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Abstract: Delivery service sharing (DSS) has made an important contribution in the optimization of daily
order delivery applications. Existing DSS algorithms introduce two major limitations. First, due to
computational reasons, most DSS algorithms focus on the fixed pickup/drop-off time scenario,
which is inconvenient for real-world scenarios where customers can choose the pickup/drop-off time
flexibly. On the other hand, to address the intractable DSS with the flexible time windows (DSS-Fle),
local search-based heuristics are widely employed; however, they have no theoretical results on the
advantage of order sharing. Against this background, this paper designs a novel algorithm for DSS-Fle,
which is efficient on both time complexity and system throughput. Inspired by the efficiency of
shareability network on the delivery service routing (DSR) variant where orders cannot be shared
and have the fixed time window, we first consider the variant of DSR with flexible time windows
(DSR-Fle). For DSR-Fle, the order’s flexible time windows are split into multiple virtual fixed time
windows, one of which is chosen by the shareability network as the order’s service time. On the other
hand, inspired by efficiency of local search heuristics, we further consider the variant of DSS with fixed
time window (DSS-Fix). For DSS-Fix, the beneficial sharing orders are searched and inserted to the
shareability network. Finally, combining the spitting mechanism proposed in DSR-Fle and the inserting
mechanism proposed in DSS-Fix together, an efficient algorithm is proposed for DSS-Fle. Simulation
results show that the proposed DSS-Fle variant algorithm can scale to city-scale scenarios with thousands
of regions, orders and couriers, and has the significant advantage on improving system throughput.

Keywords: delivery service sharing; shareability network; approximation algorithm; time windows

1. Introduction

The popularization of smartphones has made people increasingly connected, and has provided the
great convenience for daily order delivery service. For example, by using the ride-ordering apps, such as
DiDi Chuxing (www.didiglobal.com) and Uber (www.uber.com), customers can be picked up by the
private car or taxi at any time, and, by using the food-ordering apps, such as Meituan (www.meituan.com),
Eleme (www.ele.me), and Freshhema (www.freshhema.com), food can be delivered to customers’ homes
within a very short time. During July 2019, the average daily ride orders of DiDi Chuxing broke
24 million, and the average daily food orders of Meituan broke 30 million. Delivery service routing (DSR),
which routes the cars/couriers to deliver orders, has made such an important contribution of serving
these millions of orders. To improve customer experience, a significant characteristic of the ordering
apps is to provide the flexible pickup or drop-off windows [1,2]. For example, in the food-ordering
apps, the customer has the flexibility to choose the food drop-off time, e.g., during the lunch time, it is
feasible to drop off the food from 11:30 a.m. to 12:30 p.m. Moreover, to improve the system throughput
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(i.e., the number of orders served), multiple orders can be shared and served by the same car/courier at
a time [3–5]. For example, in the food-ordering scenarios, this food ordered from the same shop can be
packed by a courier and delivered to the customers in a sharing fashion. Due to its potential in real-world
applications, this paper mainly focuses on delivery service sharing variant with flexible pickup/drop-off
time windows (DSS-Fle), where orders can be shared and served at a time.

Recently, many efforts have been devoted to addressinng two variants of DSS problem-DSR with
flexible time windows (DSR-Fle) and DSS with a fixed time window (DSS-Fix). In the DSR-Fle literature,
where orders cannot be shared, Vazifeh et al. [6] first propose a shareability network to model the
special DSR variant with fixed pickup window (DSR-Fix), which can be addressed by the polynomial
Hopcroft–Karp maximum-matching algorithm. Bertsimas et al. [7] extend to the NP-hard DSR-Fle,
and propose an iterative heuristic algorithm of removing the undesirable edges in the shareability network
in each iteration. Although the heuristic algorithm can scale to real-world city-scale scenarios, it has no
theoretical guarantee on system throughput. On the other hand, a mixed integer program is used to
formulate the DSS-Fix variant, and the time-consuming Lagrangian decomposition approach is proposed
for the exact solution [8]. To reduce the computation complexity, a bipartite matching based approximation
algorithm is proposed for matching a delivery resource with two orders [9], which might be inefficient
for system throughput maximization. Ma et al. [10] propose a heuristic algorithm to generate the order
sharing path, which works by finding and inserting the nearby orders into a current partial sharing path.
The constructed sharing path might be efficient on system throughput and computation time; however,
neither considers the flexible time windows nor provides any systemic analysis on the advantage of
order sharing.

Against this background, the main contribution of this paper is to design a time-efficient algorithm for
DSS-Fle, and to theoretically guarantee the advantage of order sharing. We extend the seminal shareability
network mechanism (that is used in DSR-Fix), to DSR-Fle and DSS-Fix, respectively. For DSR-Fle, we split
the flexible time windows into multiple virtual fixed times, carefully choosing one of these fixed times as
the order’s service time, and employ the DSR-Fix mechanism to generate the routing plan. The DSR-Fle
variant algorithm can provide the theoretical 1

κ approximation ratio with respect to system throughput,
where κ is the maximum time window of orders. For DSS-Fix, we first search the orders that can be shared,
and insert these shared orders into the shareability network of DSR-Fix. Compared to the DSR-Fix variant
without considering order sharing, DSS-Fix can improve the system throughput. Finally, we combine the
flexible time windows spitting mechanism (proposed for DSR-Fle) and shareability network updating
mechanism (proposed for DSS-Fix) to design an efficient algorithm for DSS-Fle. Besides the time efficiency,
we systemically guarantee that order sharing is beneficial on maximizing system throughput, i.e., DSS-Fix
� DSR-Fix, and DSS-Fle � DSR-Fle; the symbol � indicates the prior relation on maximizing system
throughput. More specifically, this paper advances the state of the art in the following ways. Compared
with the most related DSR-Fle studies, which employ the local search heuristic, we propose the approximate
algorithm with system throughput guarantee. Compared with most related DSS-Fix studies, which do
not take the flexible time windows into account, we propose a time-efficient algorithm for DSS-Fle and
systematically analyze the advantage of sharing on maximizing system throughput. Finally, we conduct a
series of experiments on synthetic datasets to validate the proposed algorithms.

The remainder of this paper is organized as follows. In Section 2, we provide a review of the related
literature on DSR with fixed/flexible time windows, and with/without sharing. In Section 3, we formulate
the DSS-Fle problem and propose the algorithm framework. In Section 4, we propose four algorithms for
the DSR-Fix, DSR-Fle, DSS-Fix, and DSS-Fle four variants, respectively. In Section 5, we conduct a series of
experiments on synthetic datasets to validate the proposed algorithms efficiency and effectiveness. Finally,
we conclude our paper in Section 6.
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2. Related Work

In this section, we categorize the related work into two groups: delivery service routing (DSR)
and delivery service sharing (DSS). The latter is further categorized into vehicle-oriented sharing and
customer-oriented sharing two subgroups.

