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Abstract: Recently, image compression using adaptive block truncation coding based on edge
quantization (ABTC-EQ) was proposed by Mathews and Nair. Their approach deals with an image
for two types of blocks, edge blocks and non-edge blocks. Different from using the bi-clustering
approach on all blocks in previous block truncation coding (BTC)-like schemes, ABTC-EQ adopts
tri-clustering to tackle edge blocks. The compression ratio of ABTC-EQ is reduced, but the visual
quality of the reconstructed image is significantly improved. However, it is observed that ABTC-EQ
uses 2 bits to represent the index of three clusters in a block. We can only use an average of 5/3
bits by variable-length code to represent the index of each cluster. On the other hand, there are two
observations on the quantization levels in a block. The first observation is that the difference between
the two quantization values is often smaller than the quantization values themselves. The second
observation is that more clusters may enhance the visual quality of the reconstructed image. Based
on variable-length coding and the above observations, we design variants of ABTC-EQ to enhance
the visual quality of the reconstructed image and compression ratio.

Keywords: block truncation coding; edge detection; Huffman code; k-means clustering;
lossy compression

1. Introduction

Rapid improvements in the area of network and information technology increase the services of
digital multimedia, especially digital image, in today’s digitalized and information world. For example,
consider storage and transmission. File compression reduces the amount of space needed to store
data, and also speeds the time to send over the Internet. About compressing digital images, there
are two main types of compressing digital images, lossless and lossy. In this paper, we deal with
block truncation coding (BTC) and its variants [1–4], which are lossy compression algorithms.
Because of their stable compression rates and low computation efforts, BTC-like schemes are widely
used in cryptography, e.g., data hiding [5–9], watermarking [10], secret image sharing, and visual
cryptography [11–14].

The BTC was first proposed by Delp and Mitchell [1]. It is a block-based lossy image compression
technique for grayscale or color images, where a quantizer is adopted to reduce the number of
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gray levels in each block. An image is subdivided into non-overlapping blocks. Then, each block is
coded by the mean, the standard deviation, and the bit map consisting of 0’s and 1’s. Suppose that
a block size has (4× 4) pixels, and then these 16 pixels (i.e., 128 bits) can be represented by a trio
with (8 + 8 + 16) = 32 bits. That is, 16 pixels are represented as two quantization levels and a bitmap.
Therefore, the compression ratio (CR) of BTC is determined from CR = (16× 8)/32 = 4 for this case. BTC
provides a good compression ratio without degrading the visual quality of the reconstructed image
much. However, the processing time for BTC algorithm has significant computational complexity,
and thus it is not generally recommended for time-consuming applications.

In [2], Lema and Mitchell proposed absolute moment BTC (AMBTC), a variation of BTC, which
has a simple computation. AMBTC adopts bi-clustering approach, and thus still uses two quantization
levels in a block like BTC. Afterwards the authors in [3] proposed a modified BTC (MBTC) to further
enhance the visual quality of the reconstructed image by using the so-called max-min quantizer.
Because of using the simple bi-clustering approach in AMBTC and MBTC, the details near edges will
be removed from the reconstructed image. As we know, edges are important information for human
visual perception. Moreover, the information of edges is also necessary for some image processing
applications, e.g., pattern recognition and optical character recognition. Therefore, the loss of details
near edges will compromise the availability of BTC-like compression, and this leads to motivation
for designing an edge-based BTC compression algorithm. Recently, Mathews and Nair proposed an
adaptive BTC based on edge quantization (ABTC-EQ) [4].

The authors first use edge detector to divide an image into edge blocks and non-edge blocks.
Afterward, by applying MBTC on non-edge blocks, and adopting tri-clustering algorithm to tackle
edge blocks, ABTC-EQ may provide the better visual quality of the reconstructed image, but has the
less compression ratio when compared with AMBTC or MBTC. This is because edge blocks have to
use three pixels to represent the quantization values for three clusters. However, it is observed that
ABTC-EQ uses 2 bits to represent the index of each cluster.

Compared with existing ABTC-EQ [4], MBTC [3], and AMBTC [1], the proposed enhanced
ABTC-EQ method takes full advantage of the image compression and achieves a higher image quality.
The main contributions of this paper are as follows: (1) The proposed method improves the compression
rate by using a variable-length code to represent the index of each cluster. As a result, we can only
use an average of 5/3 bits. That is, our proposed method less compression ratio when compared
with AMBTC or MBTC. (2) Increasing the number of quantization levels improves image quality,
but degrades compression efficiency. For this problem, we reduce the number of bits by using the
difference between the quantization levels for three or more quantization levels. (3) The proposed
method enhances the visual quality of the reconstructed image by exploiting the edges of a compressed
image. Variable-length coding used for our method enable to enhance the peak signal-to-noise ratio
(PSNR) and CR.

