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Abstract: In modern manufacturing, the detection and prediction of machine anomalies, i.e.,
the inactive state of the machine during operation, is an important issue. Accurate inactive state
detection models for factory machines can result in increased productivity. Moreover, they can guide
engineers in implementing appropriate maintenance actions, which can prevent catastrophic failures
and minimize economic losses. In this paper, we present a novel two-step data-driven method
for the non-active detection of industry machines. First, we propose a feature extraction approach
that aims to better distinguish the pattern of the active state and non-active state of the machine by
multiple statistical analyses, such as reliability, time-domain, and frequency-domain analyses. Next,
we construct a method to detect the active and non-active status of an industrial machine by applying
various machine learning methods. The performance evaluation with a real-world dataset from the
automobile part manufacturer demonstrates the proposed method achieves high accuracy.

Keywords: statistical feature extraction; machine learning; machine non-active state

1. Introduction

In modern manufacturing, machines in factories operate continuously for 24 h a day to fulfill the
production requirements. In such cases, continuous production or continuous flow process enables
factories to manufacture, produce, or process materials without interruptions [1]. However, massive
industrial processes can be detrimental to machines. Various unstable operations, such as abnormal
events, failures, or non-active states, can occur in the machines. These non-active states can significantly
affect continuous production in the factories, incurring a significant loss to the fabricator and decreasing
production rates. Besides, constant interruptions in manufacturing make it difficult for fabricators to
fulfill their commitments to the consumers [2]. Therefore, predicting non-active states of machines in
advance is essential to reduce machine faults and increase productivity.

As industrial processes become more and more complex, there is a need to automate the detection
and prediction of unstable operations of machines as maintenance decisions need to be taken quickly
to avoid costly interruptions [3]. However, the automation of such tasks was often challenging in
the past due to the lack of sensors and data-driven technologies. On the other hand, with the rapid
development of data acquisition devices based on sensor technologies, factories now collect a massive
amount of data related to the state of the machines. We can apply various data-driven models to
analyze the sensor data and obtain meaningful insights that could be helpful in achieving automation
in detecting and predicting the unstable operations of machines [4,5]. Thus, data-driven maintenance
of machines has become the mainstream solution for solving various manufacturing issues.

Most studies on data-driven maintenance of machines in the literature are based on statistical,
machine learning, and deep learning methods. Well-known statistical analysis methods, such as
Bayesian algorithms [6] and hidden Markov models [3], have been proved to be an effective solution for
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estimating time-to-failure (TTF) and detection faults in machines. On the other hand, machine learning
methods, such as k-nearest neighbors (kNN) [7] and Artificial Neural Networks (ANN) [8], have been
actively utilized in predicting unstable operations of machines, especially in the presence of a large
amount of data. Deep learning methods, such as a dual-path recurrent neural network (RNN) [9]
and Back Propagation Neural Network (BPNN) [10], have recently shown strong performances in
detecting the early mechanical fault in various manufacturing processes.

Most of the methods mentioned above focus on detecting or predicting large-scale failures in
machine operation that can be potentially harmful but not frequent. On the other hand, there could
be various non-active states associated with machines that occur more frequently and can be equally
damaging. For example, machines may become non-active due to the supply of poor materials,
wear, disconnection, burnout, or equipment related malfunctioning in sensors, motors, and control
switches. Predicting the non-active status of machines can bring to the benefits efficient production of
manufacturing machines, such as reduction of long-term machine failures and maintenance cost, and
increasing machine lifetime and production. Thus, in this paper, we focus on predicting non-active
states of the machines using statistical feature extraction and machine learning. More specifically,
we make the following contributions in the paper:

• We propose to extract various statistical features from the raw data. We first extract so-called
reliability features using Weibull, lognormal, and exponential distributions. These distributions
are mainly used for life data analysis to estimate the lifetime of a machine. Further, we propose
a method to compute a new feature, i.e., the machine status tracking value (MSTV), which can
distinguish the active and non-active patterns of a machine more effectively. Lastly, to further
improve the accuracy of predicting non-active states of the machines, we utilize MSTV to extract
time and frequency domain features.

• After statistical features have been extracted, learning models for predicting non-active states of
the machines are constructed by combining the raw data from the sensor device and extracted
features. Specifically, we construct predictive models using state-of-the-art machine learning
methods, namely decision tree, kNN, random forests, and linear support vector machines (SVM).

• We evaluated the performance of the proposed method through extensive experiments.
In experiments, we measured the accuracy and error rate of state-of-the-art machine learning
methods in classifying the active and non-active states of the machine with 17 features and
86,400 observations. The real-world dataset was obtained by automobile part manufacturer.
The experiment results demonstrate that linear SVM achieves a 98% accuracy compared with the
other models, which can be considered as a promising result in performing predictive maintenance
of the machines.

