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Abstract: In this paper, we propose a preprocessing strategy for denoising of speech data based
on speech segment detection. A design of computationally efficient speech denoising is necessary
to develop a scalable method for large-scale data sets. Furthermore, it becomes more important as
the deep learning-based methods have been developed because they require significant costs while
showing high performance in general. The basic idea of the proposed method is using the speech
segment detection so as to exclude non-speech segments before denoising. The speech segmentation
detection can exclude non-speech segments with a negligible cost, which will be removed in denoising
process with a much higher cost, while maintaining the accuracy of denoising. First, we devise a
framework to choose the best preprocessing method for denoising based on the speech segment
detection for a target environment. For this, we speculate the environments for denoising using
different levels of signal-to-noise ratio (SNR) and multiple evaluation metrics. The framework
finds the best speech segment detection method tailored to a target environment according to the
performance evaluation of speech segment detection methods. Next, we investigate the accuracy of
the speech segment detection methods extensively. We conduct the performance evaluation of five
speech segment detection methods with different levels of SNRs and evaluation metrics. Especially,
we show that we can adjust the accuracy between the precision and recall of each method by
controlling a parameter. Finally, we incorporate the best speech segment detection method for a target
environment into a denoising process. Through extensive experiments, we show that the accuracy of
the proposed scheme is comparable to or even better than that of Wavenet-based denoising, which
is one of recent advanced denoising methods based on deep neural networks, in terms of multiple
evaluation metrics of denoising, i.e., SNR, STOI, and PESQ, while it can reduce the denoising time
of the Wavenet-based denoising by approximately 40–50% according to the used speech segment
detection method.

Keywords: noise reduction; speech enhancement; speech processing; machine learning;
data pre-processing

1. Introduction

Denoising is the process of extracting only the clean speech from a mixed sound of speech
and noise. Figure 1 shows denoising of speech data. The main goal of denoising is to enhance
the perceptual quality of speech and the robust speech recognition. Applications of denoising
include cellular and teleconference communications affected by background and channel noise [1].
The denoising performance has a considerable impact on both the comprehensibility and the
post-processing efficiency of the speech data. Therefore, various denoising methods have been
studied [2]. However, as shown in Figure 1, we indicate that denoising, i.e., mitigating the noise
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affecting a speech signal, is a difficult process because the noise and speech coexist at the same time
point.

Figure 1. Denoising of speech data.

The previous denoising methods can be classified into the following three categories:

1. Statistical feature-based methods: There have been previous studies that exclude the noise
by the threshold value according to a specific statistical feature. The proposed representative
criteria are nonnegative matrix factorization [3], Wiener filter [1,4,5], and wavelet transformation
denoising [2,6]. Before AutoEncoder and deep learning-based methods were proposed,
this approach had been widely used.

2. AutoEncoder-based methods: Denoising AutoEncoder (DAE) has been already used in image
processing to extract the noise for the classification [7]. For denoising in speech signals, there have
also been many previous studies to adopt the DAE to extract the noise from noisy speech data:
DAE using the noisy speech as the input and the clean speech as the output [8], a new pre-training
and fine tuning methods based on the DAE [9], weighted DAE capturing the relationship between
the noisy and clean speech signals [10], time-domain convolutional DAE [11], and speaker-aware
DAE [12].

This approach allows us to conduct unsupervised learning without manual labeling because the
noises are automatically generated in the model. However, it has been known that the strength
and accuracy of the model are lower than the deep learning methods, which are supervised
learning based on the labeling of clean and noisy data sets.

3. Deep neural network (DNN)-based models: Deep learning-based denoising learns the difference
between noisy speech data and clean speech data. Various deep learning models have been
proposed: Wavenet-based denoising model [13], Fully-Convolutional Networks (FCNs) denoising
model [14], Convolutional Neural Network (CNN) denoising model [15], Recurrent Neural
Networks (RNNs) denoising model [16], and Convolutional-RNN (CRNN) denoising model [17].
This approach generally shows a high performance although it requires large-scale data sets
with labeling and requires significant computing costs in the training process. One of recent
advances in deep learning-based methods is the Wavenet-based algorithm, which is an end-to-end
model developed by Google [13]. Wavenet has been used to produce sound waveforms within
Tacotron [18], Google’s voice synthesis model [13], which can identify speech features effectively.
It has been shown that Wavenet-based denoising performs better than Wiener filter, which is one
of the most widely used methods [4].

A design of computationally efficient speech denoising is necessary to develop a scalable
method for large-scale data sets [19]. Furthermore, it becomes more important as the deep
learning-based methods have been developed because they require significant costs while showing
the high performance in general. Especially, deep learning model has been widely applied in
various environments including not only high-performance servers equipped with GPUs but also
low-performance embedded or IoT devices such as raspberry pi [20]. Therefore, reducing the
computational cost in deep learning model is one of critical issues in practice because it allows
us to provide real-time services based on the deep learning model even in limited environments [21].
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In this paper, we deal with the deep learning-based model for denoising and focus on improving its
denoising speed while maintaining the accuracy of denoising. The importance of efficient denoising
is supported by our experimental results, which show that the denoising time of Wavenet-based
denoising (e.g., 3867 s) is much larger than the original signal lengths (e.g., 2072 s) in our experimental
setting and it is significantly reduced by the proposed strategy (See Section 5).