2.1. Delivery Service Routing (DSR)

The DSR problem is a combinatorial optimization problem seeking to serve a number of customers
with a fleet of vehicles [1,2]. Let G = 〈V, C〉 denote a graph, where V denotes the nodes, say customers
that need service, cij ∈ C denotes the time distance between nodes vi and vj. Each customer vi has a time
window specified by an interval [ei, li], corresponding to the earliest and latest possible serving times,
respectively. A vehicle route starts at the depot v0, serving some number of customers at most once within
their windows. Solomon [1] proposes a heuristic of inserting a new un-routed customer into the current
partial route, between two adjacent customers with the minimum insertion cost. To further improve
routing efficiency, Potvin and Roussea [11] propose a 2-opt exchange heuristic where the initial route is
improved by exchanging two existing route links for another two new route links—being aware that some
lateness customers can be tolerated, and the soft time window is introduced and a tabu search heuristic
of swapping sequences of consecutive customers between two routes is proposed in [12]. To minimize
the number of vehicles and traveling cost, a two-stage hybrid algorithm is proposed in [13], in which the
simulated annealing heuristic is used to minimize the number of vehicles, and the neighborhood search is
used to minimize travel costs. Considering the necessity of visiting recharging stations in electric DSR
problem, meta-heuristic search [14] and branch-price-and-cut-based exact algorithms [15] are proposed
to minimize the route cost. To minimize the average distance traveled per customer, the weighted DSR
is introduced [16]. For weighted DSR, the regret-insertion heuristic is proposed to construct the initial
solution and iterative local link exchange heuristics is proposed to improve the routing efficiency. In the
above DSR literature, customers have the same pickup location (i.e., the depot), and each drop-off location
is modeled as a node, which can be served successfully once it is visited by a vehicle. In contrast to the
existing DSR with the same pickup location, this paper studies the delivery service sharing (DSS) variant
where the customer is specified by the origin, destination, and flexible pickup/drop-off time windows,
and the customer can be served successfully if and only if he is picked up from its origin and delivered to
its destination with the time window.

2.2. Delivery Service Sharing (DSS)

For the DSS group, we mainly focus on vehicle-oriented DSS and two customer-oriented DSS
subgroups. For vehicle-oriented DSS, some customers are served in sequence by the same vehicle,
and for customer-oriented DSS some customers can be shared and served by the same vehicle at the
same time.

2.2.1. Vehicle-Oriented DSS

Each customer c can be represented by a tuple (vp
c , vd

c , [te
c, tl

c]), where vp
c denotes the pick-up location,

vd
c denotes the drop-off location, and the time window [te

c, tl
c] represents its minimal and maximal possible

pickup/drop-off times [17]. In the vehicle-based DSS, each vehicle can only serve one customer at a
time, and customers are served in sequence. For the special scenario with the fixed pickup/drop-off time,
i.e., te

c = tl
c = tj, the vehicle-shareability network is constructed in [18]. In the shareability network, each

node represents a customer, and there is an directed edge between customers c and c′ if and only if c′ can
be served immediately after c′, i.e., tc + tcc′ ≤ tc′ , where tcc′ denotes the time distance of traveling from
c’s destination to the origin of c′ and delivering c′ to its destination. Given the constructed shareability
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network, the Hopcroft–Karp algorithm [19] is utilized to maximize the number of customers served with
n vehicles [6]. Considering the flexible pickup windows [te

c, tl
c], Bertsimas et al. [7] propose an iterative

Backbone algorithm, and, at each iteration, the fixed time is chosen randomly within the time window and
the desirable edges are remained. The optimal mixed integer programming is used to return the optimal
solution within the remained shareability network. Being aware of the soft constraints of minimizing
the delay of the fixed time window, a linear programming-based approximation algorithm is proposed
in [20], and a heuristic local search strategy with a diversification updating strategy is used to improve the
solution quality iteratively [21]. Compared with existing heuristics for vehicle-oriented DSS with flexible
time windows, we propose an approximation algorithm which has theoretical performance guarantee
on system throughput. Moreover, we also systemically analyze the customer-oriented sharing scenarios,
where multiple customers can be served by a vehicle at the same time.

2.2.2. Customer-Oriented DSS

Customer-oriented sharing has been proposed as a promising means for improving DSS applications
(e.g., ridesharing), where multiple customer requests can be shared and severed by a vehicle
simultaneously [3–5]. A mixed integer programming can be used to model the static customer-oriented
DSS where the customer requests are known in advance, and a time-consuming Lagrangian decomposition
approach is used to return the exact solution [8]. To scale up the customer-oriented DSS, Bei et al. [9]
propose a bipartite matching-based approximation algorithm. By considering the advantage of tip sharing
with partners locating in proximal locations, a community-based trip-sharing paradigm is proposed, where
customers are first clustered into local communities and optimal intra community trip sharing can be
found by the integer programming [22]. By utilizing the offline partial paths, online nearby customer
requests can be constructed and inserted by a local search in a real-time manner [23–25]. On the other
hand, in ridesharing, the sharing paths should also satisfy the monetary constraints where passengers will
not pay more compared with the scenario without ridesharing and taxi drivers will also make money for
all the detour distance due to ridesharing [10]. Compared to the above customer-oriented DSS scenarios
where customers have the fixed pickup/drop-off window, we study the more practical and flexible DSS
variant where customers have time windows. Moreover, we design customer-oriented DSS algorithms
with the systemic understanding of the power of customer sharing.

3. Model and Algorithm Framework

In this section, we first model the problem of delivery service sharing with flexible time windows,
and outline the algorithm framework. Table 1 summarizes the notations used throughout the paper.

Table 1. Useful notations.

Notation Description

A = {a1, a2, · · · , an} the set of n couriers available for food delivery services
V = {v1, v2, . . . , vm} the set of m regions of a city
R = {r1, r2, · · · , rl} the set of l customer orders need in service

[te
j , tl

j] ∈ [1, T] the time window of the order rj

vp
j the pickup region of the order rj

vd
j the drop-off region of the order rj

τjk

the time distance of traveling from the drop-off region of rj to the pickup region of rk and
delivering rk to its drop-off region
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3.1. The Model

Food-Ordering Delivery Applications. The model is mainly motivated by food-ordering applications,
such as Meituan, Eleme, and Freshhema. There are a set of n couriers A = {a1, a2, · · · , an} available
for food delivery services. Each courier ai has a capacity c ∈ N+, indicating the maximum number of
customer orders that can serve at a time (Here, we assume that each courier has the homogeneous delivery
capacity, which can be easily extended to heterogeneous capacity scenario by making a match between
the courier and delivery plans). Each day is discretized into periods; each period includes δ minutes
(e.g., 5 min). The daily horizon T = {1, 2, · · · , T = 24 × 60

δ }, and the parameter δ can be tuned such that
24 × 60

δ is an integer.
City Network. Let G = 〈V, E, W, D〉 denote the weighted city network, where V = {v1, v2, . . . , vm}

indicates m regions in the city and each eij ∈ E indicates the edge between regions vi and vj. The time
distance on edges W = {wij}eij∈E indicates that it will take wij periods to travel from vi to vj, and wii =

0, ∀vi. Let D = {dij}vi ,vj∈V denote the time distance of the shortest path from vi to vj. The time distance
matrix D satisfies the triangle inequality, i.e., dik ≤ dij + djk, ∀vi, vj and vk.