The rest of the paper proceeds as follows. Section 2 discusses studies related to the detection and
prediction of unstable operations in machines. Section 3 describes the proposed method. Section 4
presents the performance evaluation. Section 5 concludes the paper and discusses future work.

2. Related Studies

In this section, we discuss the related studies that focus on the detection and prediction of unstable
operations in machines. We can classify these studies into three categories: (1) Studies based on
statistical analysis, (2) studies based on machine learning, and (3) studies based on deep learning.

There have been several studies that used statistical analysis for the detection and prediction
of unstable operations in machines. For example, Wu et al. [6] proposed a three-step degradation
TTF prognostic method for rolling element bearings (REBs) in an electrical machine. The three-step
degradation approach includes degradation feature extraction, degradation feature reduction, and TTF
prediction. To detect degradations during degradation feature extraction, multiple degradation
features, including statistical, intrinsic energy, and fault frequency features, were extracted. In the
degradation feature reduction step, the authors performed a feature fusion using dynamic principle
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component analysis (DPCA) and Mahalanobis distance. In the final step, the authors utilized the
exponential regression algorithm to compute the local degradation model and the empirical Bayesian
algorithm to calculate the global TTF prediction. The experimental results demonstrated that the
proposed method achieves a good performance of the TTF predictions compared with the existing
methods. Boutros and Liang [3] proposed a method for detecting and diagnosing mechanical faults in
machining processes and rotating machinery using hidden Markov models. The experiment results
with cutting tool and bearing monitoring cases demonstrate that the fault severity classification was
greater than 95%. The authors also analyzed fault localization using a new concept called location
index. The results of the analysis demonstrated that the proposed method classifies the various fault
location in bearing monitoring with an accuracy of 96%.

Machine learning techniques are efficient in analyzing a large amount of data and derive various
useful patterns. Considering that factories collect more and more data related to the machine state, we
can efficiently utilize machine learning techniques in detecting and predicting unstable operations of
machines. A similar study was carried out by Zhou et al. [7]. In this study, the authors introduced
an approach for fault detection using random projections and the RP-kNN rule for semiconductor
manufacturing processes. The authors utilized random projection, which is a type of dimension
reduction method, to maintain the pairwise distances between samples in a random subspace and
established a detection model with the kNNs algorithm. Besides, the authors illustrated PC-kNN [11]
methods in a principal component subspace (PCS) to prove that the RP-kNN was more effective at
preserving pairwise distances in the PCS. In the experiment, it was discovered that the detection model
constructed using RP-kNN performed better, with approximately 82% accuracy compared with 77% of
the PC-kNN model. Mazhar et al. [8] proposed to estimate the remaining life of used components
in consumer products with Weibull distribution and ANN. The proposed model was constructed
in two stages. In the first stage, the authors used Weibull distribution to analyze the behavior of
components for reuse. Specifically, the Weibull distribution was applied to the TTF data to assess the
mean life of the component. In the second phase, the authors developed an ANN model, a multilayer
feedforward backpropagation neural network, to analyze the degradation and condition monitoring
data. The performance evaluation with life cycle data from a washing machine demonstrates that the
proposed model achieved an accuracy of approximately 86.6%.

With the recent advances in deep learning, many researchers have proposed various data-driven
methods to detect abnormal events in a machine or provide fault prognostics for factory machines.
For example, Shenfield et al. [9] presented an intelligent real-time fault detection method to provide early
detection of developing problems under variable operating conditions. The authors proposed a novel
dual-path RNN-WDCNN to diagnose rolling element bearing faults in manufacturing. RNN-WDCNN
combines elements of RNNs [12] and convolutional neural networks (CNN) [13] to capture distant
dependencies in time series data and suppress high-frequency noise in the input signals. The authors
mentioned that RNN-WDCNN outperformed current state-of-art methods in both domain adaptation
and noise rejection tasks. Luo et al. [10] proposed a novel method for early fault detection under
time-varying conditions using a deep learning model called BPNN. A deep learning model was
constructed to automatically select the impulse responses from the vibration signals in the long-term
running of 288 days. Dynamic properties were then identified from the selected impulse responses
to detect the early mechanical fault under time-varying conditions. The authors showed that the
experimental results proved that the method was not affected by time-varying conditions and showed
considerable potential for early fault detection in manufacturing. Iqbal et al. [14] presented a novel
approach for automated Fault Detection and Isolation (FDI) based on deep learning. Consequently,
the approach predicted the future states of a system based on its previous behavior while considering
significant noise in the data. The approach can automatically learn complex real-world patterns to
identify abnormal conditions. The proposed method was shown to outperform other established FDI
methods. The authors claimed that the approach can successfully diagnose and locate multiple classes
of faults under real-time working conditions.
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3. The Proposed Method