In this paper, we propose a preprocessing strategy for denoising of speech data based on the speech
segment detection. Figure 2 shows the concept of the proposed preprocessing strategy for denoising.
The basic idea of the proposed method is using the speech segment detection so as to exclude
non-speech segments before denoising. The speech segmentation detection can exclude non-speech
segments with a negligible cost, which will be removed in denoising process with a much higher
cost, while maintaining its accuracy of denoising. As shown in Figure 2, the proposed preprocessing
strategy consists of the following four steps:

1. We speculate the target environment using samples of noisy and clean data files to figure
out the characteristics of the environment. To define the environment, we use different levels
of signal-to-noise ratio (SNR) and multiple evaluation criteria, which affect the results of
preprocessing significantly. That is, the effects of the speech segment detection methods are
quite varied according to the level of SNR (See Section 4). In addition, we need to determine a
preferred evaluation criterion. Specifically, in some environments, we should not allow to exclude
any small speech segments even if many non-speech segments are not excluded (i.e., recall takes
the precedence over precision); in other environments, we can improve the overall effects of
denoising by allowing to exclude some negligible speeches (i.e., precision over recall).

2. We enumerate the speech segment detection methods by combining filtering and unsupervised
methods that have been used for the voice activity detection [22] and conduct their performance
evaluation to select the most effective method for a target environment. Here, we note that
the purpose of the speech segment detection methods is effectively excluding the non-speech
segments as preprocessing of denoising, not improving the performance of the speech segment
detection itself. As a result, we investigate simple and efficient speech segment detection methods
that can work effectively with the denoising method.

3. We apply the speech segment detection method with the best setting by each method into noisy
data files. In this step, the non-speech segments, which will be removed with a significant cost
in deep learning-based denoising process, are efficiently excluded, while the overall accuracy
is maintained.

4. We apply the Wavenet-based denoising model [13], which is one of recent advanced denoising
methods based on deep neural networks, to only the speech segments. Through extensive
experiments, we evaluate the performance of the proposed strategy by each speech segment
detection method where the best setting in the previous step is used and compare them with the
original Wavenet-based denoising model in terms of the speed and accuracy of denoising.

We summarize the contributions of the paper as follows:

1. We devise a framework to choose the best preprocessing method for denoising based on the
speech segment detection for a target environment. For this, we speculate the environments for
denoising using different levels of SNR and multiple evaluation metrics. As shown in Figure 2,
the framework finds the best speech segment detection method tailored to a target environment
according to the performance evaluation of speech segment detection methods.

2. We investigate the accuracy of the speech segment detection methods extensively. We conduct the
performance evaluation of five speech segment detection methods with different levels of SNRs
and multiple evaluation metrics. Especially, we show that we can adjust the accuracy between the
precision and recall of each method by controlling a parameter. Through extensive experiments,
we measure the accuracy of the speech segment detection methods with a variety of SNRs and
evaluation metrics and observe that a different speech segment detection method shows the best
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accuracy for each group of SNRs and evaluation metric. This result indicates that we need to
select the most effective speech segment detection method for a given target environment.

3. We incorporate the best speech segment detection method for a target environment into a
denoising process. Through extensive experiments, we show that the accuracy of the proposed
preprocessing strategy is comparable to or even better than that of the original Wavenet-based
denoising in terms of multiple evaluation metrics of denoising, i.e., SNR, STOI, and PESQ, while it
can reduce the denoising time of the Wavenet-based denoising by 40.06–50.76% according to the
used speech segment detection method.

The organization of the paper is as follows. In Section 2, we explain preliminaries. In Section 3,
we present the proposed method. In Section 4, we describe the experimental results. In Section 5,
we conclude the paper.

Figure 2. The concept of the proposed preprocessing strategy for denoising.

2. Preliminaries

2.1. Wavenet-Based Denoising

Wavenet is an internal speech DNN model within a voice synthesis model, Tacotron [18], to create
raw sound waveforms. Since Wavenet enables the effective understanding of speech data features, it has
been proposed as a denoising tool [13]. Figure 3 describes its overall architecture [13], which allows
to identify the comprehensive features of speech data effectively using a dilated convolution layer,
which enables to extend the reception field with a small number of layers. It also tries to avoid
overfitting and to reduce computational costs by skipping several layers randomly using the concept
of skip connection. For these reasons, Wavenet-based denoising performs better compared to Wiener
filter [4]. Specifically, in a speech quality assessment involving 33 participants, Wavenet-based
denoising is scored 3.6 while Wiener filter 2.92 [13].