Customer Orders. Let R = {r1, r2, · · · , rl} be a collection of customer orders. Each rj ∈ R is defined
as a tuple (vp

j , vd
j , [te

j , tl
j]), where vp

j ∈ V denotes the pick-up region of rj, and vd
j ∈ V denotes the drop-off

region. Each rj has a flexible drop-off time window [te
j , tl

j] ⊆ [1, T], during which a customer wishes to

finish her order. For example, [te
j , tl

j] = [16:30, 17:30] indicates that the food delivery order rj must be
delivered to customer home between the time 4:30 p.m. and 5:30 p.m.

Delivery Service Sharing with Flexible Time Windows (DSS-Fle). A delivery sharing plan P is a
temporally-ordered route of pickup and drop-off regions of orders. Let RP ⊆ R denote the subset of
orders served in P , and for each rj ∈ RP , vp

j should precede vd
j , and the drop-off time should be within its

flexible windows [te
j , tl

j]. A courier is responsible for a plan, and for each plan, there are at most c orders
in service at a time. DSS-Fle is formally defined as follows: given the set of n couriers A and the set of l
customer orders R, find the n order-disjoint delivery sharing plans with the objective of optimizing order
service rate, i.e., maximizing the number of orders served.

3.2. The Algorithm Framework

Before presenting the algorithm for DSS-Fle, we first study the following three special
DSS-Fle variants:

• Delivery service routing with the fixed window (DSR-Fix). We first consider the DSR-Fix variant
where orders have the fixed drop-off window and there is no order sharing in routing plan. In terms
of the fixed drop-off window, we mean that each order rj has a fixed drop-off time window,
i.e., te

j = tl
j = tj, and each order can only be finished at its fixed window tj. In terms of without

order sharing, we mean that orders are served in sequence and each courier can only serve one order
at a time.

• Delivery service routing with the flexible windows (DSR-Fle). In DSR-Fle, each order has a flexible
drop-off time window [te

j , tl
j], but they are still cannot be shared by a courier in the same service time.

• Delivery service sharing with the fixed window (DSS-Fix). In DSS-Fix, multiple orders can be shared
and served at a time, but each order rj has the fixed drop-off time window tj.

Inspired by the efficiency of a shareability network (proposed in [6,18]) on addressing DSR-Fix,
we propose an approximation algorithm and a time efficient heuristic algorithm for DSR-Fle and DSS-Fix,
respectively. Combining DSR-Fle and DSS-Fix algorithms together, we finally propose the DSS-Fle
algorithm, which is efficient on both computation complexity and order service rate. The algorithm
framework for DSS-Fle is outlined in Figure 1.
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Figure 1. The algorithm framework for DSS-Fle. Derived from DSR-Fix, we first propose DSR-Fle and
DSS-Fix algorithms, and derived from DSR-Fle and DSS-Fix together, we propose the DSS-Fle algorithm.

4. The Algorithms

In this section, we propose four algorithms for DSR-Fix, DSR-Fle, DSS-Fix, and DSS-Fle variants,
respectively, and theoretically analyze these algorithms’ properties.

4.1. The DSR-Fix Variant Algorithm

In DSR-Fix, each order rj has the fixed drop-off window, i.e., te
j = tl

j = tj, i.e., a courier must deliver rj

to the drop-off region vd
j before tj and wait until tj to drop off it. Moreover, orders cannot be shared and

must be served in sequence. For any two orders rj and rk, they can be served consecutively if one courier
can pick up the order rk immediately after finishing the order rj. There must be a long enough period of
time between drop-off periods of rj and rk such that tj + τjk ≤ tk, where τjk = dvd

j vp
k
+ dvp

k vd
k

denotes the

time distance of traveling from the drop-off region of rj to the pickup region of rk and delivering rk to its
drop-off region vd

k . For such a DSR-Fix problem, an efficient courier-shareability network (CSN)-based
algorithm is proposed in [6].

Definition 1. Courier-shareability network (CSN). The CSN is a directed network CSN=(V, E), where each node
vj ∈ V corresponds to an order rj. The directed edge (vj, vk) ∈ E if and only if rj and rk can be served consecutively,
i.e., tj + τjk ≤ tk.

The existence of an edge (vj, vj) in the CSN indicates that the two orders rj and rk can be served
consecutively, and a delivery plan in CSN corresponds to a sequence of orders that can be served by
a courier. Solving the DSR-Fix problem is equivalent to finding n node-disjoint paths in such a way
to maximize the cover of V in the constructed CSN [18]. The problem of finding the maximum n
node-disjoint paths cover on directed acyclic graphs can be solved efficiently by using the Hopcroft–Karp
maximum-matching algorithm [26]. Algorithm 1 describes the CSN-based DSR-Fix algorithm, in which
the Hopcroft–Karp maximum matching algorithm is shown in Algorithm 2. In Algorithm 2, Steps 1–2,
for each order rj, we create an in-order rj1 and an out-order rj2 in the bipartite graph Gβ. In Steps 3–5,
for each directed edge (rj, rk) in the CSN, we create an edge between the in-order rk1 and out-order rj2 in
the bipartite graph Gβ. Given the bipartite graph Gβ, the Hopcroft–Karp algorithm is utilized to return the
maximum matchingsM. In Algorithm 1, top n node-disjoint delivery plans correspond to top n longest
consecutive matchings. Figure 2 shows a toy example on how to construct the CSN and how the optimal
delivery path can be found by the Hopcroft–Karp maximum-matching algorithm.
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r1 r2 r3

r4 r5

(a) Courier-Shareability Network

r11 r12

r21 r22

r31 r32

r41 r42

r51 r52

(b) Maximum Matching

r1 r2 r3

r4 r5

(c) Optimal Delivery Plan

Figure 2. An illustration on how CSN works. (a) The directed edge (rj, rk) indicates that the order rk can
be finished immediately after rj; (b) the Hopcroft–Karp maximum-matching (red arrows); (c) the optimal
delivery plans r1 → r4 and r2 → r3 → r5.

Algorithm 1: CSN-based DSR-Fix (CSN-DSR-Fix).
Input : Customer Orders R.
Output : Served orders R′ ⊆ R.

1 Construct the CSN G(R, E);
2 Invoke Algorithm 2 to find top n node-disjoint delivery plans;
3 Return the served orders R′;

Algorithm 2: Hopcroft–Karp Maximum Matching Algorithm.
Input : CSN G(R, E).
Output : Order MatchingM.

1 for rj ∈ R do
2 Create an in-order rj1 and an out-order rj2 in the bipartite graph Gβ;

3 for rj, rk ∈ R do
4 if (rj, rk) ∈ E then
5 Create an edge between the in-order rj1 and out-order rk2 in Gβ;

6 Invoke Hopcroft–Karp algorithm [26] to return the maximum matchingsM.

4.2. The DSR-Fle Variant Algorithm

In this section, we formulate the DSR-Fle problem where orders have flexible drop-off time windows,
prove that the DSR-Fle problem is NP-hard, and propose an approximation algorithm for the DSR-Fle.