3.1. Data Preparation

We first illustrated the raw data used to detect the non-active state of a machine. Our dataset
contained real-world information obtained from an automobile part manufacturing located in South
Korea. This factory applied the continuous flow process in which one-line batches were generated
using various machines to produce automobile parts. All the machines operated for 24 h a day. Here,
the machines were equipped with programmable logic controller (PLC) sensors that produced the data
related to the machine state. Table 1 presents a detailed description of the raw dataset.

Table 1. Detailed information of raw data gathered from PLC.

Type Description Data Type

Machine name Indicate machine name String
Date and time Indicate date and time of all events in the machine Time
Machine status Indicate machine states: Run, Wait, Stop, Manual, Offline Int

Machine state duration Duration of machine state from one state to another Int
Alarm status Alarm status: 1 = alarm triggered; 0 = alarm not triggered Binary

Alarm duration Duration of alarm Int
Continuous good product Cumulative number of good products produced Int
Continuous NG product Cumulative number of poor-quality products produced Int

From the raw data provided in Table 1, we can see that a machine was managed as one of the
following five states: Run, wait, stop, offline, and manual. The run state indicated that the current
machine was operating appropriately. The wait state showed that the current machine was waiting for
the previous machine to finish its job. These 2 states were defined as active. The stop state indicated
that the current machine was stopped, and the manual state indicated that the current machine was
operating manually. Finally, the offline state indicated that the machine was not connected to any
network such that data gathering from the machine was not achieved. These 5 states of a machine
were referred to as a machine state. Among these 5 states, we can consider run and wait as active states.
On the other hand, stop, offline, and manual were considered as non-active states. Figure 1 shows
the machine operating processes for a period of the day in the automobile manufacturer displayed
through the Web monitoring system. In the figure, green and yellow colors indicated the active state of
the machine, and red indicated non-active states of the machine.
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Figure 1. Examples of machine operating processes.

From Table 1, we can also observe that we have another type of data related to alarms that were
triggered when a machine entered into a non-active state. Specifically, the alarm signal notified the
machine operators of an abnormal situation. Besides, considering that a machine was operated to
produce certain products, we could monitor the machine state by the number of produced good and
NG products.
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3.2. Features Extraction Using Statistical Analysis

In this paper, we proposed to extract reliability features, MSTV features and time and frequency
domain features from the raw data described in Section 3.1. In the subsequent subsections, we will
describe each feature in detail.

3.2.1. Reliability Features

In this study, the reliability measures that we used for extracting features from raw data included
Weibull, lognormal, and exponential distributions. Reliability analysis was a statistical measure for
life data [15,16]. It was determined by deriving the proportion of methodical variation in a scale,
which can be performed by determining the association between the scores obtained from divergent
administrations of the scale. Therefore, if the association in reliability analysis was high, the scale
yielded consistent results and was, therefore, reliable. To compute the reliability of the machines in
a manufacturing line, 2 measures, called the time between non-active states (TBNA) and mean time
between non-active (MTBNA) states of the machines, were calculated. Figure 2 illustrates the structure
of the reliability analysis.
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Based on the TTF [17,18] mathematical formulation, we can define the TBNA state, which is the
elapsed time between the non-active states of the machines, and MTBNA as follows.

TBNA = start o f non− active time− start o f active time (1)

MTBNA =

∑
TBNA

number o f non− active states
(2)
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Once TBNA and MTBNA are calculated, we extract features from raw data using Weibull,
lognormal, and exponential distributions. We first obtained the Weibull distribution, which was one
of the most widely used lifetime data analyses for reliability engineering [19]. It can flexibly model
various types of lifetime distributions [20]. In this paper, we used a 2-parameter Weibull distribution,
which had scale and shape parameters. Here, the scale parameter was denoted as η, and the shape
parameter was denoted as β [21]. When β was less than 1, the distribution showed a decreasing failure
rate over time [22]. When β was 1, the distribution had a constant failure rate. When the β parameter
was greater than 1, the failure rate increased over time [21]. We estimated the appropriate scale and
shape parameters of the Weibull distribution by using the TBNA with maximum likelihood estimation
(MLE) method. More specifically, the MLE formula [23] for determining the parameters of the Weibull
distribution is written as follows:

β =
[∑n

i=1 ti ln(ti)∑n
i=1 ti

−

∑n
i=1 ln(ti)

n

]−1

η =

(
1
n

n∑
i=1

ti

) 1
β

(3)

