f + 1
(IBFT https://github.com/ethereum/EIPs/issues/650). In the experiment for RQ3, we modified the
Hyperledger Besu source code to communicate with our Controller for requesting new block generation
and accessing transaction pool (our source code for implementing the BFT network is available at
https://:github.com/jungwonrs/JwRalph_Seo/tree/master/lab/besu_backup). Then, we performed
an experiment similar to that of RQ1 to figure out how much our approach can improve the IBFT
consensus protocol’s performance.

Experimental setting of RQ3. We modified Hyperledger Besu 1.5.1 (https://github.com/
hyperledger/besu/tree/1.5.1) to communicate with our consensus coordinator. For the experiment,
we transmitted random transactions to Hyperledger Besu on a regular basis during the designated
period. Initially, the number of nodes was four and we gradually increased the number of nodes until it
reached 40. Then, we measured the number of transactions contained in generated blocks to recognize
its throughput. We set the block generation time of the Hyperledger Besu to 10 s, and our coordinator
execution interval was also set into 10 s because this time showed the best performance. The experiment
was also carried out every 5 min (=300 s and 30 block generations) for each node configuration.

In the experiment, the interval of the transaction transmission started from 10 ms, because
a significant number of transactions was missed in Hyperledger Besu in the case of under 10-ms
interval. We carried out this experiment with the transaction transmission interval of 5 ms from 10 to
40 ms. Our hardware specification as a blockchain node and consensus coordinator was Intel i7-8700,
3.2 GHz CPU with 24 GB RAM and Windows 10 OS. All nodes and the consensus coordinator were
executed on one computer. Due to the hardware specification limitation, the maximum node number
of Hyperledger Besu was set to 40. In addition, the gas limitation of Hyperledger Besu was removed
to generate transactions continuously (we refer to the method shown on the official Besu website:
https://besu.hyperledger.org/en/stable/HowTo/Configure/FreeGas/).

Experimental results of RQ3. Figure 5 shows the result of the experiment where its transmission
interval is 10 ms with from 4 to 40 blockchain nodes. In the figure, results of only using the
IBFT and IBFT equipped with our approach are expressed in IBFT and CC + IBFT, respectively.
The y-axis indicates the number of transactions contained in the generated blocks for 5 min. For four
blockchain nodes, the number of transactions of IBFT and CC + IBFT contained in 30 generated
blocks were 24,173 and 26,152, respectively. CC + IBFT achieves 8.19% (=(26,152 − 4173)/24,173)
performance improvement. The total number of transactions that can be issued every 10 ms for 5 min
is 30,000, but 3848 (=30,000 − 26,152) and 5827 (=30,000 − 24,173) are missed due to the performance
limitation of Hyperledger Besu and our approach. For the experiment with 40 blockchain nodes,
IBFT processed 1563 transactions, while CC + IBFT processed 6607 transactions, indicating a 322.71%
(=(6607 − 1563)/1563) performance improvement. Thus, in all node configurations with 10 ms of
transaction issue interval, the combination of IBFT and our consensus coordinator obtained 37.75%
(=(154,782 − 112,361)/11,2361) performance improvement on average.

Figure 6 shows the result of the experiment where the interval is 25 ms. As the transaction
time interval is 25 ms, the total number of transactions that can be issued for 5 min is 12,000
(=300/0.025), which is the maximum number of transactions that can be contained in generated
blocks. In four blockchain nodes, the numbers of IBFT and CC + IBFT are 11,900 and 12,000,
respectively, in which most of the issued transactions are contained in generated blocks. Thus, the gap
between the two numbers of transactions is not big. However, for 20 nodes, CC + IBFT achieved
53.25% (=(11,255 − 7344)/7344) performance improvement. In addition, CC + IBFT obtained 344.81%
(=(7584 − 1705)/1705) performance improvement in the case of 40 blockchain nodes, compared to only

https://github.com/ethereum/EIPs/issues/650
https://:github.com/jungwonrs/JwRalph_Seo/ tree/master/lab/besu_backup
https://github.com/hyperledger/besu/tree/1.5.1
https://github.com/hyperledger/besu/tree/1.5.1
https://besu.hyperledger.org/en/stable/HowTo/Configure/FreeGas/