4.2.1. Problem Formulation

We use an integer programming (IP) to formulate the DSR-Fle problem where each order rj has
flexible drop-off time windows [te

j , tl
j]. The following decision variables are necessary:

• xij ∈ {0, 1}, set to 1 if order rj is served by the courier ai as a first order;
• ykj ∈ {0, 1}, set to 1 if order rj is served immediately after rk;
• zj ∈ {0, 1}, set to 1 if order rj is served by a courier;
• θj ∈ [te

j , tl
j], the drop-off period of order rj.
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The following IP can be used to formulate the DSR-Fle.

max ∑
rj∈R

∑
ai∈A

xij + ∑
rk ,rj∈R

ykj (1)

zj = ∑
ai∈A

xij + ∑
rk

ykj, ∀rj, (2)

∑
rj∈R

ykj ≤ zk, ∀rk, (3)

∑
rj∈R

xij ≤ 1, ∀ai, (4)


te

j ≤ θj ≤ tl
j, ∀rj,

θj − θk ≥ (te
j − tl

k) + (τkj − (te
j − tl

k))ykj, ∀rj, rk,
θj ≥ te

j + (τij − te
j )xij, ∀ai, rj.

(5)

Equation (1) is the object of maximizing the number of orders served. Constraint (2) ensures that the
order rj is served (i.e., zj = 1) if and only if a courier ai serves him as the first customer order (i.e., xij = 1)
or after another order rk (i.e., ykj = 1). Constraint (3) ensures that the order rj that can be served after the
order rk iff rk is served (i.e., zk = 1). Constraint (4) ensures that each courier can only serve one request
as the first customer order. Finally, we enforce the drop-off time window constraints in Constraint (5):
the first constraint ensures that the drop-off period θj must lie in the window [te

j , tl
j]; the second constraint

ensures that rj can be served immediately after rk iff there are long enough periods between θj and θk such
that the courier can travel from the drop-off region of rk to the pickup region of rj and deliver rj to its
drop-off region, the third constraint ensures that the courier ai can serve the order rj as the first order iff
there are long enough periods for ai to travel from his region to the pickup and drop-off regions of rj and
τij = dvai vp

j
+ dvp

j vd
j
, ∀ai, rj, where vai indicates the region where ai starts from.

Theorem 1. The DSR-Fle problem is NP-hard.

Proof. We show a reduction from the three-dimensional perfect matching problem (3DM), which is known
to be NP-hard [27]. Recall that 3DM is as follows: given three finite and disjoint sets I, J and K, each of
size n, and a subset T ⊆ I × J × K with size m ≥ n (i.e., T consists of triples (i, j, k) such that i ∈ I, j ∈ J,
and k ∈ K), the 3DM problem asks if there exists a perfect matching with a subset M ⊆ T with n triples,
such that every element in I ∪ J ∪ K occurs in exactly one triple of M.

For any 3DM instance, I = 〈I, J, K, T〉. We construct a corresponding DSR-Fle instance as follows:
for each element i ∈ I, we create an order ri with the fixed drop-off window ti. For each element j ∈ J,
we create an order rj, and, for each tuple (·, j, ·) ∈ T, we create an available drop-off time t(·, j, ·) for rj.
For each element k ∈ K, we create an order rk with the fixed drop-off window tk. For each tuple (i, j, k) ∈ T,
we create a directed edge from the order ri to the order rj, and a directed edge from rj to the order rk.
The directed edge from ri to rj indicates that it is feasible to travel from ri’s drop-off region (at the period ti)
to rj’s pickup and drop-off region before the period t(i, j, k). The edge directed from rj to rk indicates that
it is feasible to travel from rj’s drop-off region (at the period t(i, j, k)) to rk’s pickup and drop-off region
before the period tk. The region of the orders ri, rj and rk and time distance among orders can be easily
constructed to satisfy the shareability requirements. Moreover, there are n couriers in the DSR-Fle problem.
The construction can be done in the polynomial time. We will show that the DSR-Fle can serve 3n orders
iff 3DM has a perfect matching.
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The ‘if’ direction: Assume that 3DM has a perfect matching M ⊆ T with n triples. In the DSR-Fle,
for each courier, it can serve three orders ri, rj, and rk consecutively, where (i, j, k) ∈ M. For each ri and rk,
it is only served exactly once. This is because the drop-off windows of ri and rk are fixed, and, for rj, it is
only served once since element j occurs exactly in one triple of M.

The ‘only if’ direction: Assume that these n couriers can serve 3n orders in the DSR-Fle problem,
where each courier’s delivery plan is 〈ri, rj, rk〉. Then, in 3DM, the n delivery plans correspond to the n
triples (i, j, k), which is a perfect matching. This is because each element in i ∈ I, j ∈ J, and k ∈ K occurs
exactly once.

4.2.2. The Approximation Algorithm

The main idea behind the approximation algorithm is that, for the order rj, we split its flexible
windows [te

j , tl
j] into κj = tl

j− te
j + 1 virtual orders r̃j = {r̃j1, r̃j2, · · · , r̃jκj}, each virtual order r̃jh has the fixed

drop-off window te
j + h− 1, 1 ≤ h ≤ κj. For DSR-Fix with the set of virtual orders R̃ = {r̃1, r̃2, · · · , r̃m},

we can adopt Algorithm 1 to optimize the order service. Let R̃
′ ⊆ R̃ denote the set of virtual orders served

by Algorithm 1. For these virtual orders {r̃′j1, r̃
′
j2, · · · , r̃

′
jκj
} that are served in R̃

′
and belong to the same

real order rj, randomly choosing one virtual order r̃
′
jh (1 ≤ h ≤ κj) as the real order rj’s drop-off period,

i.e., te
j + h− 1. The details of the approximation algorithm are presented in Algorithm 3. In Steps 2–3,

each real order rj ∈ R is split into κj virtual orders, and the set of virtual orders is denoted by R̃. In Step 4,
Algorithm 1 is utilized to return the served orders R̃

′ ∈ R̃. Finally, in Steps 5–6, one of these virtual
orders r̃h

j that belongs to the same real order rj is chosen such that rj is finished at the drop-off period
tjh = te

j + h− 1.

Algorithm 3: Splitting-Based Approximation Algorithm for DSR-Fle (Spl-DSR-Fle).
Input : Customer Orders R.
Output : Served orders R′ ⊆ R.

1 R′ = ∅;
2 for rj ∈ R do
3 Split rj into κj = tl

j − te
j + 1 virtual orders r̃j = {r̃j1, r̃j2, · · · , r̃jκj};

4 Invoke Algorithm 1 to return the served orders R̃
′
=CSN-DSR-Fix(R̃);

5 for rj ∈ R : ∃r̃
′
jh ∈ R̃

′
do

6 R′ = R′ ∪ rj and the drop-off period of rj is te
j + h− 1;

Theorem 2. Let κ = maxrj∈R κj denote the maximum window length of orders R, then the number of orders
achieved from the Algorithm 3 at least 1

κ of the optimal value returned by Equations (1)–(5).