The rest of this paper is organized as follows. Section 2 briefly reviews AMBTC, MBTC,
and Mathews and Nair’s ABTC-EQ. The proposed ABTC-EQ with theoretical analyses are formulated
in Section 3. Experimental results and discussions are given in Section 4. Section 5 draws
some conclusions.

2. Previous Works

2.1. AMBTC and MBTC

In [2], Lema and Mitchell propose AMBTC, the variation of BTC, which has a simple computation.
Compared with BTC, it requires less computation time. AMBTC still preserves the higher mean and
lower mean of each block and uses these two values to quantize output. It provides better image quality
than BTC, as well as reasonable computational complexity. In AMBTC, an image is first subdivided
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into non-overlapping (k× k)-sized blocks, where k may be set to be (4× 4), (6× 6), (8× 8) and so on.
AMBTC adopts block-wise operation. For each block, the mean pixel value x̄ is calculated by

x̄ =
1

k× k

k2

∑
i=1

xi (1)

where xi denotes the i-th pixel in this block. Each pixel value xi is compared with the mean value x̄
using Equation (2). If xi is greater than or equal to x̄, bi becomes 1, otherwise bi becomes 0. That is,
a bitmap M = [bi] of the same block size which consists of two clusters is generated.

bi =

{
1, if xi ≥ x̄,
0, if xi < x̄.

(2)

AMBTC preserves two quantization values per block and the higher mean and the lower mean.
Equation (3) describes the method of generating two quantized values in each block. Here, t denotes
the number of “1” in each bitmap M, i.e., the number of pixels under xi ≥ x̄. b·c is the floor function is
the function that takes as input as real number x, and gives as output the greatest integer less than or
equal to x, denoted floor(x), or bxc. The means µ1 and µ0 are, respectively, the higher and lower means
based on x̄.

µ1 =

⌊
1
t ∑

xi≥x̄
xi

⌋
and µ0 =

⌊
1

(k× k)− t ∑
xi<x̄

xi

⌋
. (3)

Finally, a block of the image is compressed into two quantization levels (µ0, µ1) and bitmap M, i.e.,
trio (µ0, µ1, M). A bitmap M contains the bit-planes that represent the pixels, and the values µ0 and µ1

are used to decode the AMBTC compressed image. For the case k = 4, i.e., we deal with an image by
(4× 4) block-wise operation. Sixteen pixels in a block are represented as a trio (µ0, µ1, M) of 8 + 8 + 16
= 32 bits, and thus the CR is (16× 8)/32 = 4. Consider the example of a 512× 512-pixel image. The file
size of 2 M bits can be reduced to 0.5 M bits. In decoding phase, when two quantization levels and the
bitmap obtained, the corresponding image block can be easily reconstructed by replacing every “1” in
a bitmap M with µ1, while every “0” is replaced with µ0.

Because AMBTC provides better image quality and the fast computation, most BTC-based data
hiding schemes and secret image sharing schemes adopt AMBTC approach. In [3], the authors proposed
a MBTC by using max-min quantizer to further enhance the quality of reconstructed image. In AMBTC,
the threshold value used for distinguishing two clusters is simply using the mean value x̄ in a block.
A threshold value xth of MBTC in Equation (4) is obtained by calculating the average value of the
maximum value (xmax), minimum value (xmin), and mean value (x̄) in a block.

xth =
(xmax + xmin + x̄)

3
. (4)

Afterwards, by the same argument of AMBTC but using xth instead of x̄, we may obtain a trio for each
block in MBTC.

2.2. Mathews and Nair’s ABTC-EQ

In previous BTC and its variants, e.g., AMBTC and MBTC, the quantization approaches are all the
same. They all use bi-clustering approaches (two quantization levels) in all blocks. ABTC-EQ is an
edge-based block truncation scheme. Its quantization is based on the edge information. In ABTC-EQ,
we find the edged image from the given input image by Canny edge detector [15], where the process
of the detection algorithm is composed of 4 different steps: (1) smooth the image with Gaussian filter
to remove the noise. (2) find the intensity gradients of the image using finite-difference approximations
for the partial derivatives. (3) apply non-maximum suppression to the gradient magnitude. (4) use the
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double thresholding algorithm to determine potential edges.
For a block of the edge map (bitmap) E = [ei] (sized (k× k)) obtained from the given input image

based on the process, we classify the block into an edge block or a non-edge block using the criteria.
That is if all pixel values in the block E are ‘0’, it classifies to a non-edge block, otherwise, it classifies to
an edge block. Notes: The image created after applying the edge detector algorithm is a bitmap and
includes edges representing the shape of objects. By applying this feature, the set of blocks may be
classified into edge blocks or non-edge blocks.