In Equation (3), ti was TBNA calculated in Equation (1), and i and n are the numbers of non-zero
data points. Once the shape parameter β and scale parameter η of the Weibull distribution was
calculated using Equation (3), we could estimate the non-active state rate of the machine using the
probability density function of the Weibull as follows:

f (t) =
β

η

(
t
η

)β−1

e−(t/η)
β

(4)

Figure 3 illustrates the fitting curve result of the Weibull distribution with 2 parameters set as
β = 0.71, eta η = 144.02, and the mean life of the non-active state was set as 179.6, which means that
the non-active state of the machine will occur when the machine was operating for approximately
179 min. In Figure 3, the x-axis indicated the elapsed time (in minutes) from which the machine was
active, and the y-axis indicated the probability of the non-active state of the machine. From the figure,
we can observe the relationship between active and non-active states of the machine. For example,
when the probability of non-activation of a facility was 0.8, it means that about 280 min have passed
from the time it was activated.
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Further, we obtained the lognormal distribution, which was a constant probability distribution of
random variables [24]. This distribution was also widely used to model the lives of units whose failure
modes were of the fatigue–stress nature [25]. Additionally, the lognormal distribution complements



Appl. Sci. 2020, 10, 7413 7 of 18

the Weibull distribution well for modeling the reliability of a machine. The formula of the lognormal
distribution is written as follows:

f (t′) =
1

σ′
√

2π
e−

1
2 (

t′−µ′

σ′ )
2

, (5)

In Equation (5), t′ is ln(t), where t is TBNA calculated in Equation (1), µ′ the logarithm of MTBN
calculated in Equation (2), and σ′ the standard deviation of the natural logarithms of TBNA.

Figure 4 shows the result of lognormal distribution probability. In Figure 4, the x-axis indicated the
elapsed time (in minutes) from which the machine was active, and the y-axis indicated the probability of
the non-active state of the machine obtained using the lognormal distribution in Equation (5). From the
figure, we can observe that a machine enters active and non-active states over time. Here, if the value
on the y-axis was 1, the machine was activated, and if the value was close to 0.0, the probability of
non-activation increased. In other words, we can see that lognormal distribution is used to describe
the probability of a specific event occurring.
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Similar to the Weibull and lognormal distributions, the exponential distribution was typically
used in reliability engineering and exhibited a simple distribution [26]. The exponential distribution
was utilized to model the behavior of units that have a constant failure rate. The primary probability
density function for the exponential distribution is expressed as follows.

f (t) = λe−λt =
1
m

e−
1
m t, t ≥ 0, λ > 0, m > 0, (6)

In Equation (6), λ = 1/m is the constant rate in the non-active state per unit of measurement,
m the mean TBNA, and t the TBNA during the machine operation.

Figure 5 illustrates the result of the exponential distribution. In Figure 5, the x-axis indicated
the elapsed time (in minutes) from which the machine was active, and the y-axis indicated the
probability of a non-active state of the machine obtained using exponential distribution in Equation (6).
Similar to Figure 4, Figure 5 demonstrated that a machine entered active and non-active states over
time. Unlike lognormal distributions, the exponential distribution model the time elapsed between
events and represented the amount of time until the machine enters into a non-active state.
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In feature extraction using reliability analysis, we extracted 4 features, including TBNA, Weibull
probability, lognormal probability, and exponential probability. These 4 features will be used later to
model the prediction of the non-active state of machines. Table 2 shows the 4 elements extracted from
the reliability analysis.

Table 2. Reliability Feature Extraction.

Feature Description Data Type

Time Between Non-active States Time elapsed between non-active states Int
Weibull Distribution

Probability of non-active states occurring during machine operation
Float

Lognormal Distribution Float
Exponential Distribution Float

3.2.2. MSTV Features

To distinguish the active and non-active patterns of the machine more effectively, we proposed a
method to combine various essential factors from the raw dataset related, i.e., the alarm duration (AD),
machine state duration (MSD), continuous good product (CGP), and continuous NG product (CNP) to
extract new features that can learn the machine’s behavior during operation. We call these features an
MSTV. Figure 6 shows the architecture of the proposed feature extraction.
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Kang et al. [27] proposed the detection of significant arms using outlier detection algorithms,
which indicated the importance of alarm for tracking the behavior of a machine, particularly during
the occurrence of an unusual event. Hence, in this experiment, we retrieved the AD during operation
as a combined feature for extracting the new useful feature. Meanwhile, the machine duration (MD)
provided beneficial information for verifying the behavior of the machine because it indicated the time
required by the machine to change from one state to another. Recall from Section 3.1 that a machine
can have the following 5 states: Run, wait, stop, offline, and manual, among which run and wait were
considered as active states, and stop, offline and manual were considered as non-active states. The CGP
means the number of high-quality products produced. The CNP was the quantity of poor-quality
products produced.

