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Abstract: Wireless devices, such as smartphones, tablets, and laptops, are intended to be used in
the vicinity of the human body. When an antenna is placed close to a lossy medium, near-field
interactions may modify the electromagnetic field distribution. Here, we analyze analytically and
numerically the impact of antenna/human body interactions on the transmitted power density (TPD)
at 60 GHz using a skin-equivalent model. To this end, several scenarios of increasing complexity
are considered: plane-wave illumination, equivalent source, and patch antenna arrays. Our results
demonstrate that, for all considered scenarios, the presence of the body in the vicinity of a source
results in an increase in the average TPD. The local TPD enhancement due to the body presence close
to a patch antenna array reaches 95.5% for an adult (dry skin). The variations are higher for wet
skin (up to 98.25%) and for children (up to 103.3%). Both absolute value and spatial distribution of
TPD are altered by the antenna/body coupling. These results suggest that the exact distribution of
TPD cannot be retrieved from measurements of the incident power density in free-space in absence
of the body. Therefore, for accurate measurements of the absorbed and epithelial power density
(metrics used as the main dosimetric quantities at frequencies > 6 GHz), it is important to perform
measurements under conditions where the wireless device under test is perturbed in the same way as
by the presence of the human body in realistic use case scenarios.

Keywords: exposure assessment; millimeter waves; antennas; near-field interactions; dosimetry;
power density

1. Introduction

The increasing need for high data rate mobile communications, mainly driven by video streaming
and cloud computing, has led to fast development of heterogeneous fifth-generation (5G) cellular
mobile networks expected to exploit the lower part of the millimeter-wave (mmW) band. In particular,
the 60-GHz band has been identified as an attractive solution for radio access and backhauling in
the future mmW systems [1]. The deployment of mmW small cells will allow for larger channel
bandwidth, higher data rates, secure short-range communications, low interference with adjacent cells,
and compact systems [2–5].

Wireless devices, such as mobile phones, tablets, and laptops are intended to be used in the
vicinity of the human body (e.g., phone call or browsing scenarios), and they should comply with
the exposure limits. Below 6 GHz, the specific absorption rate (SAR) is used as the main dosimetric
quantity [6,7]. In the 6–300 GHz range, the electromagnetic energy is deposited predominantly in
superficial tissues (the penetration depth is approximately 0.5 mm at 60 GHz [8–11]). As a consequence,
the International Commission on Non-Ionizing Radiation Protection (ICNIRP) and the Institute of
Electrical and Electronics Engineering (IEEE) recommend, respectively, the absorbed power density
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and epithelial power density as the main dosimetric quantities. Both the ICNIRP and IEEE set the
limits to 10 mW/cm2 for occupational environments (referred to as restricted environments in the
IEEE standard), and 2 mW/cm2 for the general public (referred to as unrestricted environments in the
IEEE standard). Above 6 GHz, the power density is to be averaged over 4 cm2 and 6 min. Moreover,
from 30 to 300 GHz, the power density is to be averaged over 1 cm2 and must not exceed two times the
exposure limit for 4 cm2. The existing dosimetry systems [12–14] are designed to measure the incident
power density in free space close to a wireless device under test. In [12], the incident power density is
obtained from the measurement of the magnitude and polarization of the E-field, whereas in [13] it is
determined from the measurement of both the E- and H-field using the two-probe method. Both [12]
and [13] use field probes from 6 to 110 GHz allowing for measurements down to 2 mm and 0.5 mm
from the device under test, respectively. The system presented in [14] uses a multi-probe technology
combined with switching networks for spherical near-field measurements in the 18–50 GHz range
to retrieve the incident power density. When an antenna is placed in the vicinity of a lossy medium,
such as human skin, electromagnetic contrast at the air/skin interface results in the appearance of
scattered field and near field interactions, which modify the field impinging the human body compared
to the free-space radiation [15,16]. Hence, in free-space measurements of the incident power density,
variations of the power density due to the coupling of a wireless device with the human body are not
taken into account. This coupling may impact the power absorption in the human body as well as
resulting heating [17].