For these two types of blocks, we use various quantization approaches. In case of non-edge blocks,
we use MBTC. Therefore, a non-edge image block can be represented as a trio (µ0, µ1, Mn), where
we intentionally use Mn notation to represent a bit map for the non-edge block. On the other hand,
for edge blocks, we use tri-clustering approach. The pixels in a block are classified into three clusters
(c0, c1, c2), which similar pixels are grouped into the same cluster, by k-means clustering algorithm [16].
A bitmap Me = [bi] of the edge block is generated by Equation (5).

bi =


00, if xi ∈ c0,
01, if xi ∈ c1,
10, if xi ∈ c2.

(5)

The mean value µ′i of each cluster ci, 0 ≤ i ≤ 2, is calculated with Equation (6), where µ′0 ≤ µ′1 ≤ µ′2.
Thus, an edge image block is represented as (µ′0, µ′1, µ′2, Me).

µ′i =

⌊
1
|ci| ∑

xi∈ci

xi

⌋
, 0 ≤ i ≤ 2. (6)

Bi-clustering and tri-clustering approaches are performed for non-edge blocks and edge blocks,
respectively. To discriminate edge blocks from non-edge blocks, an identifier flag f should be defined
and assigned with the value 0 (respectively, 1) for the edge block (respectively, non-edge block). Finally,
k2 pixels may be represented as ( f = 1, µ0, µ1, Mn) or ( f = 0, µ′0, µ′1, µ′2, Me). Therefore, the CR of
ABTC-EQ is dynamic not static like previous BTC schemes.

3. The Proposed ABTC-EQ

3.1. Design Concept

The advantage of ABTC-EQ [4] is to improve the quality of the reconstructed image because it
can represent edge and non-edge blocks. However, it is impossible that BTC and its variants cannot
represent edge block, because they only use two quantization levels, (µ0, µ1, M), to represent a block.
However, ABTC-EQ enhances the visual quality of the reconstructed image as well as reduces the CR
due to using an extra flag bit f and extra quantization value µ′2. To enhance BTC-like approaches, we
obviously should improve the CR as well as with a high PSNR. As a result of studying the ABTC-EQ,
it was found that the PSNR improvement of the reconstructed image was due to the tri-clustering
approach to the edge block. The weakness of this approach is that the CR decreases due to the increase
of the additional bits to represent the edge block. Some in-depth observations on ABTC-EQ are
listed below.

Observation 1. It is not necessary to use two bits to represent a pixel (i.e., ‘00’, ‘01’, and ‘10’) in bit map Me

for edge block.

As shown in Equation (5), we use (00), (01), and (10) for three clusters c0, c1, and c2, respectively.
However, we may use Huffman code, a variable-length code, to represent three clusters, by (0), (10),
and (11) with average length 5/3 bits for clusters c0, c1, and c2. Note: the Huffman code can be uniquely
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decoded. By this approach, the size of bit map Me is reduced from 2k2 to (5/3)/k2. Finally, the CR can
be enhanced.

Observation 2. Consider two quantization values (say µ′i and µ′j, where µ′i < µ′j). The difference (µ′j − µ′i)

between two quantization values is often smaller than the quantization values µ′i and µ′j themselves.

By observing quantization value, we herein use a homologous way to describe the difference
between two quantization values with the help of the coder in converting voice. A well-known coder,
differential pulse code modulation (DPCM), is described as follows: obtain the pulse of analog signals
by sampling and then convert the difference of pulses into binary sequences using the non-uniform
coding scale. This property is also true for the quantization levels in ABTC-EQ, i.e., the large difference
of quantization values does not occur frequently. Thus, we could carefully design our quantization
ranges for the small difference between two quantization values.

Observation 3. More clusters may enhance the PSNR of the reconstructed images.

In previous BTC-like schemes, all blocks adopt bi-clustering, i.e., using two quantization ranges
for each block. Mathews and Nair’s ABTC-EQ performed a tri-clustering approach on edge blocks.
Because there are three values µ0, µ1, and µ2 to approximate the pixel grayscale values, it can reduce
the mean square error. We may use more clusters (say four clusters) to more precisely approximate
pixel values.