Based on these 4 features, we define MSTV as follows:

MSTV = Σ(AD×w1 + MSD×w2 + CGP×w3 + CNP×w4) ×
1
n

, (7)

In Equation (7), w1, w2, w3, and w4 are weight values assigned to each factor, respectively. Here,
the weight values indicate the importance of the factors that influence the non-active state of the
machines. In this case, the importance was determined through discussions with the operators in the
factory, and the most important factors were determined as the MSD, followed by the AD. Next was
the number of normal products continuously and the number of abnormal products continuously
produced by the machine. In consideration of these factors, in this paper, weights were given as 2, 3,
1.5, and 1, respectively.

Figure 7 shows the results of MSTV feature extraction. In Figure 7, the x-axis indicated the elapsed
time (in minutes) from which the machine was active, and the y-axis indicated the probability of a
non-active state of the machine obtained using MSTV in Equation (7). From the figure, we can observe
that if the value was close to 0 (indicated in red rectangles), the probability of non-activation increased.
On the other hand, we can see that the active state (green rectangle) occurred as the probability curve of
MSTV goes higher. As shown in Figure 7, after employing the proposed feature extraction approach to
extract the MSTV, the patterns of the active and non-active states of the machine can be distinguished
well by combining 4 indispensable elements from the raw dataset to extract new utilitarian features.
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3.2.3. Time and Frequency Domain Features

Once MSTV features were obtained using Equation (7), it was applied to the time and frequency
domain analyses to extract the other 8 features to enhance the accuracy of our non-active state prediction
model. The time-domain analysis employed mathematical functions to analyze physical signals or
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time-series data with respect to time [28]. Additionally, the time-domain represented the change of
a signal with time. Frequency analysis was the statistical method used for measuring the signals
with respect to frequency. Frequency analysis typically involved the central tendency, dispersion,
and percentiles [29,30]. Figure 8 shows the structure of feature extraction in the time-frequency and
domain frequency features.
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In the time-domain analysis, several statistical features were used that encompassed a wide range
of popular time-domain analyses [6]. These statistical features included the mean value (MV), root
mean square value (RMSV), square mean root value (SMRV), kurtosis coefficient (KC), shape factor
(SF), and skewness coefficient (SC), which will be utilized to extract the new features from the MSTV.
In addition, the root mean square frequency (RMSF) and root variance frequency (RVF), which are
obtained from the frequency-domain analysis, will be used to extract two other features from the MSTV
data. The details of 8 statistical methods for extracting features from the MSTV are listed in Table 3.

Table 3. Eight Statistical Features of MSTV.

Features Equation Data Type

Time-Domain Analysis

Mean Value Xmv = 1
N

N∑
i=1

X(ti)
Float

Root-mean-square Value
Xrmsv =

√
1
N

N∑
i=1

X2(ti)
Float

Square-mean-root Value
Xsmrv =

[
1
N

N∑
i=1

√∣∣∣X(ti)
∣∣∣]2 Float

Skewness Coefficient
Xsc =

1
Xrmsv3

N∑
i=1

(X(ti) −Xmv)
3 Float

Kurtosis Coefficient
Xkc =

1
Xrmsv4

N∑
i=1

(X(ti) −Xmv)
4 Float

Shape Factor Xs f =
Xrmsv

1
N

∑N
i=1|X(ti)|

Float
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Table 3. Cont.

Features Equation Data Type

Frequency-Domain Analysis

Root Mean Square Frequency
Xrms f =

√ ∑N
i=2 X2(ti)

4π2
∑N

i=1 X2(ti)

Float

Root Variance Frequency
Xrv f =

√ ∑N
i=2 X2(ti)

4π2
∑N

i=1 X2(ti)
−

( ∑N
i=1 X2(ti)

2π
∑N

i=1 X2(ti)

)2 Float

3.3. Data Normalization

Data normalization was one of the essential preprocessing steps for many machine learning
algorithms. Raw data and extracted features often have different scales. In other words, the variation
between features can be inconsistent, which may result in many problems during data training, including
lowering accuracy and increasing the training time. The normalization process for data contributed
positively to preparing data that were suitable for training [31]. Moreover, data normalization can
scale the data in the same range of values for each input feature to minimize bias in the input data.
Furthermore, data normalization can also accelerate the training time by starting the training operation
for each feature within the same scale. Various types of data normalization methods can be employed
to reduce the bias of the training data, such as the Min-Max Normalization, Z-Score Normalization,
Sigmoid Normalization, and others.