Appl. Sci. 2020, 10, 7609 13 of 20

using the IBFT. In all node configurations, the combinational use of IBFT and our approach gained
61.81% (=((103,348 − 63,868)/63,868)) performance improvement on average. Thus, it is possible
to conclude that our approach contributed to improving the performance of a specific blockchain
node configuration and improving the IBFT consensus algorithm’s scalability because the loss of
performance is smaller depending on the increase of the blockchain nodes. All datasets resulting from
this experiment are presented in the AppendixA.

Figure 5. Comparing the amount of transactions between IBFT and CC + IBFT when the transaction
generation interval is 10 ms.

While carrying out this experiment, we observed that the proportion of equal and unequal
transactions in consensus coordinator, as shown in Table 2. As the coordinator execution interval is
10 s, our approach’s maximum number of execution is 30 for 5 min. Then, we counted the number of
cases that carry out equal transactions, that is, the case of Step 3.1 Handling Equal Transactions and the
number of unequal transaction cases that process Step 3.2 Handling Unequal Transactions. Each of them
is expressed in Equal Txs and Unequal Txs in the table. In four nodes with 10 and 25 ms, all transactions
of the transaction pool of all nodes are equal, which are 93.33% and 96.67% of 30 coordinator executions,
respectively. However, the number of nodes is increased, the higher proportion of the case for equal
transactions is decreased, and that of unequal transactions is increased. As a result, average equal
and unequal transactions are 55.33% and 44.67% in the case of 10-ms transaction issue interval, while
those of the 25-ms case are 72% and 28%, respectively. Thus, we recognized that our contribution to
the performance and scalability improvement is positively associated with the proportion of equal
transactions, as pointed by Equation (1).

Appl. Sci. 2020, 10, 7609 14 of 20

Table 2. Result of monitoring equal and unequal transactions of consensus coordinator.

10 ms 25 ms
N(Node) Equal Txs Unequal Txs Equality Inequality

4 28 93.33% 2 6.67% 29 96.67% 1 3.33%
8 27 90% 3 10% 30 100% 0 0%
12 25 83.33% 5 16.67% 29 96.67% 1 3.33%
16 20 66.67% 10 33.33% 26 86.67% 4 13.33%
20 19 63.33% 11 36.67% 23 76.67% 7 23.33%
24 16 53.33% 14 46.67% 20 66.67% 10 33.33%
28 14 46.67% 16 53.33% 16 53.33% 14 46.67%
32 10 33.33% 20 66.67% 17 96.67% 13 43.33%
36 4 13.33% 26 86.67% 14 46.67% 16 53.33%
40 3 10.00% 27 90.00% 12 40% 18 60%

Average 166 55.33% 134 44.67% 216 72% 84 28%

Figure 6. Comparing the amount of transactions between IBFT and CC + IBFT when the transaction
generation interval is 25 ms.

4.4. Threats to Validity

Construct Validity. The results of RQ1, RQ2, and RQ3 may be influenced by hardware
specification and the version of Hyperledger Besu. Although there are diverse factors related to
performance, the experimental results, such as elapsed times and the number of transactions, can differ.
However, we tried to carry out our experiments on the same hardware specification for control and
experimental groups, so that the relative comparison of the result is considered desirable for our
experiment. In addition, the result of the experiment for RQ3 can be different due to the version of
Hyperledger Besu. We selected the 1.5.1 version of Hyperledger Besu in the experiment for RQ3,
which was the most recent version at the time. However, the version upgrade is frequent so that the
use of different versions would show different results.