3.2. The Proposed Schemes

We aim to achieve the high CR and the reasonable PSNR of the reconstructed image. For the
purpose, we proposed three schemes: (1) Scheme A motivated from Observation 1 , (2) Scheme B is
based on Observations 1 and 2, and (3) Scheme C is based on Observations 2 and 3. Compared with
Mathews and Nair’s ABTC-EQ [4], Scheme A has the same PSNR, while enhances the CR. However,
Scheme C has the same CR, while enhances the PSNR. On the other hand, Scheme B further enhances
the CR than Scheme A but still retain a reasonable PSNR compared with AMBTC [2] and MBTC [3].

(1) Scheme A: The algorithm is the same as that of ABTC-EQ. If a block belongs to the edge
block as described in Observation 1, the bitmap (M

′
e) is composed of {‘0’, ‘01’, ‘10’} (see Equation (7)).

In this case, we show the compression performance of the bitmap when a variable-length coding
is applied to the bitmap. The proof is demonstrated by the Equations (8) and (9). Finally, we use
( f = 0, µ′0, µ′1, µ′2, M′e) for an edge block.

bi =


0, if xi ∈ c0,
01, if xi ∈ c1,
10, if xi ∈ c2.

(7)

Theorem 1. Suppose that the percentages of edge blocks and non-edge blocks in an image be pe and pn,
where pe + pn = 1, when dealing with (k × k)-pixel block in an image. The CR of ABTC-EQ is CRMN

= 8k2

(17+k2)+(8+k2)×pe
, and Scheme A has the CRA = 8k2

(17+k2)+(8+(2k2/3))×pe
, where CRA > CRMN. Meanwhile,

they have the same PSNR of reconstructed image, i.e., PSNRMN = PSNRA.
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Proof. By the compression data formats ( f = 1, µ0, µ1, Mn) and ( f = 0, µ′0, µ′1, µ′2, Me) of ABTC-EQ,
and the formats of Scheme A ( f = 1, µ0, µ1, Mn) and ( f = 0, µ′0, µ′1, µ′2, M′e), we may easily derive
CRMN and CRA in Equations (8) and (9), respectively.

CRMN =


8×k2

(1 + 2× 8 + k2)× pn︸ ︷︷ ︸
non-edge block

+(1 + 3× 8 + 2× k2)× pe︸ ︷︷ ︸
edge block

= 8k2

(17+k2)+(8+k2)×pe

(8)

CRA =


8×k2

(1 + 2× 8 + k2)× pn︸ ︷︷ ︸
non-edge block

+(1 + 3× 8 + (5/3)× k2)× pe︸ ︷︷ ︸
edge block

= 8k2

(17+k2)+(8+(2k2/3))×pe

(9)

By Equations (8) and (9), since (8+(2k2/3)) < (8+ k2)) we obviously have CRA > CRMN. Except using
different bit map M′e from Me, Scheme A uses the same approaches of ABTC-EQ. Thus, both schemes
have the same PSNR, i.e., PSNRMN = PSNRA. Notes: In Equations (8) and (9), (1+ 2× 8+ k2) represents
data format of the edge block, i.e., “1” is a flag bit, “2× 8” is 2 pixels × 8 bits (two quantization levels),
and “k2” is k× k × 1 bits (bitmap) in non-edge block. In each block, (1 + 3× 8 + 2× k2) denotes the
format of the non-edge block, i.e., “3× 8” is 3 pixels × 8 bits and “2× k2” is k× k× 2 bits in edge
block. The 5/3 of Equation (9) indicates that the number of cluster is 3 and the total bit length is 5
when a block belongs to an edge block. By this approach, the size of bit map Me is reduced from 2k2 to
(5/3)/k2. Finally, we proved that the CR performance is enhanced by Scheme A.

(2) Scheme B: Basically, this scheme is based on the compressed bitmap M′e = [bi] derived
from Observation 1. Moreover, as explained in Observation 2, a new compressed quantization levels
(δ0, δ1, δ2) is exploited. This is derived from the idea that compression performance can be improved by
exploiting the difference between the two quantization levels. For this, we define a way of classifying
the range of quantization levels into four categories. That is, for the tri-cluster δi, 0 ≤ i ≤ 2, we use ni
bits with a radix Ri : (rni , rni−1, . . . , r1) to represent its quantization levels.