2.2. Voice Activity Detection

Voice activity detection (VAD) is a technique for detecting the presence of speech signal in speech
data [22]. It has been widely used to enhance the speech contents such as speech classification [23],
speaker recognition [24], and speech enhancement [25,26]. Figure 4 shows three processing steps for
VAD: (1) noise reduction, (2) segmentation, and (3) elimination [27]. As depicted in Figure 4, the length
of the original signal becomes shorter after applying VAD by eliminating the non-VAD segments.
For the efficient denoising, we aim to exclude only the segments that definitely do not contain speech.
To this purpose, we use segmentation and elimination steps of the overall VAD process, which we call
the speech segment detection, for the preprocessing of denoising process.
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Figure 3. The architecture of Wavenet-based denoising [13].

Figure 4. The overall process of the voice activity detection.

We classify existing methods for the speech segment detection in VAD into three categories: (1)
filtering methods, (2) unsupervised methods, and (3) deep learning-based methods. Filtering methods
detect the speech segment based on statistical features of the signal such as LPC parameters,
energy levels, and ZCR [28,29]. For the unsupervised methods, Górriz et al. have proposed fuzzy
C-means based clustering [30]. Ramírez et al. have presented multiple observation likelihood ratio
test (MO-LRT) [31], and Petsatodis et al. have devised the method that improves MO-LRT [32]. Tan et al.
have proposed an unsupervised method that can calculate spectral flatness efficiently for the robust
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VAD [33]. For deep learning-based methods, Tashev et al. have designed a fully connected deep neural
network to classify speech and non-speech segments [22]. Ferrer et al. have formalized VAD problem
as a binary classification and have classified speech and non-speech segments using DNN-based
model [34].

Although it has been known that the deep learning-based methods generally outperform the
other methods, they require significant computational costs. In this paper, because the speech segment
detection will be used as pre-processing to improve the efficiency of denoising, we need a simple and
fast method for detecting speech segments. To this purpose, we investigate filtering and unsupervised
methods that have fast inference time due to the simple mechanism [35].

3. Denoising Based on the Speech Segment Detection

3.1. The Overall Flowchart

Figure 5 describes the overall process of denoising into which we apply the preprocessing based
on the speech segmentation detection. As shown in Figure 2, the selected speech segment detection
method for a target environment is used for a denoising process. As the input data sets, we use speech
data files with noises formatted in wav where each sample is recorded at a rate of 16 Khz [36]. First,
we separate the noisy speech data file into the speech and non-speech segments by the selected speech
segment detection method. Second, we perform the smoothing process. It accumulates audio signals
of 200 time points before and after each time point, which corresponds to smoothing on a running
window of 25 ms. Then, if more signals out of the accumulated 200 signals belong to speech signals than
non-speech signals, the time point is classified as speech signal; otherwise, as non-speech signal. Third,
we accumulate all the extracted speech segments into a single speech data file. Fourth, we put the speech
data file as the inputs of the Wavenet-based denoising method and obtain the final denoised result.

Figure 5. The overall denoising process based on the speech segment detection.

For the speech segment detection, we consider five methods by combining filtering and
unsupervised methods of VAD. First, we use two representative features of speech signals [29,37,38]:
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(1) energy and (2) entropy. Second, we use an unsupervised method: fuzzy clustering [39]. This is a
very powerful method compared to traditional hard clustering for handling a number of ambiguous
data sets such as audio signals [40]. Third, we combine filtering methods with a fuzzy clustering
method: (1) energy-based filtering with fuzzy clustering and (2) entropy-based filtering with fuzzy
clustering.

As the criteria to measure the accuracy of the speech segment detection methods, we use three
metrics: (1) precision, (2) recall, and (3) F1 score. Equation (1) shows precision; Equation (2) recall;
Equation (3) F1 score. Precision means the ratio of relevant instances among all the instances retrieved
by the method; recall the ratio of instances retrieved by the method among total relevant instances.
Here, we determine the relevance of each instance according to whether or not it is included in the
speech segment. Precision and recall are used as the criteria to represent the environmental preference
when the denoising is applied. That is, a high precision means the segments selected by the speech
segment detection are highly likely the speech segments even if a significant amount of speech
segments are actually missed while a high recall means most of actual speech segments are selected
by the speech segment detection even if a significant amount of the selected segments are not actual
speech segments. F1 score is a combined metric of precision and recall, showing the overall accuracy
of the speech segment detection.

Precision =
True Positives

True Positives + False Positives
(1)

Recall =
True Positives

True Positives + False Negatives
(2)

F1 score =
2 ∗ Precision ∗ Recall

Precision + Recall
(3)

3.2. Filtering Methods

3.2.1. Energy-Based Filtering

In general, the signal energy remains the basic component to the feature vector [29]. Most of the
standardized algorithms use energy besides other metrics to make a decision [29]. Thus, we present
an energy-based filtering method to extract the segments containing the speech based on the energy.
A common way to calculate the energy of a speech signal is the root mean square energy (RMS energy),
which is the square root of the average sum of the squares of the amplitude of the signal samples [29].
In Equation (4) [29], we present the RMS energy EN(t) for a time point t. Here, n is the number of
contiguous time points; x(k) is the amplitude for a time point k. In the experiment, we use 100 for n.
Figure 6a illustrates the normalized amplitude (range: −1.0–1.0) of a sample audio signal; Figure 6b
shows the RMS energy (range: 0.0–1.0) of the same sample according to Equation (4).