Content Validity. In this paper, the concept of scalability is measured by the extent of the decrease
in performance, depending on the increase in the number of nodes. Based on this definition, we keep
measuring the performance gap, depending on node changes. Besides, we also defined that the term
transaction issue indicates that a client issues one transaction, and the transaction is contained in a new
block through block generation. However, the block generation interval was set to be every 10 s in

Appl. Sci. 2020, 10, 7609 15 of 20

the experiments for RQ1 and RQ3, while the unit of the measure of the elapsed time must be 10 s,
which are not the exact time. Due to this issue, we performed our experiment for 2 h 40 min, which is
a long time enough to ignore the 10 s time gap for measuring the average elapsed time for processing
a transaction. In the experiment for RQ3, we fixed the experiment time into 30 block generations
(i.e., 5 min) to resolve the issue.

Internal Validity. Experiment results may be affected by different sets of the interval execution
of the consensus coordinator (i.e., timep ∼ timec) and the block generation time for PBFT and IBFT
in Hyperledger Besu. To handle this issue, we performed the sensitivity analysis and observed that
setting the execution time interval of the coordinator and block generation time of PBFT and IBFT to
10 ms showed the best performance. However, the performance may be different depending on the
interval setting.

External Validity. In this paper, we claim that our approach is efficient for BFT-based consensus
algorithms, and we applied our approach to two consensus algorithms: PBFT and IBFT. It is hard
to claim that our approach applies to all BFT-based consensus algorithms. However, we selected
the most popular BFT-based consensus algorithm, PBFT. Many consensus algorithms such as IBFT,
Zyzzyva [18], SBFT [19], Hotstuff [33,34], and Tendermint [26] are derived from PBFT. Although we
selected IBFT as a representative derivation of PBFT, we argue that our approach can be applied to
other BFT-based consensus algorithms.

5. Conclusions

This paper proposes a coordination technique for improving the scalability of BFT-based
consensus algorithms. The technique is composed of four steps: (1) electing a prime node; (2) collecting
transactions from transaction pools; (3) processing equal and unequal transactions; and (4) generating
a new block. Our key idea is to control a conditional execution of the consensus algorithm by dividing
the transaction pool into equal and unequal transactions and secondly dividing common and trouble
transactions among unequal transactions. The consensus algorithm is then executed only for trouble
transactions, and the results are merged and finalized through sharing the transactions throughout all
blockchain nodes.

Based on this approach, we carried out three experiments to respond to three research questions.
As a result of the experiments, the use of PBFT equipped with our approach showed 4.75 times the
performance improvement on average compared to using PBFT only. In addition, our approach
contributed to improving the performance by a maximum of 61.81% of the performance, compared
to the single-use of IBFT. In addition to this, we showed the correlation of performance and trouble
transactions associated with the transaction issue interval and the number of blockchain nodes.

Although our approach showed the scalability improvement of BFT-based consensus algorithms,
it has explicit limitations. First, the consensus coordinator is centralized so that it exposes the
coordinator to the single point failure issue. Second, our approach does not address the recovery issue
of the coordinator when a system has failed or restarted. Third, our approach should be tested in the
real-world environment where diverse synchronization issues exist such as clock synchronizations
throughout distributed nodes. For future work, we plan to carry out more research on distributing the
centralized consensus coordinator and establishing recovery strategy from the system failure in the
real-world environment.

Author Contributions: Conceptualization, J.S. and D.K.; Funding acquisition, S.P.; Investigation, J.S.;
Methodology, S.K.; Supervision, S.P.; Writing—original draft, J.S., D.K. and S.P.; and Writing—review and
editing, S.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the MSIT(Ministry of Science and ICT), Korea, under the ITRC
(Information Technology Research Center) support program (IITP-2020-2017-0-01628) supervised by the IITP
(Institute for Information & communications Technology Promotion).