Various aspects related to the interactions of mmWs with the human body have been reviewed
in the literature. The study performed in [18] for a terminal with a 60-GHz antenna module for
several representative human body exposure scenarios, showed that both hand and head, located in
the antenna near-field region, significantly affect the antenna reflection coefficient, radiation pattern,
and efficiency. The alteration of the antenna radiation characteristics by the human body in the
near-field may therefore affect the total field impinging the body. At lower microwave frequencies (i.e.,
900 and 1900 MHz), studies performed to assess the influence of the source/phantom interactions on the
transmitted field, demonstrated that the electric field may be significantly modified depending on the
position of the antenna in respect to the phantom (decrease down to 25% and enhancement up to two
times of the electric field amplitude at 900-MHz for a dipole and mobile terminal, respectively) [15,16].
On the other hand, a study conducted mainly at 24 GHz, with some results at 60 GHz, showed that the
source/body interaction is relatively weak (enhancement by 10% of the squared E-field for a dipole
array with four elements at 60 GHz) [19]; however, only electrically small antennas were investigated
in that study. The impact on the transmitted to the body field is expected to be higher for wireless
devices equipped with larger antennas (e.g., patch antenna arrays).

The main purpose of this study is to analyze the impact of the antenna/human body interactions
in the near-field on the transmitted power density (TPD) at 60 GHz. For the first time, the fundamental
limits in terms of enhancement and decrease in the TPD are investigated. Sources of increasing
complexity are compared, including plane waves with and without free-space losses, antenna-equivalent
sources, and patch antenna arrays. For antenna arrays, the role of the directivity and ground plane
dimensions are also investigated.

2. Materials and Methods

We define here the exposure scenarios considered in this study. Then, the analytical and numerical
methods used for exposure assessment are presented.

2.1. Exposure Scenarios

To analyze variations of TPD in the skin-equivalent model due to the presence of a radiating
structure, seven scenarios of increasing complexity are considered (Figure 1). Scenarios 1–4 are
considered to determine the fundamental limits of TPD variations for a plane-wave excitation.
In scenarios 5 and 6, we model the radiation pattern of antennas neglecting the impact of the phantom
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and a perfect electric conductor (PEC) on the antenna performances. Finally, antennas placed close to
the skin-equivalent model are considered in scenario 7. These scenarios are detailed hereafter.

• Scenario 1: Plane-wave incident from free space onto a semi-infinite flat skin-equivalent model
(Figure 1a).

Normal incidence is considered to represent the worst-case exposure scenario with maximum
TPD [20]. Due to a shallow penetration depth at mmWs (<1 mm), the interaction with the human
body is mainly limited to skin. As a consequence, a homogenous skin-equivalent layer is used as
a model [21,22]. The dielectric properties of skin-equivalent model are those of dry skin at 60 GHz
(ε = 7.98− j10.90); they were extracted from [23]. For completeness, we also provide in the paper the
main results for a wet skin model (ε = 10.22− j11.83 [23]).

• Scenario 2: Scenario 1 adding a perfect electric conductor (PEC) parallel to the skin model
(Figure 1b).
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Figure 1. Schematic representation of considered exposure scenarios: (a) scenario 1; (b) scenario 2;
(c) scenario 3; (d) scenario 4; (e) scenario 5; (f) scenario 6; (g) scenario 7. PEC: perfect electric conductor.

The total transmitted field (ETotal, TPDTotal) is equal to the superposition of the transmitted field
from direct incidence (EDirect, TPDDirect) and the scattered field resulting from multiple reflections at
the PEC/skin-model interface es (ER, TPDR).

• Scenario 3: Scenario 1 with free-space losses (i.e., the amplitude of the plane-wave is attenuated in
free space) (Figure 1c).

The amplitude of the electric field radiated by an infinitesimal dipole decreases as 1/d in the
far-field, where d is the distance between the source and the observation point. Hence, we assume
in this scenario that the amplitude of the incident E-field decreases with an attenuation function
f(d) = 1/d.

• Scenario 4: Scenario 2 with free-space losses (Figure 1d).
• Scenario 5: Scenario 1 with an antenna equivalent source replacing the plane-wave illumination

(Figure 1e).