EN(t) =

√√√√ 1
n
×

t+n/2

∑
k=t−n/2

x(k)2 (4)

In Equation (5) [29], we define the threshold. λ is used as a weight from 0 to 1 between the
maximum and minimum RMS energy. Then, if EN(t) for a time point t in a time frame is greater
than the threshold, we determine it as the speech segment; otherwise, we determine it as the
non-speech segment.

Threshold = (1− λ)×max(EN) + λ×min(EN) (5)

In the energy-based filtering method, λ in Equation (5) is an important parameter affecting the
accuracy of the method. Figure 7 shows the recall, precision, and F1 score of energy-based filtering as
λ is varied from 0.1 to 1.0. For all the figures showing the recall, precision, and F1 score of the speech
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segment detection methods, we use a total 824 validation noise-speech data files and the corresponding
clean speech data files (See Section 4). We use the same data files to measure the accuracy of all the
methods in this section. We indicate that the most accurate result of energy-based filtering is observed
when λ is 0.9, where the recall and F1 score are the highest. We note that we can increase the recall to
100% by setting λ as 1.0, but precision dramatically decreases. This implies that we have an adequate
λ for a target environment.

(a) Normalized amplitude.

(b) root mean square energy (RMS energy).

Figure 6. Normalized amplitude and RMS energy of a sample audio signal.

Figure 7. The accuracy variation of energy-based filtering as λ is varied.
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Figure 8 illustrates the ideal answer for the speech segment detection, i.e., the clean speech file
without noises; Figure 9 illustrates the result of applying the energy-based filtering method to a noisy
speech data file, where the original clean speech signal is presented in orange and the speech segment
extracted by energy-based filtering is in blue.

Figure 8. The ideal answer of the speech segment detection.

Figure 9. The result of energy-based filtering.

3.2.2. Entropy-Based Filtering

The entropy represents the statistical disorder and is used as a measure of the amount of
information in the data [41]. Using the characteristic of the entropy, we present a method to detect
the speech segments. We calculate the entropy based on the energy change before and after each time
point in the speech data. In Equation (7) [37], we define the entropy H(t) for a time point t. Here, n is
the number of contiguous time points. In the experiment, we use 10 for n. In Equation (6), we define
the probability p(t) as the relative amplitude of a time point t as shown in Equation (6), where x(t) is
the amplitude at t. Finally, we obtain the normalized entropy E(t) using the entropy H(t), the average
of entropy M for H(k) where (t− n/2) ≤ k ≤ (t + n/2), and standard deviation of entropy S for H(k)
where (t− n/2) ≤ k ≤ (t + n/2), as shown in Equation (8).

p(t) =
(
| x(t) |

max | x |

)
(6)

H(t) = −
t+l/2

∑
k=t−l/2

p(k)× log(p(k)) (7)

E(t) =
H(t)−M

S
(8)

Figure 10 illustrates the entropy value calculated according to Equation (8). In Equation (9),
we define the threshold. λ is used as a weight from 0 to 1 between the maximum and minimum
entropy value. Then, if E(t) for a time point t is greater than the threshold in Equation (9), we determine
it as the speech segment.

Threshold = (1− λ)×max(E) + λ×min(E) (9)

In entropy-based filtering, λ is also an important parameter affecting the accuracy of the method
like in energy-based filtering. Figure 11 shows the recall, precision, and F1 score of entropy-based
filtering as λ is varied from 0.1 to 1.0. We indicate that the most accurate result of entropy-based
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filtering is observed when λ is 0.6, where the F1 score is the highest. Figure 12 illustrates the result
of entropy-based filtering where the audio signal is presented in orange and the speech segment is
in blue.

Figure 10. Entropy of a sample audio signal.

3.3. Fuzzy Clustering

Fuzzy clustering is used for clustering data based on a probability to be included in each
cluster [39]. We present a method using fuzzy clustering to detect the speech segments. As the criteria
for fuzzy clustering, we use both the energy and entropy because they can be used complementarily in
the speech segment detection. That is, the entropy reflects the change of the signal while the energy
considers the absolute value of the signal.

For each time point, fuzzy clustering outputs the probability of belonging to a certain
cluster—speech or non-speech segments. Here, we establish the threshold as a probability to determine
if a given sample is in speech or non-speech segments.

Figure 13 shows the accuracy variation of fuzzy clustering as the threshold is varied from 10%
to 100%. In the result, we note that the precision is relatively constant while the recall decreases as the
threshold increases. The F1 score is the highest when the threshold is 30%. Figure 14 illustrates the
result of fuzzy clustering where the audio signal is presented in orange and the speech segment is
in blue.

Figure 11. The accuracy variation of entropy-based filtering as λ is varied.
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Figure 12. The result of entropy-based filtering.

Figure 13. The accuracy variation of fuzzy clustering as the threshold is varied.

Figure 14. The result of fuzzy clustering.