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2020, 10, 7609 16 of 20

Appendix A. Raw Data of RQ3

Node Count
10 ms 25 ms

Node Count
10 ms 25 ms

IBFT CC + IBFT IBFT CC + IBFT IBFT CC + IBFT IBFT CC + IBFT

4

1 846 880 684 401

8

1 766 766 623 421
2 783 916 259 476 2 566 566 155 421
3 588 876 382 400 3 685 685 320 401
4 767 916 388 401 4 587 776 309 376
5 692 916 391 476 5 684 684 339 401
6 817 916 387 401 6 678 780 335 376
7 745 916 391 401 7 661 701 339 391
8 803 926 392 401 8 601 756 345 401
9 809 936 392 401 9 648 766 340 397
10 803 926 392 376 10 655 756 348 401
11 809 916 392 376 11 623 757 341 397
12 833 916 392 476 12 659 659 344 401
13 815 916 392 401 13 612 759 340 401
14 876 939 391 376 14 633 777 352 397
15 787 941 393 376 15 657 757 348 401
16 797 797 392 376 16 627 775 352 401
17 875 875 391 401 17 652 787 349 397
18 840 840 392 376 18 649 777 348 401
19 803 803 392 397 19 662 662 353 401
20 873 873 393 376 20 615 764 349 397
21 795 795 392 401 21 679 679 349 401
22 874 874 393 376 22 640 776 352 401
23 761 761 392 401 23 636 765 350 411
24 851 851 393 376 24 659 659 351 401
25 834 834 392 401 25 637 779 353 401
26 805 805 391 376 26 641 840 351 401
27 832 832 392 401 27 652 797 351 401
28 802 802 392 401 28 654 665 350 401
29 833 833 393 401 29 647 776 349 401
30 825 825 392 401 30 653 817 312 401

sum 24,173 26,152 11,900 12,000 sum 19,418 22,263 10,397 12,000

Node Count
10 ms 25 ms

Node Count
10 ms 25 ms

IBFT CC + IBFT IBFT CC + IBFT IBFT CC + IBFT IBFT CC + IBFT

12

1 530 656 504 391

16

1 532 176 261 387
2 586 664 292 401 2 532 756 261 387
3 556 656 296 401 3 476 616 261 401
4 576 624 296 401 4 477 626 276 387
5 556 673 276 401 5 571 627 276 387
6 576 676 296 401 6 571 627 277 387
7 546 677 276 401 7 571 628 277 411
8 576 656 276 401 8 476 633 277 387
9 546 656 296 396 9 476 626 277 387
10 576 656 276 401 10 532 573 261 387
11 576 677 276 401 11 489 626 287 377
12 577 678 286 391 12 477 676 277 387
13 576 656 276 401 13 485 626 261 387
14 576 674 276 401 14 497 176 261 387
15 578 663 292 401 15 556 327 261 387
16 576 662 292 386 16 476 626 261 387
17 521 656 292 411 17 532 682 261 416
18 576 656 293 401 18 497 626 260 387
19 576 658 302 401 19 497 600 260 387
20 576 658 302 401 20 532 631 260 397
21 576 656 294 401 21 476 618 261 387
22 546 656 294 401 22 571 614 261 376
23 576 656 294 401 23 476 614 261 387
24 526 656 294 401 24 532 627 261 411
25 526 656 294 401 25 574 598 261 387
26 530 656 292 401 26 571 608 277 387
27 577 656 294 401 27 490 628 261 387
28 576 656 294 401 28 478 626 261 387
29 576 655 294 401 29 571 626 287 387
30 576 673 294 401 30 483 626 261 387