The antenna equivalent source is defined as a combination of equivalent electric and magnetic
currents flowing on a closed surface surrounding the antenna (dashed line in Figure 1e) generating the
same electromagnetic field as the antenna in free space.

• Scenario 6: Scenario 2 with the antenna equivalent source replacing the plane-wave illumination
(Figure 1f).
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• Scenario 7: Realistic antennas placed in the vicinity of the skin model (Figure 1g).

The source main beam is directed towards the phantom representing the worst-case exposure
scenario. Several sources have been considered: single patch antenna (SPA) and patch antenna array
(PAA) with 4, 8, or 16 (2 × 2 PAA, 2 × 4 PAA, and 4 × 4 PAA, respectively) radiating elements, inspired
from [10,24] (Figures 2 and 3) and matched to 50 Ω in free-space at 60 GHz. All results are provided
for an antenna input power of 10 mW.Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 15 
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(c) 2 × 4 patch antenna array (2 × 4 PAA); (d) 4 × 4 patch antenna array (4 × 4 PAA). Dimensions are
in mm.
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2.2. Analytical Method: Plane Wave Illumination

The problem of a normally-incident plane wave (scenarios 1–4) at a planar interface between free
space and a lossy region representing skin was solved analytically in [25]. Without loss, the electric
field is given by:

Einc = E0e−jk0d x̂ , (1)

where E0 is the amplitude of the electric field, k0 is the free space wavenumber, and d is the normal
distance between the plane-wave source and skin model interface. Assuming that the plane wave is
attenuated in free space, its E-field vector is given by:

E′inc = E0e−jk0df(d) x̂ , (2)
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where f(d) is an attenuation function. The transmitted E-field vector (Etr) at the phantom interface is
therefore expressed as [25] (Appendix A):

Scenario 1 :
Etr = T1Einc , (3)

Scenario 2:
Etr = T1

1
1 + e−j2dk0R1

Einc , (4)

Scenario 3:
Etr = T1E′inc , (5)

Scenario 4:

Etr = T1E′inc + T1E0e−jdk0

∞∑
n=1

(
−e−j2dk0R1

)n
f((2n + 1)d)x̂ , (6)

where T1 and R1 are the transmission and reflection coefficients, respectively, calculated using Fresnel
coefficients at the free space/skin model interface [25]. The TPD for a plane-wave can be computed as:

TPD = Re
[
|Etr|

2

η

]
, (7)

where η is the complex intrinsic impedance of the skin.

2.3. Analytical Method: Equivalent Source

For scenarios 5 and 6, the electric field was modeled analytically using the plane-wave spectrum
theory [26–28]. It represents the spatial distribution of each field component over a transverse plane
as a superposition of the plane waves propagating along different directions defined by the couplet
K = kxx̂ + kyŷ, also called the plane wave spectrum (PWS). The PWS of an electric field phasor
component E(R, z0) over a plane Ψ identified by z = z0 and R = xx̂ + yŷ is expressed as:

^
E(K, z0) =

∫
R

E(R, z0)ejK·RdR . (8)

The strength of this approach is its ability to represent the propagation of a complex field
topography through space. The PWS over any plane parallel to Ψ located at distance l in a homogenous
medium is computed by multiplying the PWS at z = z0 by the propagator P(K, l) = e−jkzl:

^
E(K, z0 + l) =

^
E(K, z0) P(K, l) , (9)

where kz is the longitudinal propagation constant given as kz =

√
k2
− |K|2, k is the propagation constant.