3.4. Filtering with Fuzzy Clustering

Now, we investigate methods that combine fuzzy clustering with energy-based or entropy-based
filtering methods. Specifically, we first extract the speech segments using the filtering method, and then,
conduct fuzzy clustering on only the segments that are excluded by the filtering method. We define
two kinds of methods in this approach: (1) energy-based filtering with fuzzy clustering and (2)
entropy-based filtering with fuzzy clustering. Similar to fuzzy clustering, we use a threshold probability
for finding the best parameter setting.

Figure 15 shows the accuracy variation of energy-based filtering with fuzzy clustering as threshold
is varied from 10% to 100%. In the result, we note that the recall decreases significantly, but precision
increases slightly as the threshold increases. When the threshold is 50%, the precision and the F1
score are the highest. Figure 16 illustrates the results of energy-based filtering with fuzzy clustering.
Here, we note that this method recovers some segments that have been excluded by the energy-based
filtering method.
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Figure 15. The accuracy variation of energy-based filtering with fuzzy clustering as the threshold
is varied.

Figure 16. The result of energy-based filtering with fuzzy clustering.

Figure 17 shows the accuracy variation of entropy-based filtering with fuzzy clustering as the
threshold is varied from 10% to 100%. The overall trend is quite similar to energy-based filtering with
fuzzy clustering. The F1 score is the highest when the threshold is 80%. Figure 18 illustrates the result
of entropy-based filtering with fuzzy clustering. Similar to energy-based filtering with fuzzy clustering,
this method also recovers the speech segments that have been excluded by entropy-based filtering.

Figure 17. The accuracy variation of entropy-based filtering with fuzzy clustering as the threshold
is varied.
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Figure 18. The result of entropy-based filtering with fuzzy clustering.

We analyze the results of the filtering method, fuzzy clustering, and filtering with fuzzy clustering.
Here, we show the result of entropy-based filtering, fuzzy clustering, and entropy-based filtering
with fuzzy clustering. Figure 19 represents the distribution of data sets according to each method
where the x-axis represents the entropy and y-axis the energy by the audio signal. Figure 19a
represents the answer classification of speech and non-speech segments. Figure 19b represents the
classification after entropy-based filtering. Here, we indicate that this simple filtering method can
effectively classify speech and non-speech signals, but some speech signals are classified as non-speech
signals. Figure 19c represents the classification of fuzzy clustering for all the audio signals. Figure 19d
represents the classification of fuzzy clustering only for non-speech signals that have been excluded by
entropy-based filtering. Here, we note that, fuzzy clustering can recover some signals that have been
excluded by entropy-based filtering. Figure 19e represents the final result of entropy-based filtering
with fuzzy clustering.

(a) Ideal classification. (b) Entropy-based filtering.

(c) Fuzzy clustering for all the samples.
(d) Fuzzy clustering for non-speech samples
excluded by entropy-based filtering.

(e) Entropy-based filtering with fuzzy clustering.

Figure 19. Analysis of the accuracy improvement of entropy-based filtering with fuzzy clustering.
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3.5. Smoothing

We perform the smoothing process for all the presented speech segment detection [42].
The smoothing process considers multiple contiguous time points before and after a time point
and determines to detect the speech data considering those time points as the unit. Here, we use 200
audio samples before and after each time point, which corresponds to smoothing on a running window
of 25 ms, and determine the time point is a speech or non-speech segment in which a larger number of
time points belong.

Figure 20 illustrates the result of the speech segment detection if the smoothing process is applied
or not when we use fuzzy clustering. Specifically, Figure 20a illustrates the result of the speech segment
detection before smoothing; Figure 20b illustrates the result of it after smoothing. The blue-filled areas
show that the speech and non-speech segments are sliced into multiple time points. By the smoothing
process, we can determine whether a time point is in a speech or non-speech segment by considering
adjacent time points in a time frame as depicted in Figure 20b. As a result, we note that some segments
that have been labelled as non-speech are now correctly labelled as speech. Here, we show only the
result where fuzzy clustering is used for the speech segment detection, but for all the other methods,
we apply the same smoothing process into the result of the speech segment detection.

(a) Before smoothing.

(b) After smoothing.

Figure 20. The result of using the smoothing process in fuzzy clustering.

4. Performance Evaluation

4.1. Experimental Environments and Method

In the experiments, we aimed to measure (1) the accuracy of the presented five methods for
the speech segment detection and (2) the execution time and accuracy of the proposed method and
Wavenet-based denoising [13]. The results of the first experiment could be used to choose the best
speech segment method for a target environment. To define each environment, we used various SNR
levels and show the results in terms of various evaluation metrics, i.e., recall, precision, and F1 score.

For the first experiment, we used clean speech data files generated in a quiet environment as
the ideal answer. We then measured the recall, precision, and F1 score of the files where each speech
segment detection method was applied for the noisy-speech files based on the clean data files.