In our case, after feature extraction using statistical analysis described in Section 3.2, 17 input
features were obtained, including raw data from the sensor device. The variations between the input
features were large and diverse, which may cause problems in the training phase. Thus, we needed to
normalize the data. We used Min-Max Normalization that rescaled the features from one range of
values to a new range of values. Typically, the features were rescaled within a range of 0 to 1 or from
−1 to 1. Table 4 shows the application Min-Max Normalization on a sample training dataset, which is
calculated using the following formula:

x′ = (xmax − xmin) ×
(xi − xmin)

xmax − xmin
+ xmin (8)

In Equation (8), i is ith element of the dataset.
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Table 4. Sample training dataset.

No MSD CGP CNP TBNA Weibull
Probability

Exponential
Probability

Lognormal
Probability MSTV MV RMSV SMRV SC KC SF RMSF RVF

1 0.396938 0.603901 0.073171 0.396938 0.711354 0.603363 0.999969 0.437343 0.437343 1.91286 ×
10−1 0.437343 8.321303 ×

10−15
1.686249 ×

10−19
8.364994 ×

10−2 0.046755 9.948226 ×
10−3

2 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

3 0.234286 0.342357 0.024390 0.234322 0.451382 0.332008 0.999919 0.256797 0.256797 6.594449 ×
10−2 0.256797 4.110406 ×

10−14
1.418555 ×

10−18
1.693450 ×

10−2 0.034228 2.510931 ×
10−3

4 0.000110 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000080 0.000080 6.361941 ×
10−9 0.000080 1.371742 ×

10−3
1.524158 ×

10−4
5.074397 ×

10−13 0.000014 4.571769 ×
10−11

5 0.460787 0.421576 0.032520 0.460787 0.881584 0.823336 0.999987 0.482576 0.482576 2.328801 ×
10−1 0.482576 6.193819 ×

10−15
1.137482 ×

10−19
1.123824 ×

10−1 0.215370 5.579461 ×
10−2

6 0.026436 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.012762 0.012762 1.628657 ×
10−4 0.012762 3.348980 ×

10−10
2.325680 ×

10−13
2.078473 ×

10−6 0.000573 1.038138 ×
10−7

7 0.001248 0.251990 0.056911 0.001248 0.005749 0.003356 0.999202 0.023893 0.023893 5.708795 ×
10−4 0.023893 5.103174 ×

10−11
1.892869 ×

10−14
1.364007 ×

10−5 0.003060 1.943214 ×
10−6

8 0.078352 0.122611 0.000000 0.078389 0.155148 0.097674 0.999810 0.086568 0.086568 7.494039 ×
10−3 0.086568 1.072959 ×

10−12
1.098443 ×

10−16
6.487448 ×

10−4 0.000437 3.645383 ×
10−6

9 0.208805 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.151202 0.151202 2.286197 ×
10−2 0.151202 2.013662 ×

10−13
1.180272 ×

10−17
3.456769 ×

10−3 0.093885 2.387736 ×
10−3

10 0.208805 0.289809 0.024390 0.176494 0.395984 0.282752 0.999915 0.196320 0.196320 3.854167 ×
10−2 0.196320 9.199435 ×

10−14
4.152869 ×

10−18
7.566513 ×

10−3 0.043935 1.883721 ×
10−3

11 0.176494 0.648487 0.024390 0.045932 0.180633 0.115217 0.999711 0.091531 0.091531 8.377937 ×
10−3 0.091531 9.077188 ×

10−13
8.788911 ×

10−17
7.668416 ×

10−4 0.010724 9.994741 ×
10−5

12 0.034880 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

13 0.009289 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.006727 0.006727 4.524683 ×
10−5 0.006727 2.287045 ×

10−9
3.013234 ×

10−12
3.043563 ×

10−7 0.002244 1.127246 ×
10−7

14 0.017367 0.000000 0.000000 0.017403 0.938259 0.905281 0.999816 0.016768 0.016768 2.811557 ×
10−4 0.016768 1.476511 ×

10−10
7.803968 ×

10−14
4.714334 ×

10−6 0.004492 1.404966 ×
10−6

15 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
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3.4. Model Training

Once statistical features were extracted and data normalized, learning models for predicting
non-active states of the machines were constructed by combining the raw data from the sensor device
and extracted features. Considering that we deal with a dataset that contains active and non-active
states, we can formulate the predicting non-active states of machines as a classification problem. Thus,
we constructed predictive models using the following state-of-the-art machine learning methods
suitable for classification: Decision tree, kNN, random forest, and linear SVM.