sum 16,917 19,808 8909 12,000 sum 15,474 17,669 8005 11,690

Appl. Sci. 2020, 10, 7609 17 of 20

Node Count
10 ms 25 ms

Node Count
10 ms 25 ms

IBFT CC + IBFT IBFT CC + IBFT IBFT CC + IBFT IBFT CC + IBFT

20

1 463 536 241 371

24

1 296 526 171 346
2 474 576 241 371 2 296 516 171 346
3 462 563 241 371 3 327 516 176 346
4 464 576 277 371 4 327 576 177 346
5 451 563 231 416 5 327 486 177 336
6 389 576 231 371 6 356 488 177 346
7 422 576 231 356 7 327 508 177 341
8 434 576 241 371 8 327 516 171 346
9 473 575 241 371 9 367 518 171 346
10 474 570 241 371 10 327 519 171 344
11 432 576 241 376 11 327 517 177 346
12 464 576 241 386 12 327 517 178 346
13 464 572 241 371 13 284 516 177 344
14 454 556 241 386 14 327 519 178 346
15 462 576 277 371 15 256 516 176 346
16 460 576 241 371 16 327 516 177 346
17 459 556 241 371 17 292 486 164 344
18 456 546 241 401 18 327 487 166 344
19 454 576 241 371 19 300 476 171 346
20 452 576 277 371 20 299 498 139 346
21 427 576 241 371 21 309 499 144 351
22 454 526 241 416 22 327 516 144 348
23 434 576 277 371 23 327 516 171 348
24 456 556 241 371 24 325 516 177 346
25 456 556 241 356 25 238 516 177 358
26 451 576 241 371 26 362 487 177 358
27 451 456 241 371 27 304 486 177 358
28 441 576 241 371 28 332 486 176 346
29 441 576 241 371 29 327 516 176 346
30 441 556 241 371 30 327 516 177 346

sum 13,515 16,903 7344 11,255 sum 9521 15,271 5138 10,402

Node Count
10 ms 25 ms

Node Count
10 ms 25 ms

IBFT CC + IBFT IBFT CC + IBFT IBFT CC + IBFT IBFT CC + IBFT

28

1 5 397 280 319

32

1 15 357 11 276
2 196 416 136 326 2 149 360 31 296
3 196 88 136 331 3 119 351 15 276
4 200 260 256 331 4 140 351 17 294
5 201 416 166 326 5 115 342 39 298
6 196 452 168 326 6 105 341 55 296
7 167 474 167 296 7 148 336 60 296
8 201 416 136 296 8 103 316 77 296
9 196 330 136 326 9 174 316 111 294
10 167 409 130 326 10 136 321 80 287
11 196 416 130 326 11 135 341 116 296
12 201 377 136 301 12 144 342 246 296
13 200 363 136 299 13 148 351 4 287
14 206 416 280 309 14 129 316 124 295
15 196 397 141 326 15 147 318 77 296
16 196 416 63 326 16 147 357 134 296
17 224 397 256 326 17 106 362 137 293
18 237 397 256 309 18 147 363 105 296
19 196 416 84 309 19 129 364 125 291
20 196 374 177 314 20 132 377 126 296
21 196 374 220 326 21 149 358 103 296
22 167 416 141 326 22 147 326 126 296
23 196 416 141 326 23 133 337 130 291
24 196 416 141 326 24 149 297 95 296
25 199 463 136 326 25 146 376 136 296
26 167 416 179 338 26 142 354 137 296
27 196 416 136 343 27 147 351 124 363
28 212 401 176 326 28 131 346 145 296
29 196 416 134 326 29 128 341 118 291
30 196 375 161 326 30 146 356 82 296

sum 5694 11,736 4935 9637 sum 3986 10,324 2886 8868

Appl. Sci. 2020, 10, 7609 18 of 20

Node Count
10 ms 25 ms

Node Count
10 ms 25 ms

IBFT CC + IBFT IBFT CC + IBFT IBFT CC + IBFT IBFT CC + IBFT

36

1 11 277 14 271

40

1 4 241 0 261
2 89 288 19 281 2 163 260 219 246
3 11 271 14 277 3 24 262 2 265
4 91 272 111 274 4 225 242 14 276
5 76 166 116 256 5 0 259 0 271
6 83 277 88 256 6 0 267 121 246
7 89 281 5 256 7 89 276 32 246
8 81 277 106 273 8 0 264 188 271
9 84 277 31 272 9 4 256 18 271