For the second experiment, we used the representative evaluation metrics for measuring the
accuracy of denoising: SNR, STOI, and PESQ [43]. The proposed strategy reduced the overall length
of the audio files due to the speech segment detection. Thus, we needed to consider how to compare
the accuracy of denoising methods when their lengths were different. To resolve this problem, we
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designed three kinds of experiments. First, we attached the non-speech segments that were excluded
by the speech segment detection in our proposed strategy into the final denoised results to align it
with the result of Wavenet-based denoising results. It absolutely decreased the overall accuracy, but
we showed that it was still effective even if non-speech segments without denoising were included
in the final results. Second, we adjusted both clean and noisy-speech data files and the result of
Wavenet-based denoising to have the same aligned length with the proposed strategy, i.e., the result of
the speech segment detection. That is, we compared the speech segments only in both methods. Third,
we compared the accuracy on the final results of methods while aligning the clean and noisy-speech
data file with denoised results of each method. Even if the comparison segments between the methods
became different, it was worth to show the final results of each method.

We usde speech data sets provided by Edinburgh DataShare (https://datashare.is.ed.ac.uk/).
The training data files contained 4105 sentences spoken by ten native speakers, each in a noisy and
quiet environment, respectively; the validation data files consisted of 824 sentences spoken by two
native speaker in a quiet and noisy environment, respectively. Table 1 shows the characteristics of
the data set used for the validation. We classified the entire data set into three groups according to
the SNR. The dB range for the low SNR group was [−∞, 2]; that for the medium SNR group is (2, 10];
that for the high SNR group was (10, ∞]. The table shows the number of data sets, SNR, signal length,
and portion of speech segments for each group. This implied that we needed to verify the effect of the
speech segment detection and denoising with a variety of SNRs because the SNR fluctuated greatly for
each group.

Table 1. The characteristics of the used data set.

Types of
Data Sets

Number of
Data Sets

Avg. of
SNR (dB)

Avg. of (Min∼Max)
Signal Length

(Seconds)

Portion of
Speech Segments (%)

Low SNR group 200 0.915 2.469 (1.367∼9.768) 46.05

Medium SNR group 227 6.147 2.548 (1.320∼7.184) 46.04

High SNR group 397 13.555 2.518 (1.237∼8.509) 46.70

Total data set 824 8.446 2.514 (1.237∼9.768) 46.34

For the experiment, we use an Amazon machine image equipped with 64 GB of RAM, 4 CPUs,
Tesla K80 of GPU, and 10 GB of GPU memory.

4.2. Results and Discussion

4.2.1. The Accuracy of the Speech Segment Detection Methods

We compared the accuracy of the presented five speech segment detection methods:
(1) energy-based filtering, (2) entropy-based filtering, (3) fuzzy clustering, (4) energy-based filtering
with fuzzy clustering, and (5) entropy-based filtering with fuzzy clustering. To this purpose,
we measured the recall, precision, and F1 score of each method based on the clean speech data files.
For this experiment, we used all the files of the validation dataset.

Table 2 shows the recall, precision, and F1 score for the speech segment detection methods
according to different SNR groups. In this experiment, we determined a threshold (or λ) for each
speech segment detection method, which was a parameter that affected on the accuracy of each method
as presented in Section 3, that showed the highest F1-score under the condition that the recall was
greater than the precision so as to reduce filtering of speech segments. However, this criteria could
be changed for each target environment. The result indicated that the best method became different
according to the group of SNRs. Specifically, the energy-based filtering with fuzzy clustering showed
the best accuracy for the low SNR group; the fuzzy clustering method for the medium SNR group;
the energy-based filtering for the high SNR group. This implied that our preprocessing strategy could

https://datashare.is.ed.ac.uk/
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be used to find the best speech segment detection methods for a target SNR. We also noted that we
could adjust the threshold (or λ) to control the recall and the precision. According to Figures 7, 11, 13,
15 and 17, we observed the trade-off relationship between the recall and the precision by controlling
the threshold (or λ). As a result, we could choose an adequate threshold for a target requirement.
For example, for environments where any segments including the speech should not be excluded,
we could choose a parameter setting that shows almost 100% of recall.

Table 2. The recall, precision, and F1 score by speech segment detection methods.

Speech Segment
Detection Methods

Energy-Based
Filtering

Entropy-Based
Filtering

Fuzzy
Clustering

Energy-Based
Filtering with

Fuzzy Clustering

Entropy-Based
Filtering with

Fuzzy Clustering

Low SNR
Group

Threshold(%)/λ 0.8 0.5 40 50 80

Recall 0.779 0.839 0.876 0.864 0.891

Precision 0.758 0.652 0.637 0.642 0.626

F1 score 0.751 0.719 0.727 0.726 0.725

Medium SNR
Group

Threshold(%)/λ 0.9 0.5 50 60 90

Recall 0.966 0.829 0.866 0.869 0.871

Precision 0.705 0.814 0.790 0.786 0.786

F1 score 0.809 0.812 0.817 0.816 0.817

High SNR
Group

Threshold(%)/λ 0.9 0.6 20 40 70

Recall 0.943 0.932 0.945 0.923 0.943

Precision 0.933 0.914 0.902 0.919 0.902

F1 score 0.935 0.920 0.919 0.917 0.918

Total
Group

Threshold(%)/λ 0.9 0.6 30 50 80

Recall 0.959 0.941 0.911 0.890 0.910

Precision 0.773 0.773 0.806 0.817 0.803

F1 score 0.839 0.834 0.844 0.842 0.843

4.2.2. The Execution Time of Denoising

Table 3 shows the execution times for Wavenet-based denoising and the proposed method. Here,
we used all the files of the validation dataset. In measuring the execution time, we did not consider
a variety of SNRs because its effects were negligible. The results reveal that the proposed method
significantly reduced the execution time of Wavenet-based denoising by 40.06∼50.76% according to
the used speech segment detection method. This shows the significance of reducing the denoising time
because the original Wavenet-based denoising required much more time in denoising (i.e., 3867 s) than
even the original signal length (i.e., 2072.04 s) in our environmental setting. We note that the proposed
method could reduce the denoising time significantly, which was less than the original signal length.