(I)(n0 = 7, n1 = 7, n2 = 7) with


R0 : (r7, r6, . . . , r1) = (128 64 32 16 8 4 2),
R1 : (r7, r6, . . . , r1) = (64 32 16 8 4 2 1),
R2 : (r7, r6, . . . , r1) = (64 32 16 8 4 2 1).

(I I)(n0 = 6, n1 = 6, n2 = 6) with


R0 : (r6, r5, . . . , r1) = (128 64 32 16 8 4),
R1 : (r6, r5, . . . , r1) = (64 32 16 8 4 2),
R2 : (r6, r5, . . . , r1) = (64 32 16 8 4 2).

(I I I)(n0 = 5, n1 = 5, n2 = 5) with


R0 : (r5, r4, . . . , r1) = (128 64 32 16 8),
R1 : (r5, r4, . . . , r1) = (64 32 16 8 4),
R2 : (r5, r4, . . . , r1) = (64 32 16 8 4).

(IV)(n0 = 4, n1 = 4, n2 = 4) with


R0 : (r4, r3, . . . , r1) = (128 64 32 16),
R1 : (r4, r3, . . . , r1) = (64 32 16 8),
R2 : (r4, r3, . . . , r1) = (64 32 16 8).

(10)

The new quantization levels due to the tri-cluster, δi, 0 ≤ i ≤ 2, is then iteratively determined
based on radix Ri with the equation min{µ′i − ∑i

j=0 δj}. Finally, we obtain new quantization levels
( f = 0, δ0, δ1, δ2, M′e) for an edge block. This process can greatly reduce the bits of the quantization level.
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Theorem 2. Suppose that the percentages of edge blocks and non-edge blocks in an image be pe and
pn, where pe + pn = 1, when dealing with (k × k)-pixel block in an image. Scheme B has the CRB

= 8k2

(17+k2)+(∑3
i=1 ni(2k2/3))×pe

, and CRB-IV > CRB-III > CRB-II > CRA.

Proof. By the compression data formats of Scheme B ( f = 1, µ0, µ1, Mn) and ( f = 0, δ0, δ1, δ2, M′e), we
may derive in Equation (11).

CRB = 8k2

(1 + 2× 8 + k2)× pn)︸ ︷︷ ︸
non-edge block

+ (1 +
3

∑
i=1

ni + (2/3)× k2)× pe︸ ︷︷ ︸
edge block

= 8k2

(17+k2)+(∑3
i=1 ni−16+(2k2/3))×pe

(11)

Via Equation (11) and four quantization ranges in Equation (10), we have compression ratios for
these four quantization ranges CRB-I =

8k2

(17+k2)+(5+(2k2/3))×pe
, CRB-II =

8k2

(17+k2)+(2+(2k2/3))×pe
, CRB-III

= 8k2

(17+k2)+((2k2/3)−1)×pe
, and CRB-IV = 8k2

(17+k2)+((2k2/3)−4)×pe
. From the above and Equation (9), we

have CRB-IV > CRB-III > CRB-II > CRB-I > CRA.

All compression ratios of Scheme B are larger than CRMN (ABTC-EQ). By Observation 3, we may
obtain the approximated (µ′0, µ′1, µ′2) with a tolerant distortion from (δ0, δ1, δ2). Moreover, Scheme B
may have the higher PSNR than those of AMBTC and MBTC.

(3) Scheme C: As the number of clusters for a block increases, the PSNR of an image increases
proportionally like the case of Observation 3. In this scheme, four clusters (c0, c1, c2, c3) are introduced
for edge blocks and the bitmap (M′′e = [bi]) shown in Equation (12) is used. The mean µ′′i of each cluster
ci, 0 ≤ i ≤ 3, is calculated with Equation (13), where µ′′0 ≤ µ′′1 ≤ µ′′2 ≤ µ′′3 . Moreover, via Observation 2,
we use a new quantization levels (δ′0, δ′1, δ′2, δ′3) to represent (µ′′0 , µ′′1 , µ′′2 , µ′′3 ). Here, the quantization
range is defined like Equation (14) and the value δ′i , 0 ≤ i ≤ 3 is then iteratively determined based on
radix Ri with the the criteria min{µ′′i −∑i

j=0 δ′j}. Finally, we use new format ( f = 0, δ′0, δ′1, δ′2, δ′3, M′′e )
for an edge block. Scheme C is a method to improve image quality while maintaining the same level
of compression as ABTC-EQ, and here, it is proved that the compression ratios of Scheme C and
ABTC-EQ are the same for this case.

bi =


00, if xi ∈ c0,
01, if xi ∈ c1,
10, if xi ∈ c2,
11, if xi ∈ c3.