10 74 88 108 270 10 79 256 88 271
11 85 318 131 257 11 38 257 0 246
12 0 326 15 259 12 40 258 8 249
13 73 326 106 256 13 79 259 11 252
14 76 338 133 256 14 38 186 176 246
15 91 307 107 261 15 8 176 29 253
16 82 278 107 261 16 5 176 78 253
17 81 307 108 256 17 79 179 11 246
18 84 308 4 261 18 8 180 107 246
19 4 310 133 260 19 44 181 2 246
20 84 277 111 262 20 50 251 1 254
21 84 277 111 256 21 200 241 139 246
22 89 277 111 273 22 79 216 0 249
23 81 178 135 256 23 0 83 2 246
24 81 198 96 256 24 79 85 4 248
25 0 177 87 271 25 5 216 180 246
26 81 184 86 271 26 79 92 7 246
27 85 278 133 256 27 60 251 2 247
28 89 302 106 271 28 0 243 126 246
29 87 303 111 271 29 79 240 140 249
30 74 306 106 256 30 5 254 0 246

sum 2100 8049 2649 7912 sum 1563 6607 1705 7584

References

1. Swan, M. BlockChain BluePrint for a New Economy, 1st ed.; O’Reilly Media: Sebastopol, CA, USA, 1978;
ISBN 978-149-192-049-7.

2. Cong, L.W.; He, Z. Blockchain Disruption and Smart Contracts. Rev. Financ. Stud. 2019, 32, 1754–1797.
[CrossRef]

3. Catalini, C.; Gans, J.S. Some Simple Economics of The Blockchain. Commun. ACM 2019, 63, 80–90. [CrossRef]
4. Banerjee, M.; Lee, J.H; Choo, K.K.R. A blockchain future for internet of things security: A position paper.

Digit. Commun. Netw. 2018, 4, 149–160. [CrossRef]
5. Azaria, A.; Ekblaw, A.; Lippman, A. MedRec: Using blockchain for Medial Data Access and Permission

Management. In Proceedings of the 2016 2nd International Conference on Open and Big Data(OBD), Vienna,
Austria, 22–24 August 2016; pp. 25–30.

6. Korpela, K.; Hallikas, J.; Dahlberg, T. Digital Supply Chain Transformation toward Blockchain Integration.
In Proceedings of the 50th Hawaii International Conference on System Sciences, Hawaii, HI, USA,
4 January 2017; pp. 4182–4191.

7. Pelz-Sharpe. Available online: https://www.deep-analysis.net/wp-content/uploads/2019/08/DA-190812-
Ent-Blockchain-forecast.pdf (accessed on 20 December 2019).

8. Kim, S.; Kwon, Y.; Cho, S. A Survey of Scalability Solution on Blockchain. In Proceedings of the 2018
International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Korea,
17–19 October 2018; pp. 1204–1207.

9. Chauhan, A.; Malviya, O.P.; Verma, M.; Singh, T.M. Blockchain and Scalability. In Proceedings of the
2018 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C),
Lisbon, Portugal, 16–20 July 2018; pp. 122–128.

10. Scherer, M. Performance and Scalability of Blockchain Networks and Smart Contract. Available online:
http://www.diva-portal.org/smash/record.jsf?pid=diva2:1111497 (accessed on 1 March 2020).

11. Zheng, Z.; Xie, S.; Dai, H.N.; Chen, X. Blockchain Challenges and Opportunities: A Survey. Int. J. Web
Grid Serv. 2018, 14, 352–375. [CrossRef]

http://dx.doi.org/10.1093/rfs/hhz007
http://dx.doi.org/10.1145/3359552
http://dx.doi.org/10.1016/j.dcan.2017.10.006
https://www.deep-analysis.net/wp-content/uploads/2019/08/DA-190812- Ent-Blockchain-forecast.pdf
https://www.deep-analysis.net/wp-content/uploads/2019/08/DA-190812- Ent-Blockchain-forecast.pdf
http://www.diva-portal.org/smash/record.jsf?pid=diva2:1111497
http://dx.doi.org/10.1504/IJWGS.2018.095647

Appl. Sci. 2020, 10, 7609 19 of 20

12. Cachin, C.; Vukolic, M. Blockchains Consensus Protocols in the Wild. Available online: https://arxiv.org/
abs/1707.01873 (accessed on 21 December 2019).