For exposure scenario 5, the tangential spectrum components of the incident and transmitted
fields at the air/phantom interface are related as:

^
E
||

tr(K) = Π1
^
E
||

inc(K) , (10)

where Π1 is the spectral transmission operator given in [26]. The normal field spectrum component is

obtained from the tangential field spectra
^
E
||

using the Gauss law:

^
Ez = −

K·
^
E
||

kz
. (11)
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For exposure case 6, the total transmitted field spectrum is given as (refer to Appendix A for
more details):

^
E
||

tr(K) = Π1(I + P(K, 2d)Γ1)
−1 ^

E
||

inc(K) , (12)

where I is the identity matrix, d is the PEC–phantom separation distance, Γ1 is the spectral reflection
coefficients at the phantom interface given in [26]. The H-field spectrum is calculated as [28]:

^
Htr(m) =

1
µω

(k) ×
(

^
Etr

)
. (13)

The spatial field components (E and H) are retrieved using the inverse Fourier transform of the
field spectra. The TPD is calculated as [6]:

TPD =
x

A
Re[E×H∗]·

ds
A

, (14)

where ds is the integral variable vector with the normal direction to the integral area A on the
body surface. All results are provided for an averaging area A of 1 cm2 (except 2-dimensinoal TPD
distributions provided in Sections 3.2 and 3.3). Note that the TPD is identical to the absorbed power
density as defined in [6] and to the epithelial power density as defined by [7].

2.4. Numerical Method: Patch Antenna Arrays

Scenario 7 was analyzed numerically using the finite integration technique (FIT) implemented in
CST Studio Suite 2019. The convergence is reached by setting a finer mesh around the air/phantom
interface (i.e., 1 µm) and larger beyond (i.e., 0.356 mm corresponding to λg/50, where λg is the guided
wavelength in the phantom). Open boundaries are used representing the free-space conditions (i.e.,
no reflected field at the boundaries of the computational volume). The number of mesh cells varies from
26 to 80 million with the antenna/phantom separation distance. Typical duration of single simulation
varies from 35 to 75 min using high-performance workstations with accelerators (Xeon Gold 6140, 768
Go RAM, NVIDIA Quadro GV100; Dell, TX, USA).

3. Results

To analyze the TPD variations due to the antenna/body coupling, the following figure of merit
is defined:

Υ(m,n) =
TPDm

TPDn
, (15)

where TPDm and TPDn are the TPD from exposure scenarios m and n, respectively, with m ∈ {2, 4, 6, 7}
and n ∈ {1, 3, 5}. In practice, the separation distance between a wireless device and its user may vary.
To account for this variation during exposure, we also calculated the floating average Υ(m,n) over the
range of distances ∆d ∈ {1, 3, 5}mm.

3.1. Fundamental Limits: Plane-Wave Illumination

First, we assess the TPD changes due to presence of a PEC layer in front of the skin model for
plane-wave illumination (scenarios 1 and 2). To this end, TPD1, TPD2, and Υ(2,1) are calculated using
(3), (4), (7), and (15) for E0 = 10 V/m and R1 = −0.59 + j0.16 (Figure 4).
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Figure 4 shows that the TPD at the surface of the phantom is strongly altered by the presence of
PEC (increase up to 574% and decrease down to 61.7%). Υ(2,1) can be expressed as:

Υ(2,1) =
TPD2

TPD1
=

∣∣∣∣T1
1

1+e−j2dk0 R1
Einc

∣∣∣∣2
|T1Einc|

2 =

∣∣∣∣∣∣ 1
1 + e−j2dk0R1

∣∣∣∣∣∣2. (16)

The positions of Υ(2,1) maxima and minima (d
Υ(2,1)
max and d

Υ(2,1)

min ) depend on the phase of R1 and
given by:

d
Υ(21)

min =
bR1 − π+ πn

2k0
, (17)

d
Υ(21)
max =

bR1 − π+ 2πn
2k0

, (18)

where n is an integer number, bR1 is the phase shift introduced by the phantom interface to the reflected
plane-wave. The fundamental limits of Υ(2,1) can be found by replacing (17) and (18) in (16):

1

|1 + |R1||
2 ≤ Υ(2,1) ≤

1

|1− |R1||
2 . (19)

Equation (19) shows that the higher the magnitude of the phantom reflection coefficient, the higher
the TPD variations. For example, for a wet skin model, the variations of TPD are more pronounced
(increase up to 629% and decrease down to 62.3%, respectively). Note that these variations are also
age-dependent as the tissue properties evolve with age [29]. In particular, for 5 year old children the
enhancement increases to 640%. For the sake of brevity, in the rest of the paper, the analysis for wet
skin and age-dependent effects will be omitted (except Section 3.3). Table 1 provides the maximum
and minimum Υ(m,n). The results show that the average TPD increases due to the presence of PEC
(roughly a 60% increase for ∆d = 5 mm).