Proof. Let Opt denote the optimal number of orders served in DSR-Fle, Optspl denote the optimal number
of orders served in the “split” DSR-Fle variant, where each order rj is split into κj virtual orders, and Algspl
denotes the number of orders served by Algorithm 3. When no ambiguity is possible, we let Opt, Optspl and
Algspl denote the number of orders served as well the order delivery plan. In the following, we will prove

that Opt ≤ Optspl and Algspl ≥
Optspl

κ , respectively.
Opt ≤ Optspl . Let Opt = {Opt1, Opt2, · · · , Optn}, where Opti denotes the order delivery plan of the

courier ai. It should be noted that Opt is also a feasible delivery plan in the “split” DSR-Fle variant. On the
other hand, virtual orders served in Optspl might belong to the same real orders, and a feasible delivery
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plan of Optspl does not necessarily correspond to a feasible delivery plan of Opt. Therefore, we have
Opt ≤ Optspl .

Algspl ≥
Optspl

κ . Let Optspl = {Opt1
spl , Opt2

spl , · · · , Optn
spl}, where Opti

spl denotes the order delivery

plan as well as the orders served by ai in the “split” DSR-Fle. For any delivery plan Opti
spl , and any

consecutive three virtual orders r̃jo, r̃kp and r̃hq served by ai, it is feasible for ai to serve any two virtual
orders of r̃jo, r̃kp and r̃hq. This is because the triangle inequality τjokp + τkphq ≤ τjohq , where jo, kp, and hq are
the virtual orders with the drop-off period te

j + o− 1, te
k + p− 1 and te

h + q− 1, respectively. This indicates

that, for any delivery plan Opti
spl , removing any number of virtual orders does not break the shareability

of other remained virtual orders. Therefore, in Algorithm 3, for each real order rj (with κj virtual orders)
that are served in the “split” DSR-Fle variant, at least one of its virtual orders r̃jh remains. Therefore,

we have Algspl = ∑rj
1rj∈R′ ≥ ∑r̃j ∑r̃jh∈r̃j

1
r̃jh∈R̃′

κj
≥ Optspl

κ , where the function 1 f (·) returns value 1 when the

function f (·) is true; otherwise, it returns zero, R̃
′

is the set of orders served in Optspl , and R′ is the set of
orders served in Algspl .

Combining the above two conclusions, we have that
Algspl
Opt ≥

Algspl
Optspl

≥ 1
κ .

Theorem 2 generalizes the DSR-Fix variant (i.e., κ = 1) that Algorithm 1 can achieve the optimal
solution [6].

4.2.3. Improvement on the Spl-DSR-Fle Algorithm

We extend Algorithm 3 and propose an iterative algorithm to further improve system throughput.
At each iteration g, let R f ix

g denote “fixed” orders, i.e., the set of orders whose drop-off period is determined

and fixed, and R f le
g denote the “flexible” orders, i.e., the set of orders whose drop-off period is flexible within

windows [te
j , tl

j]. For each flexible order rj ∈ R f le
g , we split its flexible time windows into κj = tl

j − te
j + 1

virtual orders r̃j = {r̃j1, r̃j2, · · · , r̃jκj}, and each r̃jh has the fixed drop-off period te
j + h− 1, 1 ≤ h ≤ κj.

At each iteration g, let R̃ f le
g denote the virtual orders split from R f le

g and R̃g = R f ix
g

⋃
R̃ f le

g denote all of
the orders. Given R̃g, we construct the corresponding CSN G(R̃g, E) and invoke Algorithm 3 to return

the fixed orders R f ix
g that are served at the current iteration g. The details of the iterative DSR-Fle are

proposed in Algorithm 4. In Step 3, the set of orders R̃g is constructed, which includes the set of fixed

orders R f ix
g whose drop-off period is fixed, and the set of virtual orders R̃ f le

g split from R f le
g . In Step 4,

the CSN G = (R̃g, E) is constructed with respect to R̃g. In Step 5, Algorithm 3 is invoked to return the

fixed orders served, R f ix
g . In Step 6, the set of flexible orders R f le

g is updated by removing the fixed orders

R f ix
g whose drop-off period has been determined. The iteration terminates until there is no improvement

over previous iteration g− 1 on the number of orders served.

Lemma 1. Algorithm 4 can always converge within finite iterations.

Proof. Assume that, at the iteration g, if there is no improvement in the number of orders over that of the
previous iteration g− 1, Algorithm 4 terminates and converges. Otherwise, it will always increase at least
one order at each iteration; this is because each iteration generates a feasible solution of serving a set of
real orders. On the other hand, there are at most |R| orders to be served, thus, Algorithm 4 can always
converge within at most |R| iterations.
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Algorithm 4: Iterative Improvement over Spl-DSR-Fle (Ite-DSR-Fle).
Input : Customer orders R.
Output : Served orders R′ ⊆ R.

1 g = 0, R f ix
g = ∅, and R f le

g = R \ R f ix
g ;

2 repeat
3 g=g+1;

4 Construct orders R̃g = R f ix
g−1

⋃
R̃ f le

g−1;

5 Construct the CSN G = (R̃g, E);

6 Invoke Algorithm 3 to return the “fixed” orders R f ix
g ;

7 R f le
g = R \ R f ix

g ;

8 until |R f ix
g−1| = |R

f ix
g |;

9 Return R′ = R f ix
g .

4.3. The DSS-Fix Variant Algorithm

In this section, we formulate the DSS-Fix problem, prove the DSS-Fix problem is NP-hard, and propose
an efficient heuristic algorithm for DSS-Fix.

4.3.1. Problem Formulation and Complexity Analysis

In DSS-Fix, each order rj has the fixed drop-off time window tj, but multiple orders can be shared and
served by a courier at a time. For example, orders rj and rk with proximal pickup regions can be picked
up consecutively by a courier, and the sharing delivery plan can be vp

j → vp
k → vd

j → vp
k . We say such a

sharing plan is feasible if and only if (1) at any region, the number of orders in service is smaller than the
courier capacity c, and (2) the courier can drop-off the order rj (resp. rk) at vd

j (resp. vd
k ) no later than tj

(resp. tk), but can before tj (resp. tk) while waiting until tj (resp. tk). The DSS-Fix problem is to find the
optimal n sharing delivery plans to maximize the order service rate.

Theorem 3. The DSS-Fix problem is NP-hard.

Proof. We show a reduction from the metric Traveling Salesman Problem (TSP), which is known to be
NP-hard. Recall that a metric TSP problem is as follows: given a weighted complete graph G = (V, W),
where vi ∈ V (|V| = n) is the vertex and wij ∈ N+ is the non-negative cost associated with the edge eij
between vi and vj, the TSP asks if there exists a Hamiltonian path (i.e., a path visiting each vertex exactly
once) with a cost equal to K. For any metric TSP instance I = 〈G, K〉, we construct a DSS-Fix instance
as follows. For each vertex vi ∈ V, we create an order ri = (vi, v−, K), where vi indicates the pickup
region, v− is the created auxiliary region indicating the drop-off region of ri, and K indicates the drop-off
period. The weight of the edge wij corresponds to the time distance between the pickup regions of ri
and rj. Moreover, for each order ri, the time distance between its pickup region vi and its fixed drop-off
region v− is zero. In DSS-Fix, there is only one courier with capacity n. The courier stats from the depot
region v0 and the time distance between v0 and any other region is zero. This construction can be done in
polynomial time. We can conclude that the DSS-Fix can serve n orders within the period horizon K iff TSP
has a Hamiltonian path with cost K.
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4.3.2. The Heuristic Algorithm

The main idea behind the heuristic algorithm for DSS-Fix is that we first search these orders that can
be shared, then package the shared orders as a virtual order, and finally insert the virtual order into the
DSR-Fix CSN.