13. Castro, M.; Liskov, R. Practical Byzantine Fault Tolerance. In Proceedings of the Third Symposium on
Operating Systems Design and Implementation, New Orleans, LA, USA, 22–25 February 1999; pp. 173–186.

14. Castro, M.; Liskov, R. Practical Byzantine Fault Tolerance and Proactive recovery. ACM Trans. Comput. Syst.
2002, 20, 398–461. [CrossRef]

15. Sukhwani, H.; Martínez, J.M.; Chang, X.; Trivedi, K.S.; Rindos, A. Performance Modeling of PBFT Consensus
Process for Permissioned Blockchain Network (Hyperledger Fabric). In Proceedings of the 2017 IEEE 36th
Symposium on Reliable Distributed Systems (SRDS), Hong Kong, China, 26–29 September 2017; pp. 253–255.

16. Feng, L.; Zhang, H.; Chen, Y.; Lou, L. Scalable Dynamic Multi-Agent Practical Byzantine Fault-Tolerant
Consensus in Permissioned Blockchain. Appl. Sci. 2018, 8, 1919. [CrossRef]

17. Luu, L.; Narayanan, V.; Baweja, K.; Zheng, C.; Gilbert, S.; Saxena, P. SCP: A Computationally-Scalable
Byzantine Consensus Protocol For Blockchains. Available online: https://eprint.iacr.org/2015/1168/
20160823:024020 (accessed on 15 March 2020).

18. Kotla, R.; Alvisi, L.; Dahlin, M. Zyzzyva: Speculative Byzantine Fault Tolerance. ACM Trans. Comput. Syst.
2010, 27, 45–58. [CrossRef]

19. Gueta, G.G.; Abraham, I.; Grossman, S. SBFT: A Scalable and Decentralized Trust Infrastructure.
In Proceedings of the 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), Portland, OR, USA, 24–27 June 2019; pp. 568–580.

20. Jiang, Y.; Lian Z. High Performance and Scalable Byzantine Fault Tolerance. In Proceedings of the 2019
IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC),
Chengdu, China, 15–17 March 2019, pp. 1195–1202.

21. Lei, K.; Zhang, Q.; Xu, L.; Qi, Z. Reputation-Based Byzantine Fault-Tolerance for Consoritum Blockchain.
In Proceedings of the 2018 IEEE 24th International Conference on Parallel and Distributed System, Singapore,
11–13 December 2018; pp. 604–611.

22. Gao, S.; Yu, T.; Zhu, J.; Cai, W. T-PBFT: An Eigen Trust-based practical Byzantine fault tolerance consensus
algorithm. China Commun. 2019, 16. [CrossRef]

23. Liu, J.; Li, W.; Karame, G.O.; Asokan, N. Scalable Byzantine Consensus via Hardware-Assisted Secret Sharing.
IEEE Trans. Comput. 2019, 68. [CrossRef]

24. Lamport, L.; Shostak, R.; Pease, M. The Byzantine Generals Problem. ACM Trans. Program. Lang. Syst. 1982,
4, 382–401. [CrossRef]

25. Sousa, J.; Bessani, A.; Vukolic, M. A Byzantine Fault-Tolerant Ordering Service for the Hyperledger Fabric
Blockchain Platform. In Proceedings of the 2018 48th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Luxembourg, 25–28 June 2018, pp. 51–58.

26. Kwon, J. Tendermint: Consensus without Mining. Available online: https://tendermint.com/docs/
tendermint.pdf (accessed on 20 May 2020).