Table 1. Average Y(2,1) over ∆d.

∆d (mm) 1 3 5

maxΥ(2,1) 3.21 2.14 1.61

minΥ(2,1) 0.43 1.40 1.59

Next, the free-space losses are taken into account in the analysis (scenarios 3 and 4). TPD3, TPD4,
and Υ(4,3) are calculated using (5), (6), (7), and (15) (Figure 5).
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TPD4 demonstrates a damped oscillatory behavior around TPD3 (increase up to 80% and decrease
down to 28%). Due to the free-space loss, the oscillation amplitude of Υ(4,3) is lower compared to Υ(2,1).
The averaged TPD over distance increases due to the presence of PEC (i.e., maximum increase of 41%,
15%, 5% for ∆d = 1 mm, 3 mm, 5 mm, respectively) (Table 2).

Table 2. Average Y(4,3) over ∆d.

∆d (mm) 1 3 5

maxΥ(4,3) 1.41 1.15 1.05

minΥ(4,3) 0.75 0.99 1.05

3.2. Fundamental Limits: Equivalent Sources

Here, we consider the equivalent sources corresponding to the patch antenna arrays radiating
in free space (Figure 2). This allows us to model the case where the free-space antenna matching,
efficiency, and radiated field are preserved and not modified by the phantom (scenarios 5 and 6). TPD5,
TPD6, and Υ(6,5) are calculated from Equations (8)–(15) (Figure 6a–e).

Significant differences in Υ(6,5) maxima and, to a smaller extent, minima between the
antenna-equivalent sources are noted for d < 25 mm (Figure 6e). The TPD increases (decreases)
up to (down to) 174% (39%), 342% (54%), 421% (54.7%), and 497% (54.7%) for the SPA, 2 × 2 PAA,
2 × 4 PAA, and 4 × 4 PAA, respectively. This is due to the differences in the attenuation rate of the
peak power density in free-space PDfs of the antenna-equivalent sources (Figure 6f). Indeed, when the
PDfs attenuation rate is higher, Υ(6,5) is lower. At d = 35mm, Υ(6,5) of all antenna-equivalent sources
converges to the same oscillatory function (with relative difference < 10%) (Figure 6e). Figure 7 shows
that as d increases, Υ(6,5) converges to Υ(4,3) as the power density in free-space decreases as 1/d2 in the

far-field. Maximum values of Υ(6,5) are obtained for 4 × 4 PAA (i.e., the maximum increase of 247%,
124%, 76% for ∆d = 1mm, 3mm, 5mm, respectively) (Table 3). Note that for the antenna-equivalent
sources maxΥ is up to 2.5 times higher compared to the plane wave with free-space losses (compare
Tables 2 and 3).
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(min. and max.) of Υ(6,5); (f) free-space peak power density.
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Figure 7. TPD variations due to presence of PEC: Υ(4,3) and Υ(6,5) for 2 × 2 PAA equivalent source.

Table 3. Average Υ(6,5) over ∆d.

SPA 2 × 2 PAA 2 × 4 PAA 4 × 4 PAA

∆d (mm) 1 3 5 1 3 5 1 3 5 1 3 5
maxΥ(6,5) 2.29 1.56 1.37 3.08 1.89 1.58 3.31 2.08 1.69 3.47 2.24 1.76