Table 3. The execution time and length comparison between the proposed method and Wavenet-based
denoising.

Wavenet-Based
Denoising

Energy-Based
Filtering

Entropy-Based
Filtering

Fuzzy-Based
Clustering

Energy-Based
Filtering with

Fuzzy Clustering

Entropy-Based
Filtering with

Fuzzy Clustering

Denoising Time
(seconds) 3867 2318 1904 1996 1938 2000

Signal Length
(seconds) 2072.04 1234.37 945.50 1092.16 1044.86 1094.29

Denoising Time/
Original Signal Length 1.866 1.12 0.919 0.963 0.935 0.965
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4.2.3. The Accuracy of Denoising

Tables 4–6 show the SNR, STOI, and PESQ of the proposed method and Wavenet-based denoising
with a variety of SNRs, respectively. In addition, we show the results of noisy speech data sets as a
comparison. Here, we used all the files of the validation dataset. Each table shows the comparison
results of the speech segments and non-speech segments targeting different segments. Table 4 shows
the comparison of denoising performance for both speech and non-speech segments. Because our
strategy excluded the non-speech segments, we attached the original non-speech segments without
denoising to align its total length with the result of Wavenet-based denoising. Obviously, the overall
accuracy of the proposed strategy was less than Wavenet-based denoising. However, this result
indicated that the proposed strategy was quite effective (i.e., STOI shows better) even in the case where
we utilized the original non-speech segments without denoising.

Table 4. The comparison of denoising performance for both speech and non-speech segments.

Denoising
Methods Noisy Wavenet-Based

Denoising [13]
Energy-Based

Filtering
Entropy-Based

Filtering
Fuzzy

Clustering

Energy-Based
Filtering with

Fuzzy Clustering

Entropy-Based
Filtering with

Fuzzy Clustering

Low SNR
Group

SNR 0.915 14.552 5.408 7.554 7.669 7.639 8.349

STOI 0.868 0.864 0.848 0.846 0.845 0.843 0.846

PESQ 1.413 1.551 1.290 1.225 1.272 1.229 1.223

Medium SNR
Group

SNR 6.147 17.311 12.213 10.299 10.570 10.694 10.749

STOI 0.913 0.895 0.898 0.900 0.901 0.898 0.898

PESQ 1.757 1.824 1.515 1.531 1.577 1.520 1.519

High SNR
Group

SNR 13.555 19.639 15.504 15.742 15.811 15.567 15.820

STOI 0.951 0.914 0.943 0.942 0.942 0.942 0.941

PESQ 2.373 2.140 2.283 2.202 2.229 2.238 2.200

Total
Group

SNR 6.872 17.167 12.127

STOI 0.910 0.891 0.897

PESQ 1.847 1.838 1.716

Table 5 shows the comparison of denoising performance only for the speech segments. Here,
we used only the speech segments in Wavenet-based denoising as well. The result showed that both
methods had similar denoising performance for the speech segments.

Table 5. The comparison of denoising performance only for the speech segments.

Denoising
Methods Noisy Wavenet-Based

Denoising [13]
Energy-Based

Filtering
Entropy-Based

Filtering
Fuzzy

Clustering

Energy-Based
Filtering with

Fuzzy Clustering

Entropy-Based
Filtering with

Fuzzy Clustering

Low SNR
Group

SNR 1.310 15.003 14.758 14.846 14.863 14.803 14.872

STOI 0.911 0.926 0.927 0.942 0.941 0.942 0.941

PESQ 1.459 1.620 1.826 1.659 1.642 1.643 1.635

Medium SNR
Group

SNR 7.940 19.128 18.111 18.228 18.189 18.152 18.183

STOI 0.960 0.970 0.973 0.951 0.968 0.967 0.963

PESQ 2.043 2.432 2.172 2.448 2.368 2.364 2.371

High SNR
Group

SNR 16.490 21.919 21.047 21.028 20.997 20.966 20.991

STOI 0.985 0.984 0.982 0.980 0.982 0.979 0.985

PESQ 3.078 3.480 3.446 3.354 3.333 3.390 3.318

Total
Group

SNR 8.580 18.703 18.049

STOI 0.952 0.959 0.967

PESQ 2.194 2.511 2.573

Table 6 compares the denoising performance for the final result of each method. Due to the speech
segment detection in the proposed strategy, the overall length was different by the method, but it
is worth showing the final result of the method. The overall improvement of the proposed strategy
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showed the evidence that non-speech segments, which were excluded by the proposed strategy,
were much more noisy than the speech segments. The result indicates that the overall quality of
speech was improved, however, some speeches could be excluded by the speech segment detection.
To complement this case, we could adjust a parameter of the speech segment detection method to
increase the recall as shown in Section 3.