A decision tree is one of the most popular methods used for classification. The decision tree
predicts the class of a target feature by producing simple decision rules inferred from the data [32].
In the context of the proposed method, these decision rules enabled us to understand and interpret
non-active states of machines easily. kNN classification was one of the most fundamental and simple
classification methods. It classifies the class of a target feature by using the distance between a test
sample and the specified training samples [33]. kNN is suitable for datasets with numeric values.
Thus, it can be easily adapted for our dataset as it contains numeric values obtained through statistical
analysis. Breiman [34] introduced the random forest method, which was a combination of tree
predictors. In other words, a random forest algorithm creates a decision tree on data samples, gets the
prediction from each of them, and finally selects the best solution. Despite its complexity, the random
forest algorithm achieves high accuracy because it creates multiple trees and enables us to choose a
tree with the highest accuracy. Considering that predicting the non-active status of machines with high
accuracy can bring benefits to the efficient production of manufacturing machines, we can efficiently
utilize the random forest algorithm to solve our problem. SVM was another classification method
that was widely used for the analysis of a large amount of data. One of the main advantages of
SVM was that it was effective in high dimensional spaces. In the case of our dataset, we obtained 17
input features, including raw data from the sensor device. Considering that the proposed dataset was
relatively high dimensional, we can benefit from using SVM for classifying the non-active state of the
machines. Table 5 demonstrate the advantages and disadvantage of classification algorithm used in
this study.

Table 5. The pros and cons of classification methods.

Method Pros Cons

Decision Tree
• Simple to understand and to interpret • Easy overfitting.
• Requires little data preparation • The greedy algorithm
• Handle numerical and categorical data • Can be unstable

KNN
• Simple to understand and to interpret • A bit expensive algorithm
• Useful for non-linear data • High memory storage required.
• A versatile algorithm • Very sensitive

Random Forest
• Overcomes the problem of overfitting • Complexity
• Very flexible •More computational resources are

required• Less variance than single decision tree

Linear SVM
• Effective in high dimensional spaces. • Easy to overfitting
•Memory efficient • Do not directly provide probability

estimates• Versatile

4. Performance Evaluation

4.1. Experimental Setup

The methods and techniques to select the appropriate operating pattern subject to the optimal
value of power per product quantity are described herein. In addition, to obtain the experimental
results, we used a computer with a CPU Intel® Core™ i7-6700 3.40 GHz, 32 GB of RAM, NVIDIA
GeForce 9800 GT graphics card, Windows 10 operating system, and an integrated development
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environment Jupyter notebook for Python and IntelliJ for Java. Moreover, the Maria database was
used to store a large amount of data.

4.2. Hyperparameter of Competing Methods

Recall from Section 3.4 that we constructed predictive models using a decision tree, kNN, random
forest, and linear SVM. Table 6 demonstrates a detailed description of each hyperparameter of
competing methods. Various combinations of the parameters were applied in the experiments, and the
most optimum set was selected. First, the prediction of the non-active state of machines with a
decision tree was performed using the Gini impurity. Further, the kNN model was constructed using
the Minkowski distance to compute the distance between an observation data point and its nearest
neighbors with k = 5. Here, we tested various combinations of k and selected as k = 5 because it produced
the highest accuracy. Moreover, utilizing the advantage of the bagging method, the random forest was
developed using the Gini impurity. Finally, the radial basis function, a kernel SVM, was employed to
map the data into a high-dimensional space. Here, the C parameter, which controls the penalty of the
data points outside the margin, was set to 10. Similar to the k parameter of kNN, we tested various
combinations of C parameter and selected as C = 10 as it produced the highest accuracy.

Table 6. The hyperparameters of competing methods.

Algorithm Parameters

Decision Tree

class_weight None
criterion gini

max_depth None
max_features None

max_leaf_nodes None
min_impurity_decrease 0.0

min_impurity_split None
min_samples_leaf 1
min_samples_split 2

min_weight_fraction_leaf 0.0
presort False

random_state None
splitter best

KNN

algorithm auto
leaf_size 30
metric minkowski

metric_params None
n_jobs None

n_neighbors 5
p 2

weights uniform

Random Forests

class_weight None
criterion gini

max_depth None
max_features None

max_leaf_nodes None
min_impurity_decrease 0.0

min_impurity_split None
min_samples_leaf 1
min_samples_split 2

min_weight_fraction_leaf 0.0
presort False

random_state None
splitter best
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Table 6. Cont.

Algorithm Parameters

Linear SVM

C 10
class_weight None

dual True
fit_intercept True

intercept_scaling 1
loss squared_hinge

max_iter 1000
multi_class ovr

penalty l2
random_state None

tol 0.0001
verbose 0

4.3. Evaluation Metrics

The four machine learning methods were validated based on the root mean square error (RMSE),
precision and recall scores, and F1 scores.