minΥ(6,5) 0.76 1.13 1.20 0.59 1.13 1.19 0.58 1.13 1.20 0.59 1.14 1.21

To obtain a deeper insight into the TPD variations, we analyzed the changes in the spatial
distribution of TPD for the SPA equivalent source due to the presence of PEC (Figure 8). The distribution
of TPD6 is affected by the presence of PEC and evolves with d. For d corresponding to the maximum
TPD (i.e., 4.75 mm, 7.25 mm, 17.25 mm), the absorbed power density is concentrated around its
maximum. It extends progressively over a larger surface when d approaches the value corresponding
to TPD minima (i.e., 6.5 mm, 9.0 mm, 18.75 mm). When the spatial distribution of TPD is concentrated
around its maxima, the spatial averaging area has a stronger impact on the mean TPD, which rapidly
decreases with the averaging area (e.g., the ratio between TPD averaged over 1 cm2 and 4 cm2 equals
to 3.26 and 1.86 for d = 4.75 and 6.5 mm, respectively).
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Figure 8. TPD distribution for the SPA equivalent source without (top line, scenario 5) and with PEC
(middle line, scenario 6) and for the SPA (bottom line, scenario 7) normalized to its maximum at:
(a) d = 4.75 mm; (b) d = 6.5 mm; (c) d = 7.25 mm; (d) d = 9.0 mm; (e) d = 17.25 mm; (f) d = 18.75 mm.
The sets d = (4.75; 7.25; 17.25) mm and d = (6.5; 9.0; 18.75) mm correspond to the TPD maxima and
minima, respectively.

The cross-section distributions along x-axis at y = 0 mm of the x component of EDirect, ETotal,
and ER are plotted in Figure 9. The amplitude of ETotal is directly related to the phase difference
between EDirect and ER. For d = 7.25 mm, EDirect is in phase with ER around x = 0 mm. This null
phase difference evolves periodically along the x-axis resulting in either constructive or destructive
interferences. Consequently, this results in an enhancement of the ETotal amplitude for x ∈ (−5.0; 5.0)
mm and in a decrease for x ∈ (−10; −5) U (5; 10) mm, thus explaining the higher spatial gradient of TPD
in Figure 8a,c,e (middle line, scenario 6). On the other hand, for d = 9.0 mm, EDirect and ER are out of
phase at x = 0 mm. This results in a decrease in the ETotal for x = (−5.0; 5.0) mm and its enhancement
for x = (−10; −5) U (5; 10) mm, resulting in spread of TPD in Figure 8b,d,f (middle line, scenario 6).
Note that similar observations were made for the y and z components of the field (for the sake of
brevity, the data are not shown).
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3.3. Patch Antenna Arrays

When an antenna is located in the vicinity of a scatter, its matching and radiation are altered.
To exclude the effect of the antenna mismatch, TPD7 is normalized to (1-S11/Ph

2) and TPD5 to (1-S11/FS
2),

where S11/Ph and S11/FS are S11 of the antenna in the presence of the phantom and in free space,
respectively. Note that modern wireless devices are equipped with matching networks designed to
compensate for the mismatch.

The changes in the TPD due to the antenna/phantom coupling (scenarios 5 and 7) are shown in
Figure 10. For d < dr, where dr denotes the interface between the reactive and radiating near-field
regions, the changes in term of the absolute value of TPD are more pronounced (Figure 10a–d). In terms
of the relative variations, for this range of d, the TPD increases up to 79.2%, 71.6%, and 43.8% and
decreases down to 4.4%, 9.75%, and 9.84% for 2 × 2 PAA, 2 × 4 PAA, and 4 × 4 PAA, respectively
(Figure 10e–h). The results shown in Figure 10i demonstrate that there is no direct correlation between
Υ(7,5) and the source directivity. Note that Υ(7,5) is lower compared to Υ(6,5). This difference is
attributed, to a smaller extent, to losses inside the antenna (15.7%, 18.6%, 27.8%, 33% in respect to the
total accepted power at d = 2.25 mm and for SPA, 2 × 2 PAA, 2 × 4 PAA, and 4 × 4 PAA, respectively)
and, to a larger extent, to the scattering properties of the antennas. The higher the scattering, the lower
the TPD variations.