(12)

µ′′i =

⌊
1
|ci| ∑

xi∈ci

xi

⌋
, 0 ≤ i ≤ 3. (13)

(n0 = 6, n1 = 6, n2 = 6, n3 = 6) with


R0 : (r6, r5, · · · , r1) = (128 64 32 16 8 4),
R1 : (r6, r5, · · · , r1) = (64 32 16 8 4 2),
R2 : (r6, r5, · · · , r1) = (32 16 8 4 2 1),
R3 : (r6, r5, · · · , r1) = (32 16 8 4 2 1).

(14)

Theorem 3. Suppose that the percentages of edge blocks and non-edge blocks in an image be pe and pn, where
pe + pn = 1, when dealing with (k× k)-pixel block in an image. Scheme C has the CRC = 8k2

(17+k2)+(8+k2)×pe
,

where CRC = CRMN.

Proof. By the compression data formats of Scheme C ( f = 1, µ0, µ1, Mn) and ( f = 0, δ′0, δ′1, δ′2, δ′3, M′′e ),
we may easily derive CRC in Equation (15).
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CRC = 8×k2

(1 + 2× 8 + k2)× pn)︸ ︷︷ ︸
non-edge block

+ (1 +
4

∑
i=1

ni + 2× k2)× pe︸ ︷︷ ︸
edge block

= 8k2

(17+k2)+(24−16+k2)×pe
(∵ ∑4

i=1 ni = 24 via Equation (14))

= 8k2

(17+k2)+(8+k2)×pe
= CRMN

(15)

3.3. Examples

An example, dealing with a (4 × 4)-pixel image block, is given in this sub section to easily
understand all proposed schemes: Scheme A, Scheme B-I ∼ Scheme B-IV, and Scheme C. Moreover,
we will show the stored bits for this block and average mean square error (AMSE) of a single block for
all prosed schemes, and the AMBTC, MBTC, and ABTC-EQ.

Suppose that a (4× 4)-pixel image block is


124 89 124 60
135 114 120 86
120 144 68 82
100 104 55 78

.

Obviously, by using AMBTC [2], this block can be represented as a compressed trio (77, 123,
1010111011000100), which has to store 32 bits for this block and the AMSE is 167.56. The trio is
(74, 120, 1010111011001100) when using MBTC, which differs with clustering the thirteen pixel in this
block, and its AMSE is slightly reduced as 160.44.

Example 1. Compress the image block by Scheme A.

By Canny edge detector, we first find out the edge map E =


0 0 0 0
0 0 1 0
0 1 1 0
0 0 0 0

.

According to the definition of an edge block, this image block is an edge block. We then obtain three clusters
from these 16 pixels of block via k-means clustering algorithm, and assign (0), (10), and (11) for each cluster to

establish a bit map M′e =


11 10 11 0
11 11 11 10
11 11 0 10
10 10 0 10

.

Via Equation (7), we determine µ′0 = 61, µ′1 = 89, and µ′2 = 125. Therefore, the compressed data
( f = 0, µ′0, µ′1, µ′2, M′e) is (0, 61, 89, 125, 11101101111111011110101010010) of 54 bits. Moreover, the AMSE
is 77.81. Mathews and Nair’s ABTC-EQ uses ( f = 0, µ′0, µ′1, µ′2, Me) with the same (µ′0, µ′1, µ′2), and thus it
has the same AMSE. However, it uses the bit map Me of 32 bits and it requires a total of 57 bits to store this
block. Therefore, we showed that Scheme A provides an advantage to reduce 3-bit in compression of the block
compared to ABTC-EQ.

Example 2. Compress the image block by Scheme B.
Consider using the quantization range in Scheme B-I. By the range R0 = (128 64 32 16 8 4 2) and the condition
satisfying min{µ′0 − δ0}, we derive δ0 = 60; by the range R1 = (64 32 16 8 4 2 1) and the condition satisfying
min{µ′1 − δ′1 − δ0}, we derive δ1 = 29; by the range R2 = (64 32 16 8 4 2 1) and the condition satisfying
min{µ′2 − δ′2 − δ′1 − δ0}, we derive δ2 = 36. Therefore, the compressed data ( f = 0, δ0, δ1, δ2, M′e) is (0, 60, 29,
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36, 11101101111111011110101010010) of 51 bits (∵ |δ0|+ |δ1|+ |δ2| = 21 bits). In reconstruction phase,
the recovered values of are (60, 89, 125). Thus, the AMSE = 78 is slightly larger than that of Scheme A.