Order Sharing Search. For two orders rj and rk whose pickup (resp. drop-off) regions that are
proximal, it will be beneficial to pick up (resp. drop off) rj and rk consecutively. Imposing a bound of c
implies that at most c orders can be shared and served by a courier at a time. In the following, we consider
the case c = 2, i.e., search 2-order sharing where two orders can be served in a sharing manner.

Definition 2. 2-order sharing 〈rj, rk〉. Given two orders rj and rk with fixed time window tj and tk, and assuming
that tj ≤ tk without loss of generality, it is beneficial for serving the two orders in a sharing manner if these two
orders satisfy the following two properties: (1) it is not feasible to serve rj and rk consecutively, i.e., tj + τjk > tk,
and (2) it is feasible to execute one of the following two sharing delivery plans 〈vp

j , vp
k , vd

j , vd
k〉 and 〈vp

k , vp
j , vd

j , vd
k〉.

In particular, property (2) requires that a courier can start from certain period ts and certain region vs, and one of the
following inequations should satisfy: ts + dvsvp

j
+ dvp

j vp
k
+ dvp

k vd
j
≤ tj,

ts + dvsvp
j
+ dvp

j vp
k
+ dvp

k vd
j
+ dvd

j vd
k
≤ tk.

(6)

 ts + dvsvp
k
+ dvp

k vp
j
+ dvp

j vd
j
≤ tj,

ts + dvsvp
k
+ dvp

k vp
j
+ dvp

j vd
j
+ dvd

j vd
k
≤ tk.

(7)

Equation (6) corresponds to the sharing plan 〈vp
j , vp

k , vd
j , vd

k〉, and Equation (7) corresponds to the

sharing plan 〈vp
k , vp

j , vd
j , vd

k〉. The motivation of the property (1) is shown as follows. In DSS-Fix, for two
orders rj and rk that can be served consecutively, it does not take any advantage of sharing them by picking
them up (resp. dropping off) consecutively. This is because, with the fixed drop-off period tj and tk,
the sharing plan cannot finish rj and rk earlier, but might need the earlier pick up period. For example,
for the sharing plan 〈vp

j , vp
k , vd

j , vd
k〉, after picking up rj at vp

j , the courier needs to travel to the pick-up

region vp
k of rk and the drop-off region vd

j of rj. However, a courier can travel directly from vp
j to vd

j in the

routing plan 〈vp
j , vd

j , vp
k , vd

k〉 without sharing, which needs fewer periods to finish rj than that of the sharing
plan. For values of c > 2, there are up to c orders that can be shared and served at a time. Because of the
computational reasons, the capacity parameter c has a substantial impact on the feasibility of solving the
DSS-Fix problem. Here, we mainly consider the case c = 2. However, as we show in the experiments, even
the minimum possible number of order sharing (i.e, 2-order sharing) can provide immense benefits to
DSS-Fix variants.

Iterative DSS-Fix Algorithm. For any 2-order sharing 〈rj, rk〉, we package them as a whole and
construct two virtual orders rs

jk and rs
kj for the shared plans (if any) 〈vp

j , vp
k , vd

j , vd
k〉 and 〈vp

k , vp
j , vd

j , vd
k〉,

respectively. Let R̃s denote all of the virtual shared orders. Given the sharing orders R̃s and the real orders
R, we construct the “sharing” CSN Gs(R∪ R̃s, E). The directed edge (rj, rk) ∈ E indicates the (real/virtual)
orders rj and rk can be served consecutively. For the CSN Gs, we invoke Algorithm 2 to return the set of
served orders R

′
. Given the optimal solution R

′
that might include virtual sharing orders, the CSN can be

updated and screen out the real orders as follows.
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Definition 3. CSN Update Rule. The solution R
′

includes virtual sharing and real orders, which might involve
the same order, and the CSN Gs should be updated to delete the undesirable orders, such as

• For the virtual order rs
jk (resp. rs

kj), if it is not served in the solution R
′
, rs

jk (resp. rs
kj) will be deleted from the

CSN Gs.
• For the virtual orders rs

jk and rs
kj that belong to the same 2-order sharing 〈rj, rk〉, if they are both served in R

′
,

one of the them will be deleted from the CSN Gs.
• For the virtual order rs

jk (resp. rs
kj), if it is served in R

′
, and both of the real orders rj and rk are also served in

R
′
, rs

jk (resp. rkj) will be deleted from the CSN Gs.
• For the virtual order rs

jk (resp. rs
kj), if it is served in R

′
, however, only one of the real orders rj and rk is served

in R
′
, both rj and rk will be deleted from the CSN Gs.

After updating the CSN, Algorithm 2 is invoked again to derive the orders served in the next iteration.
The details of the iterative DSS-Fix algorithm are proposed in Algorithm 5. In Step 2, the set of virtual
sharing orders R̃s is constructed. Based on the constructed R̃s and the real orders R, the CSN graph Gs

is constructed in Step 3. Steps 4–8 are the iterative process of finding the set of orders R
′
g and updating

the CSN Gs
g at each iteration g. The iterative process terminates until there is no improvement over the

previous iteration on the number of real orders served.

Algorithm 5: Iterative Algorithm for DSS-Fix (Ite-DSS-Fix).
Input : Customer orders R.
Output : Served Orders R′ ⊆ R.

1 Initialize g = 0 and R
′
g = ∅;

2 Search the set of 2-order sharing orders R̃s;
3 Construct the CSN Gs

g = (R ∪ R̃s, E);
4 repeat
5 g = g + 1;
6 Invoke the Algorithm 2 to return the set of orders R

′
g served on Gs

g−1;

7 Update the CSN Gs
g using the CSN update rule;

8 until |R′g−1| = |R
′
g|;

9 Return R
′
g.

Lemma 2. Algorithm 5 can always converge within finite iterations.

The proof is similar to that in Lemma 1 and is omitted here for space limitation.

Lemma 3. Given the set of customer orders R, the number of orders served by the DSS-Fix algorithm
(i.e., Algorithm 5) is not less than that served by the DSR-Fix algorithm (i.e., Algorithm 1).