For d > dr, the TPD increases up to 84.11%, 79.2%, 95.5%, and 53.3% and decreases down to 25.7%,
30.1%, 20.3%, and 23.9% for SPA, 2 × 2 PAA, 2 × 4 PAA, and 4 × 4 PAA, respectively (Figure 10e–h).
The variations are higher for wet skin (increase up to 98.25% and decrease down to 32.5%) and
children (increase up to 103.3% and decrease down to 33.7%). Υ(7,5) converges to Υ(6,5). For d� dr,
Υ(7,5) ' Υ(6,5) ' Υ(4,3) as the power density decreases as 1/d2 in the far-field (Figures 7 and 10e–h).
The antenna substrate in scenario 7 introduces a phase shift between Υ(7,5) and Υ(6,5) (Figure 10e–h).

The maximum values of maxΥ(7,5) are obtained for 2 × 4 PAA (i.e., increase up to 52%, 25%, 21% for ∆d
= 1mm, 3mm, 5mm, respectively) (Table 4). It is worthy to note that the ground plane size impacts the
TPD variations. For instance for the SPA, the TPD variations increase with size until the ground plane
becomes large enough (e.g., for ground plane dimensions of 2.5× 2.5 to 10× 10 mm2, Υ(7,5) increases
from 10% to 79%).

Figure 8 top line (scenario 5) and bottom line (scenario 7) show that the spatial distribution of
TPD7 is altered by the antenna/phantom interactions in a similar way as in scenario 6. This suggests
that the exact distribution of TPD cannot be retrieved from measurements of the incident power density
in free-space in absence of the body model.

Table 4. Average Υ(7,5) over ∆d.

SPA 2 × 2 PAA 2 × 4 PAA 4 × 4 PAA

∆d (mm) 1 3 5 1 3 5 1 3 5 1 3 5
maxΥ(7,5)1.51 1.20 1.10 1.47 1.22 1.14 1.52 1.25 1.21 1.37 1.12 1.12

minΥ(7,5)0.74 0.99 1.04 0.73 0.98 1.03 0.82 1.08 1.11 0.78 1.00 1.03
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TPD of (a) SPA; (b) 2 × 2 PAA; (c) 2 × 4 PAA; (d) 4 × 4 PAA. TPD variations due to antenna/phantom
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D3/λ, where λ0 is the free-space wavelength
and D is the largest dimension of the patch array elements [30]. (i) Envelope of Υ(7,5).

4. Conclusions

In this study, we analyzed the impact of the near-field antenna/body interactions on TPD at
60 GHz. To assess the variations of TPD due to presence of a skin-equivalent model, sources of
increasing complexity were considered, including plane wave with and without a PEC, plane wave
with free-space losses, antenna-equivalent sources with and without a PEC, and patch antenna arrays.

The spatial distribution of the TPD is impacted by the presence of a body due to constructive
or destructive interferences impacting both peak and averaged TPD. Our results demonstrate that,
for all scenarios considered in this study, the presence of the body in the vicinity of a source results
in an increase in the average TPD. The local TPD variations depend on the source/body separation
distance. The TPD enhancement due to presence of the human body reaches 574% and 80% for the
plane-wave excitation with and without free-space losses, respectively. For the antenna-equivalent
sources, the presence of a PEC increases (decreases) local TPD from 174% to 497% (39% to 54.7%)
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depending on the number of patches (minimum and maximum variations are observed for SPA and
4 × 4 PAA antenna-equivalent sources, respectively). Note that these variations are higher compared
to the plane-wave excitation with free-space losses. The variations decrease for realistic topologies of
the patch antenna arrays (increase up to 95.5% observed for 2 × 4 PAA and decrease down to 30.1%
observed for 2 × 2 PAA). Note that the amplitude of TPD variations also depends on the reflection
coefficient at the air/skin interface. For instance, the variations are higher for wet skin (increase up
to 98.25% and decrease down to 32.5%) and for children (increase up to 103.3% and decrease down
to 33.7%).

These results suggest that, due to antenna/body interactions, the exact TPD distribution, and as a
result the peak and averaged values of TPD, cannot be retrieved from free-space measurements of
the incident PD in the absence of a human body model. Therefore, for accurate measurements of the
absorbed and epithelial power density, used as the main dosimetric quantities > 6 GHz, it is important
to perform measurements under conditions where the wireless device under test is perturbed in the
same way as by the presence of the human body in realistic use case scenarios.