Consider using the quantization range in Scheme B-II. By the same argument of Scheme B-I, we
may derive (δ0 = 60, δ1 = 28, δ2 = 36) . The recovered values of (µ′0, µ′1, µ′2) are (60, 88, 124). Thus,
Scheme B-II has AMSE=80.19, but further reduces the compressed data to 48 bits.

When using quantization ranges of Scheme B-III and Scheme B-IV, we have and (δ0 = 64, δ1 =

24, δ2 = 36) and (δ0 = 64, δ1 = 24, δ2 = 40), respectively. In reconstruction, Scheme B-III and
Scheme B-IV can recover (µ′0, µ′1, µ′2) = (64, 88, 124) and (µ′0, µ′1, µ′2) = (64, 88, 128). Finally, Scheme B-III
(respectively, Scheme B-IV) has AMSE=81.69 (respectively, 82.19) and stores 45 (respectively, 42) bits
for this block.

Example 3. Compress the image block by Scheme C.
By k-means clustering algorithm, we subdivide this block into four clusters, and assign (00), (01), (10), and (11)

for each cluster to establish bit map M′′e =


10 01 10 00
11 10 10 01
10 11 00 01
10 10 00 01

. Via Equation (13), we determine µ′′0 = 61,

µ′′1 = 83, µ′′2 = 115 and µ′′3 = 139. Using quantization range in Scheme C, by the range R0 = (128 64 32 16 8 4)
and the condition satisfying min{µ′′0 − δ′0 }, we derive δ0 = 60; by the range R1 = (64 32 16 8 4 2) and the
condition satisfying min{µ′′1 − δ′1− δ′0 }, we derive δ′1 = 22; by the range R2 = (32 16 8 4 2 1) and the condition
satisfying min{µ′′2 − δ′2 − δ′1 − δ′0 }, we derive δ′2 = 33; by the range R3 = (32 16 8 4 2 1) and the condition
satisfying min{µ′′2 − δ′3 − δ′2 − δ′1 − δ′0 }, we derive δ′3 = 24.

Thus, the compressed data ( f = 0, δ′0, δ′1, δ′2, δ′3, M′′e ) is (0, 60, 22, 33, 24, 100110001110100
11011000110100001) of 57 bits (∵ |δ′0|+ |δ′1|+ |δ′2|+ |δ′3| = 24 bits), which is the same as Mathews and
Nair’s ABTC-EQ (see Example 1). In reconstruction phase, the recovered values of (µ′′0 , µ′′1 , µ′′2 , µ′′3 ) are
(60, 82, 115, 139). Thus, the AMSE is 48.13.

The AMBTC has the worst AMSE = 167.56, but it needs the least bits (32 bits) for representing
a block. The above three examples imply that the AMSE = 48.13 of Scheme C is much lesser than
those of other schemes (note: this significant improvement comes from the quad-clustering approach),
and its number of required bits is the same as ABTC-EQ. Compared with ABTC-EQ, Scheme A has
the same AMSE but has fewer bits for a block. About Scheme B, it can make a trade of the number
of required bits for AMSE. For example, Scheme B-IV only needs 42 bits for a block, and meanwhile,
the AMSE = 82.19 is far less than AMSE = 167.56 of AMBTC.

4. Experiment and Comparison

4.1. Experimental Results

Five test images, Lena, Butterfly, Cameraman, Lake, and Peppers are used for evaluating all
BTC-like schemes: AMBTC, MBTC, ABTC-EQ, and the proposed schemes (Scheme A, Scheme B and
Scheme C). To properly deal with all (k× k) blocks, where k = 4, 6 and 8, we use all test images of the
size 504× 504 pixels. The evaluation metrics, PSNR, CR, structural similarity (SSIM) index, and feature
similarity (FSIM) index, are used to compare the performance of all these schemes. Table 1 illustrates
the comparison of all BTC-like Schemes. For the test image Lena, consider dealing with (4× 4) blocks
by all schemes.

Scheme C adopts quad-clustering, and also uses 24 bits to represent four quantization values by
the approach of using difference. Therefore, Scheme C has the best visual quality (PSNR = 39.62 dB)
and meanwhile has the same CR = 3.09 as ABTC-EQ. While AMBTC and MBTC have high CR, they
have poor PSNR because they only use the bi-clustering approach. The PSNR = 33.87 dB of MBTC is



Appl. Sci. 2020, 10, 7340 10 of 15

slightly greater than the PSNR = 33.42 dB of AMBTC. This slight enhancement comes from using the
more precise threshold value for MBTC.