Proof. In DSS-Fix, the CSN Gs = (R ∪ R̃s, E) not only includes the real orders R, but also includes the
virtual shared orders R̃s. Therefore, the number of orders served in the DSR-Fix variant CSN G = (R, E)
must not be larger than that in the DSS-Fix variant CSN Gs = (R ∪ R̃s, E). Moreover, the CSN update
rule always deletes the real order rj that has been served in the virtual shared orders rs

jk (resp. rs
kj),

which will not reduce the number of orders served in G = (R, E). In other words, for each served order
rj in G = (R, E) that is not served in Gs = (R ∪ R̃s, E), there must be another one real order rk or virtual
orders rs

jk (resp. rs
kj) replacing rj in Gs = (R ∪ R̃s, E). Therefore, we have this conclusion.
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Lemma 3 theoretically guarantees the advantage of delivery sharing plan over delivery routing plan.

4.4. The DSS-Fle Variant Algorithm

On one hand, the DSS-Fle problem, where the order has flexible drop-off time windows, is a general
variant of the DSS-Fix problem. On the other hand, the DSS-Fle problem, where orders can be served in
a sharing manner, is also a general variant of the DSR-Fle problem. To solve such an NP-hard DSS-Fle
problem, we can combine the DSR-Fle variant algorithm (i.e., Algorithm 4) and the DSS-Fix variant
algorithm (i.e., Algorithm 5).

The main idea of the DSS-Fle variant algorithm is that we first employ Ite-DSR-Fle algorithm
(i.e., Algorithm 4) to return “fixed” orders whose drop-off periods are determined and fixed. Given the
“fixed” orders, we then employ the Ite-DSS-Fix algorithm (i.e., Algorithm 5) to search the order-sharing
and generate the sharing delivery plan. The details of the DSS-Fle algorithm are shown in Algorithm 6.
In Step 2, the Ite-DSR-Fle algorithm is employed to determine the fixed drop-off period of each order
(For the order whose drop-off period cannot determined, a greedy heuristic of choosing its latest drop-off
period is employed). Let R f ix denote the set of “fix” orders. In Step 3, the Ite-DSS-Fix algorithm is
employed to optimize the set of fixed orders R f ix.

Algorithm 6: The DSS-Fle Variant Algorithm (DSS-Fle).
Input : Customer orders R.
Output : Served orders R′ ⊆ R.

1 Initialize R f ix = ∅;
2 Invoke the Ite-DSR-Fle algorithm (i.e., Algorithm 4) to generate “fixed” orders R f ix with fixed

drop-off periods;
3 Invoke the Ite-DSS-Fix(R f ix) algorithm (i.e, Algorithm 5) to return the served orders R

′
;

4 Return R
′
.

Lemma 4. Algorithm 6 can always converge within finite iterations.

This proof can be derived from the convergence results of Algorithms 4 and 5.

5. Experimental Evaluation

We generate synthetic datasets to validate the performance of proposed algorithms. All computations
are performed on a 64-bit PC with 16 GB RAM and a Dual core 3.5 GHz processor. All records are averaged
over 40 instances, and each record is statistically significant at a 95% confidence level. Existing public
delivery datasets such as the New York City taxi-trip dataset (https://www1.nyc.gov/site/tlc/about/
tlc-trip-record-data.page) only includes the order’s pick-up region, drop-off region, and request time,
and does not include the flexible drop-off time windows. Thus, we use the synthetic data to validate the
proposed algorithms.

Comparison Metrics. We mainly compare the running time and the order service rate (OSR) of the
algorithms. The OSR is computed as follows: we compare the number of orders served with the total
number of orders |R|, e.g., the OSR of the algorithm Alg is computed as NoS(Alg)

|R| , where NoS(Alg) is the
number of orders served by the algorithm Alg.

5.1. Validate the Ite-DSR-Fle Variant Algorithm

In this section, we mainly focus on the DSR variant without considering order sharing and validate
the efficiency of the proposed Ite-DSR-Fle approximation algorithm.

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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Experimental Setup. Each period consists of 5 min and the horizon T = 36, which might represent
the food-delivery peak-hour at noon ranging from 10:30 a.m. to 1:30 p.m. The city network consists of
100 regions; each region has four neighbors, connected by a small-world network [28]. The traveling period
between adjacent neighbors follows U(1, 4), where U(a, b) indicates the uniform distribution between a
and b. The time distance between two regions can be computed by the shortest path. There are 200 couriers
starting routing with uniformly distributed initial regions. Customer orders are randomly generated as a
Poisson process P(λ) with a fixed arrival rate λ. The origin and destination of each order is uniformly
drawn across the regions. By setting the arrival rate of the Poisson process so that the expectation of
the total number of orders is 200, 500, 1000, respectively, these three levels of customer order demand
correspond to the low, medium, and high demands. We give all customers a constant time window around
their preferred drop-off period (that follows U(1, T)), from one to five periods.

Comparison Methods. We compare the proposed approximation Ite-DSR-Fle with the following
two benchmarks.

• The integer-programming-based optimal solution (IPopt): We use the CPLEX (version 12.6) to solve
this IPopt (i.e., Equations (1)–(5)) to return the optimal solution.

• Greedy: Each customer order rj is assigned with its latest drop-off period t∗j = tl
j as its fixed drop-off

period, based on which the CSN-DSR-Fix (i.e., Algorithm 1) is employed to return the solution.

Experiment Results. Table 2 shows the OSR and running time of these algorithms with varying order
demands and window lengths. From Table 2, we can observe that (1) the proposed Ite-DSR-Fle can perform
close to the optimal IPopt with respect to maximizing OSR. For example, in the worst scenario with high
order demand and the five periods flexible time window, Ite-DSR-Fle finishes ∼5% less OSRs than that of
the optimal IPopt. This result is consistent with the theoretical approximation of the Ite-DSR-Fle algorithm.
(2) Ite-DSR-Fle achieves nearly ∼6% more OSRs than that of the greedy heuristic in average. The potential
reason is that the orders’ drop-off periods should be coordinated rather than chosen by their latest period
independently. Considering that there are thousands of customer orders, such an improvement is desirable.
(3) Since IPopt needs to solve the IP Equations (1)–(5), the running time prevents it from scaling to large
instances. For example, in the scenario with high demand, it will take a couple of minutes (e.g., 80.4 s)
to return the routing plan. However, the Ite-DSR-Fle can generate the routing plan within about 1.4 s.
(4) The more flexible time windows, the more OSR will be achieved by the Ite-DSR-Fle. For example,
in the scenario of high order demand, the OSR of Ite-DSR-Fle(#1) is 0.435, while the OSR of Ite-DSR-Fle(#5)
increases to 0.484, where #1 and #5 indicate that the lengths of time windows are 1 and 5, respectively.
This can be explained by the fact that, the longer the time window, the more feasible routing plans can be
generated, and the more orders can be finished.

In summary, in the DSR-Fle variant, the proposed Ite-DSR-Fle can achieve nearly the optimal OSR,
while the running time is significantly reduced over the optimal solution.
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Table 2. OSR and running time on small-scale instances. To make the table clear, we omit the statistical
errors, and each cell is statistically significant at a 95% confidence level.