For all the experiments, we measured the results for all the speech segment detection methods
with the best threshold (or λ) setting for each group of SNRs to check their accuracy variation with a
variety of SNRs. The result showed that the best speech segment detection method for denoising was
different by the SNR group and the evaluation metric, which are represented in bold. This implied
that we needed to select the most effective speech segment detection method of denoising for a target
SNR and evaluation metric. We summarize the results that the proposed strategy was comparable to
Wavenet-based denoising while reducing the execution time for denoising of Wavenet-based denoising
significantly (i.e., by 40.06∼50.76% as presented in Table 3).

Table 6. The comparison of denoising performance for the final result of each method.

Denoising
Methods Noisy Wavenet-Based

Denoising [13]
Energy-Based

Filtering
Entropy-Based

Filtering
Fuzzy

Clustering

Energy-Based
Filtering with

Fuzzy Clustering

Entropy-Based
Filtering with

Fuzzy Clustering

Low SNR
Group

SNR 0.915 14.552 14.758 14.846 14.863 14.803 14.872

STOI 0.868 0.864 0.927 0.942 0.941 0.942 0.941

PESQ 1.413 1.551 1.826 1.659 1.642 1.643 1.635

Medium SNR
Group

SNR 6.147 17.311 18.111 18.228 18.189 18.152 18.183

STOI 0.913 0.895 0.973 0.951 0.968 0.967 0.963

PESQ 1.757 1.824 2.172 2.448 2.368 2.364 2.371

High SNR
Group

SNR 13.555 19.639 21.047 21.028 20.997 20.966 20.991

STOI 0.951 0.914 0.982 0.980 0.982 0.979 0.985

PESQ 2.373 2.140 3.446 3.354 3.333 3.390 3.318

Total
Group

SNR 6.872 17.167 18.049

STOI 0.910 0.891 0.967

PESQ 1.847 1.838 2.573

Figures 21 and 22 illustrate the denoised results of the proposed method representing two actual
sample data. Figures 21a and 22a illustrate the original noisy-speech data, which were the target for
denoising. Figures 21b and 22b illustrate the result of the speech segment detection. Here, we note
that the non-speech segments were excluded while the noises in the speech segments are maintained.
Figures 21c and 22c illustrate the denoised result of the proposed method; Figures 21d and 22d
the clean speech data. We note that the noises were eliminated in Figures 21c and 22c compared
to Figures 21b and 22b and the denoised result data became close to the clean speech data. We also
indicate that the time axis of the proposed method was shortened by processing of the speech segment
detection, which improved the denoising speed.
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(a) The original noisy-speech data.

(b) The result of speech segment detection.

(c) The result of the proposed method.

(d) The clean speech data.

Figure 21. The denoised results of a sample p226003.
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(a) The original noisy-speech data.

(b) The result of speech segment detection.

(c) The result of the proposed method.

(d) The clean speech data.

Figure 22. Denoised results of a sample p226022.



Appl. Sci. 2020, 10, 7385 21 of 24

5. Conclusions

In this paper, we have proposed a preprocessing strategy for denoising of speech data based on
the speech segment detection. A design of computationally efficient speech denoising is necessary to
develop a scalable method for large-scale data sets. Furthermore, as the deep learning-based methods
have been developed, its necessity becomes more important because they show the high performance
in general while requiring significant costs. The basic idea of the proposed method is using the speech
segment detection so as to exclude non-speech segments before denoising. The speech segmentation
detection can exclude non-speech segments effectively, which will be removed in denoising process
with a significant cost.

As further study, we plan to incorporate the proposed strategy, i.e., effective preprocessing of
denoising, to build a training model for denoising of the speech data. Two goals are (1) reducing the
time to build the training model and (2) improving the denoising accuracy of the model. Here, the
main issue will be that we need to figure out the characteristics of a data set for a target environment,
e.g., the SNR type and evaluation metric, before building the training model so as to use the most
effective speech segment detection method tailored to the target data set. Another issue is the
investigation on constructing an adaptive model that learns the change of the characteristics of
data sets because the most effective speech segment detection method becomes different as data sets
are updated or new data are added.

In this paper, we have investigated the speech segment detection methods for pre-processing
of deep learning-based denoising, which require significant processing and training costs, and have
improved the denoising speed by eliminating the segments that can be clearly determined by the
speech segment detection. Significant overheads of the deep learning-based methods are valid in many
other problems and domains as well. Especially, deep learning models in embedded devices such as
mobile or IoT devices require efficient processing. The examples are the face recognition model on a
single-board computer [44], real-time DNN model in mobile devices [45], and emotion recognition
in Rasberry Pi [46]. As a result, the proposed strategy, i.e., pre-processing for excluding unnecessary
parts with a negligible cost, which incur significant overhead in the deep learning process, can be
adapted and investigated to the deep-learning based methods for the other problems.
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