27. Amsden, Z.; Arora, R.; Bano, S.; Baudge, M.; Blackshear, S.; Bothra, A.; Cabrera, G.; Catalini, C.; Chalkias, K.;
Cheng, E.; et al. The Libra Blockchain, Available online: https://developers.libra.org/docs/the-libra-
blockchain-paper (accessed on 2 July 2020).

28. Hyperledger Besu 1.5 Performance Enhancement. Available online: https://www.hyperledger.org/
category/hyperledger-besu (accessed on 1 September 2020).

29. Fan, K.; Sun, S.; Yan, Z.; Pan, Q.; Li, H.; Yang, Y. A blockchain-based clock synchronization Scheme in IoT.
Future Gener. Comput. Syst. 2019, 101. [CrossRef]

30. Bertasi, P.; Bonazza, M.; Moretti, N.; Peserico, E. PariSync: Clock synchronization in P2P networks.
In Proceedings of the 2009 International Symposium on Precision Clock Synchronization for Measurement,
Control and Communication, Brescia, Italy, 12–16 October 2009; pp. 1–6.

31. Iwanicki, K.; van Steen, M.; Voulgaris, S. Gossip-Based Clock Synchronization for Large Decentralized
Systems. Self-Manag. Netw. Syst. Serv. 2006, 3996. [CrossRef]

32. Donet Donet, J.A.; Pérez-Solà, C. The Bitcoin P2P Network. In Proceedings of the Financial Cryptography
and Data Security FC2014, Christ Church, Barbados, 7 March 2014; pp. 87–102.

33. Yin, M.; Malkhi, D.; Reiter, M.K.; Gueta, G.G.; Abraham, I. HotStuff:BFT Consensus with Linearity and
Responsiveness. In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing,
Toronto, ON, Canada, 29 July–2 August 2019; pp. 347–356.

https://arxiv.org/abs/1707.01873
https://arxiv.org/abs/1707.01873
http://dx.doi.org/10.1145/571637.571640
http://dx.doi.org/10.3390/app8101919
https://eprint.iacr.org/2015/1168/20160823:024020
https://eprint.iacr.org/2015/1168/20160823:024020
http://dx.doi.org/10.1145/1658357.1658358
http://dx.doi.org/10.23919/JCC.2019.12.008
http://dx.doi.org/10.1109/TC.2018.2860009
http://dx.doi.org/10.1145/357172.357176
https://tendermint.com/docs/tendermint.pdf
https://tendermint.com/docs/tendermint.pdf
https://developers.libra.org/docs/the-libra-blockchain-paper
https://developers.libra.org/docs/the-libra-blockchain-paper
https://www.hyperledger.org/category/hyperledger-besu
https://www.hyperledger.org/category/hyperledger-besu
http://dx.doi.org/10.1016/j.future.2019.06.007
http://dx.doi.org/10.1007/11767886_3

Appl. Sci. 2020, 10, 7609 20 of 20

34. Yin, M.; Malkhi, D.; Reiter, M.K.; Gueta, G.G.; Abraham, I. HotStuff:BFT Consensus in the Lens of Blockchain.
Available online: https://arxiv.org/abs/1803.05069 (accessed on 30 May 2020).

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://arxiv.org/abs/1803.05069
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background and Related Work
	Background: BFT-Based Consensus Algorithms
	Related Work

	A Coordination Technique for Scalable BFT Consensus
	Step 1. Electing a Prime Node
	Step 2. Collecting Transactions from Transaction Pool
	Step 3. Processing Equal/Unequal Transactions
	Step 3.1 Handling Equal Transactions
	Step 3.2 Handling Unequal Transactions

	Step 4. Generating a New Block

	Evaluation
	RQ1: How Much Can the Scalability of PBFT Be Increased through Our Proposed Approach?
	RQ2: What Is the Correlation between the Trouble Transactions and Performance?
	RQ3: How Much Can Our Approach Improve the Scalability of IBFT of Hyperledger Besu?
	Threats to Validity

	Conclusions
	Raw Data of RQ3
	References