Author Contributions: Conceptualization, M.Z. (Massinissa Ziane) and M.Z. (Maxim Zhadobov); Formal analysis,
M.Z. (Massinissa Ziane); Investigation, M.Z. (Massinissa ziane) and M.Z. (Maxim Zhadobov); Methodology, M.Z.
(Massinissa Ziane) and M.Z. (Maxim Zhadobov); Software, M.Z. (Massinissa Ziane); Supervision, R.S. and M.Z.
(Maxim Zhadobov); Validation, M.Z. (Massinissa Ziane), R.S. and M.Z. (Maxim Zhadobov); Writing—original
draft, M.Z. (Massinissa Ziane) and M.Z. (Maxim Zhadobov); Writing—review and editing, M.Z. (Massinissa Ziane),
R.S. and M.Z. (Maxim Zhadobov). All authors have read and agreed to the published version of the manuscript.

Funding: The study was supported by the French National Research Program for Environmental and Occupational
Health of ANSES (2018/2 RF/07) through the NEAR 5G project. It was also partly supported by “Région Bretagne”
(ARED program) and by the French Ministry of Higher Education and Research (MESR); by Brittany Region,
Ministry of Higher Education and Research, Rennes Métropole and Conseil Départemental, through the CPER
Project SOPHIE/STIC and Ondes; by French National Center for Scinetific Research (CNRS).

Acknowledgments: The authors would like to thank Giulia Sacco for proofreading the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In scenarios 2, 4, and 6, a part of the incident field is transmitted to the skin model, whereas
another part is reflected. This latter propagates towards the PEC layer where it is reflected back towards
the skin-model. This forth and backpropagation keeps going until the amplitude of the field inside the
cavity vanishes after n iterations. The total transmitted field is calculated as:

Appendix A.1. Scenario 2

Etr = T1Einc + T1
(
e−j2dk0R2R1

)
Einc + · · ·+ T1

(
e−j2dk0R2R1

)n
Einc

= T1

(
1 +

(
e−j2dk0R2R1

)1
+ · · ·+

(
e−j2dk0R2R1

)n
)
Einc

. (A1)

Equation (A1) is a geometric series with a common ratio q = e−2dk0jR2R1. Since
∣∣∣q∣∣∣ < 1, (A1) converges

to the following expression for n→∞ :

Etr = T1
1

1− e−j2dk0R2R1
Einc . (A2)

with R2 = −1, (A2) becomes:

Etr = T1
1

1 + e−j2dk0R1
Einc . (A3)
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Appendix A.2. Scenario 4

Etr = T1E0e−jk0df(d)x̂ + T1E0e−jk0df(3d)
(
e−j2dk0R2R1

)
x̂ + · · ·

+T1E0e−jk0df((2n + 1)d)
(
e−j2dk0R2R1

)n
x̂

= T1E0e−jk0d
∞∑

n=0
f((2n + 1)d)

(
e−j2dk0R2R1

)n
x̂

. (A4)

with with R1 = −1, (A4) can be expressed as:

Etr = T1E′inc + T1E0e−jk0d
∞∑

n=1

(
−e−j2dk0R1

)n
f((2n + 1)d)x̂ . (A5)

Appendix A.3. Scenario 6

^
E
||

tr(K) = Π1
^
E
||

inc + Π1(P(K, 2d))Γ2Γ1
^
E
||

inc + . . .+ Π1((P(K, l))Γ2Γ1)
n ^
E
||

inc . (A6)

Equation (A6) is a geometric series, called also Neumann series [31], with a common ratio
q = (P(K, 2d))Γ2Γ1 is 2 × 2 matrix. It converges if for each eignevalue (λi), |λi| < 1. This condition was
assessed and found to be satisfied. The geometric series (A6) is then expressed as follow for n→∞ :

^
E
||

tr(K) = Π1(I− (P(K, 2d))Γ2Γ1)
−1 ^

E
||

inc . (A7)

where I is the identity matrix. With Γ2 = −I, the total transmitted field is expressed by:

^
E
||

tr(K) = Π1(I + (P(K, 2d))Γ1)
−1 ^

E
||

inc . (A8)
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