Time Window Demand
Order Service Rate (OSR) Runtime (Second)

IPopt Ite-DSR-Fle Greedy IPopt Ite-DSR-Fle Greedy

One period
Low 0.528 0.502 0.459 26.4 0.21 0.05

Medium 0.471 0.451 0.405 44.4 0.34 0.07
High 0.451 0.435 0.385 60.1 0.44 0.09

Three periods
Low 0.530 0.506 0.473 27.8 0.30 0.06

Medium 0.514 0.487 0.437 43.8 0.55 0.07
High 0.481 0.454 0.389 63.4 0.64 0.07

Five periods
Low 0.576 0.543 0.488 33.0 0.45 0.07

Medium 0.534 0.500 0.442 54.0 0.90 0.07
High 0.529 0.484 0.433 80.4 1.07 0.08

5.2. Validate the DSS-Fle Variant Algorithm

In this section, we will validate the DSS-Fle variant algorithm, such as the advantage of order sharing
over DSR variant algorithms, the advantage of flexible time selection mechanism over traditional fixed
time selection heuristics, and the scalability on city-scale applications.

Experimental Setup. We consider that the city-scale network consists of 1000 regions, connected
by a small-world like network, and each node has on average six neighbors. We consider that there are
1000 couriers with uniformly distributed depot regions. Each customer order has a fixed time window of
three periods around their preferred drop-off period. The other settings are similar to that in Section 5.1.

5.2.1. Validate the Advantage of Order Sharing and Scalability

Comparison Methods and Metrics. We compare the proposed DSS-Fle, Ite-DSS-Fix, Ite-DSR-Fle
and DSR-Fix algorithms on running time and OSR.

Experimental Results. Table 3 shows the OSR and running time of these algorithms with varying
customer order demands. From Table 3, we can observe that (1) the DSS-Fle can always produce the
highest OSR, which is followed by Ite-DSR-Fle, Ite-DSS-Fix, and DSR-Fix. This result is consistent with the
theoretical analysis that DSS-Fle � Ite-DSS-Fix, and Ite-DSR-Fix � DSR-Fix. This can be explained by the
fact that taking the flexible time windows and order sharing (though 2-order sharing) into consideration
is beneficial for improving OSRs. The experimental order-sharing advantage is consistent with the
theoretical results of Lemma 3. (2) For the large-scale instances with 10,000 orders, although DSS-Fle
will take about 2 min to return the delivery plans, considering its benefit of improving ∼200 orders
over DSR-Fix, DSS-Fle is still a good option for food ordering apps. In food-ordering apps, customers
are more concerned with whether their food can be dropped off in time or not, and the response time
is tolerable within several minutes [20]. (3) With the constant couriers (e.g., 1000 in this experiment),
the more customer order demands, the more number orders that can be served. For example, in the case of
2000 orders, 1140 (= 2000 × 0.572) orders are served on average, while, in the case of 10,000 orders, nearly
1720 (= 10,000 × 0.172) orders will be served. This can be explained by the fact that more customers will
generate more feasible delivery plans, thereby improving the number of orders served.
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Table 3. Order Service Rate (OSR) and running time on large-scale instances. To make the table clear,
we omit the statistical errors, and each cell is statistically significant at a 95% confidence level.

Demand
Order Service Rate (OSR) Runtime (Second)

DSS-Fle Ite-DSS-Fix Ite-DSR-Fle DSR-Fix DSS-Fle Ite-DSS-Fix Ite-DSR-Fle DSR-Fix

2000 0.572 0.554 0.563 0.544 3.20 0.38 3.02 0.36
4000 0.326 0.307 0.313 0.302 18.4 1.83 16.2 1.33
6000 0.239 0.222 0.227 0.219 44.6 4.01 43.9 3.67
8000 0.196 0.184 0.189 0.180 95.4 9.48 75.1 6.78

10,000 0.172 0.159 0.163 0.155 134.6 19.73 124.5 12.9

5.2.2. Validate the Advantage over Existing Heuristics

Comparison Methods and Metrics. We compare the proposed DSS-Fle with the following two
existing heuristics:

• Greedy: Each customer order rj is assigned with its latest drop-off period t∗j = tl
j as its fixed drop-off

period, based on which the CSN-DSR-Fix (i.e., Algorithm 1) is employed to return the solution.
• Insertion-based Heuristics (Insert-Heu): The Greedy algorithm is first employed to derive a solution

of n delivery sharing plans P = {P1, P2, · · · , Pn}. For any order rj ∈ R that is not served in P ,
a re-optimization of inserting rj into a sharing plan Pi ∈ P is elaborated. Given the delivery
plan Pi = 〈v

p
1 , vd

1, vp
h , vd

h〉 of a temporally-ordered route of pickup and drop-off regions of h orders,
the insertion heuristic attempts to insert rj pick-up region vp

j and drop-off region vp
j into these 2h

regions. A feasible insertion of rj into Pi must satisfy (1) without violating the order service in the
rest of the plan Pi, and (2) the number of on-board orders is smaller than the courier’s capacity c
(c = 2 in this experiment). There are O(l2) possible ways of insertion for each order and each plan,
where l is the number of orders. Given these n delivery plans and l orders in total, there are O(nl3)

insertion computations.

Experimental Results. Figure 3 shows the OSRs of these algorithms with varying customer order
demands. From Figure 3, we can observe that DSS-Fle can always serve the most orders, which is followed
by Insert-Heu and Greedy. This result can validate (1) the advantage of flexible drop-off time selection
mechanism (i.e., Algorithm 3) over a fixed drop-off time selection mechanism (i.e., Insert-Heu and Greedy),
and (2) the advantage of insertion mechanism (i.e., Insert-Heu) over the one-short Greedy solution on
improving OSR. Moreover, inspired by the advantage of Insert-Heu, it is interesting for the future work to
combine the proposed DSR-Fle with the insertion mechanism for the online delivery services’ applications.

In summary, the proposed DSS-Fle can maximize system throughput in the tolerable time in the
city-scale order delivery applications with thousands of couriers and customers. Moreover, the more
computation time available, the larger system throughput that will be achieved.
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6. Conclusions

This paper studies the practical DSS-Fle problem, where customer orders have flexible drop-off time
windows and can be served in a sharing manner. To address such a NP-hard problem, we first study the
special DSR-Fix variant, which can be addressed by the CSN and Hopcroft–Karp maximum matching
algorithm. By extending the DSR-Fix variant algorithm, we further propose an approximation algorithm
(i.e., Ite-DSR-Fle) for the DSR-Fle problem and a heuristic algorithm (i.e., Ite-DSS-Fix) for the DSS-Fix
problem. The Ite-DSR-Fle algorithm splits the flexible time windows into multiple fixed time windows,
and the DSR-Fix variant algorithm can then be employed to serve orders at the desirable drop-off period.
The Ite-DSS-Fix algorithm searches and inserts the sharing orders, and the DSR-Fix variant algorithm
then can be employed to generate the desirable sharing plan. Finally, using Ite-DSR-Fle to generate the
“fixed” orders and using Ite-DSS-Fix to search order sharing together yield the polynomial time DSS-Fle
algorithm for order service rate optimization. Simulation results show that the proposed DSS-Fle algorithm
is efficient both on improving order service rate and applying to city-scale scenarios with thousands of
regions and customer orders.
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