We first describe the RMSE. The RMSE computes the variance between values predicted by a
hypothetical model and the real values. In other words, it measures the standard-of-fit between the
actual data and the predicted model. It is expressed as follows:

RMSE =

√∑n
i=1(ŷi − yi)

2

n
, (9)

In Equation (9), ŷi is the predicted variable, yi the actual variable, and n the number of observations.
The RMSE is always non-negative. In general, a lower RMSE is better.

Precision, recall, and F1 score are measurements to check the accuracy of training models.
Specifically, precision is a measure of result relevancy, whereas recall represents the degree to which
many genuinely relevant results are returned. Meanwhile, the F1 score is calculated using the values
obtained from precision and recall. Precision, recall, and F1 score are expressed as follows:

Precision =
∑n

i=1 TP/(TP+FP)
n

Recall =
∑n

i=1 TP/(TP+FN)

n

F1 score = TP
TP+ 1

2 (FP+FN)

(10)

In Equation (10), TP, FP, and FN indicate true positive, false positive, and false negative,
respectively; n represents the total amount of observation data.

4.4. Experimental Results

Table 7 presents the experimental results. Here, for the training dataset, we used 86,400 samples,
where 73,019 active states and 13,381 non-active states were detected.

Table 7. Model Comparison Result.

Model Precision Recall F1 Score Observations RMSE

Decision tree 92% 75% 83% 86,400 0.3478
KNN 93% 95% 94% 86,400 0.2085

Random forest 96% 85% 90% 86,400 0.1813
Linear SVM 98% 99% 98% 86,400 0.0677
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From the table, we can observe that linear SVM achieved 98% accuracy in terms of F1 score in the
classification of non-active states of machines, followed by kNN, random forest, and decision tree,
which were only 94%, 90%, and 83%, respectively. We can also observe from the table that linear SVM
also achieved the lowest error rate (i.e., 0.0677) compared with other methods. Linear SVM used two
hyperplanes that separated the observations linearly, thus that there were no observations between
them. Linear SVM performed better than other methods in our experiments as the dataset has been
constructed using features that are suitable for creating linearly-separable observations. On the other
hand, the random forest also performed well, which resulted in accuracy close to SVM in terms of
precision. Random forest is a well-known knowledge-based ensemble method that overcomes the
overfitting problem as well as errors due to bias in the decision tree and, therefore, yields high accuracy.
As kNN is not a knowledge-based ensemble technique like the random forest, it achieves marginally
less accurate results but still outperforms the decision tree in terms of precision, recall, and F1 score.

Figure 8 demonstrates the visualized result of SVM. In Figure 9a,b, we can see machine states for
a single day. Here, the blue line indicates the actual machine state (in every second), and the red line
indicates predicted machine states (in every second) using linear SVM. From the figures, it is clear that
the prediction by linear SVM follows the actual machine state well. On the other hand, the result also
suggests that there were some errors (e.g., approximately at 02:00, 04:00, or 05:30) in the prediction
process. However, a closer look for these errors indicated that wrongly predicted observations were
short-term (a matter of seconds) and, therefore, were insignificant to the overall prediction of non-active
state predictions.
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5. Conclusions

In this paper, a combination of various statistical methods and machine learning have been
proposed to predict the active and non-active states of the machine. In this approach, reliability
analysis, the proposed feature extraction method MSTV, as well as time- and frequency-domain
analyses, were used to extract features from a raw dataset. Hence, 17 useful features were obtained in
the extraction phase, including Weibull, lognormal, and exponential probability distributions, and the
proposed feature extraction the MV, RMSV, SMRV, KC, SF, SC, which will be utilized to extract the new
features from the MSTV. In addition, RMSF and RVF. Furthermore, after normalization, we used to
train four types of machine learning, i.e., the decision tree, kNN, random forest, and a linear SVM
model to detect the active and non-active states of the machine. According to the experimental results,
the linear SVM model’s predicted result indicated a 98% accuracy rate compared with the actual value;
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this demonstrated that the model was highly accurate and, therefore, can be utilized to reduce machine
faults and increase productivity.

Even though the performance of the non-active state detection model was satisfactory with high
accuracy, the statistical method to extract the train features was conservative, and the detection model
could not solve all the issues encountered in manufacturing. Therefore, in the future, we plan to utilize
more statistical methods such as the Hilbert–Huang Transform or the fast Fourier transform along
with the proposed approach to extract more valuable features and develop a promising non-active
state prediction model. Finally, we will attempt to create a user-friendly interface for displaying the
results in a web application platform.
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