Scheme A uses tri-clustering and same quantization ranges like ABTC-EQ, and thus Scheme A
and ABTC-EQ have the same PSNR = 37.49 dB. Because of using a variable-length code to record
the index of the cluster, Scheme A has a higher CR = 3.24 than the CR = 3.09 of ABTC-EQ. On the
other hand, Scheme B may trade-off PSNR for CR by using different quantization ranges. Scheme B-I
has PSNR = 37.47 dB almost the same to PSNR = 37.49 dB of ABTC-EQ, and has the higher CR than
Scheme A. If we want to achieve a high CR and meanwhile retain a moderate PSNR, we may choose
Scheme B-IV, which has the CR = 3.62 PSNR = 35.96 dB. Moreover, all the values of SSIM and FSIM
demonstrate consistency with the performance of PSNR.

Table 1. Comparison of block truncation coding (BTC)-like Schemes on peak signal-to-noise ratio
(PSNR), compression ratio (CR), structural similarity (SSIM) and feature similarity (FSIM).

Tested
Image Method Block Size ( 4 × 4) Pixels Block Size ( 6 × 6) Pixels Block Size ( 8 × 8) Pixels

PSNR CR SSIM FSIM PSNR CR SSIM FSIM PSNR CR SSIM FSIM

Lena

AMBTC 33.42 4.00 0.9901 0.9946 31.30 5.54 0.9753 0.9814 29.99 6.40 0.9587 0.9697
MBTC 33.87 4.00 0.9901 0.9942 31.77 5.54 0.9763 0.9800 30.55 6.40 0.9614 0.9647
ABTC-EQ 37.49 3.09 0.9944 0.9973 35.29 3.98 0.9885 0.9915 34.07 4.36 0.9826 0.9855
Scheme A 37.49 3.24 0.9944 0.9973 35.29 4.29 0.9885 0.9915 34.07 4.80 0.9826 0.9855
Scheme B-I 37.47 3.33 0.9945 0.9974 35.28 4.38 0.9886 0.9917 34.05 4.87 0.9827 0.9857
Scheme B-II 37.39 3.42 0.9940 0.9970 35.21 4.47 0.9879 0.9911 34.00 4.94 0.9819 0.9849
Scheme B-III 37.14 3.52 0.9928 0.9962 35.01 4.56 0.9862 0.9896 33.82 5.01 0.9799 0.9832
Scheme B-IV 35.96 3.62 0.9869 0.9917 34.17 4.66 0.9787 0.9841 33.13 5.09 0.9717 0.9770
Scheme C 39.62 3.09 0.9954 0.9979 37.40 3.98 0.9911 0.9939 36.26 4.36 0.9874 0.9907

Butterfly

AMBTC 32.26 4.00 0.9877 0.9944 30.27 5.54 0.9702 0.9818 29.09 6.40 0.9520 0.9687
MBTC 32.66 4.00 0.9877 0.9939 30.74 5.54 0.9721 0.9806 29.61 6.40 0.9552 0.9644
ABTC-EQ 36.26 2.99 0.9939 0.9971 34.20 3.78 0.9866 0.9908 33.04 4.09 0.9793 0.9845
Scheme A 36.26 3.15 0.9939 0.9971 34.20 4.12 0.9866 0.9908 33.04 4.57 0.9793 0.9845
Scheme B-I 36.24 3.25 0.9939 0.9971 34.18 4.21 0.9867 0.9910 33.02 4.64 0.9795 0.9847
Scheme B-II 36.17 3.35 0.9935 0.9967 34.12 4.31 0.9861 0.9904 32.97 4.72 0.9786 0.9840
Scheme B-III 35.96 3.46 0.9925 0.9961 33.96 4.42 0.9846 0.9891 32.81 4.80 0.9769 0.9823
Scheme B-IV 34.99 3.58 0.9874 0.9922 33.24 4.53 0.9779 0.9835 32.19 4.89 0.9692 0.9759
Scheme C 38.32 2.99 0.9951 0.9976 36.29 3.78 0.9901 0.9933 35.19 4.09 0.9852 0.9895

Cameraman

AMBTC 32.13 4.00 0.9920 0.9934 29.82 5.54 0.9782 0.9762 28.67 6.40 0.9659 0.9609
MBTC 32.43 4.00 0.9915 0.9914 30.24 5.54 0.9795 0.9739 29.13 6.40 0.9678 0.9559
ABTC-EQ 36.73 3.12 0.9961 0.9971 34.33 4.07 0.9914 0.9909 33.12 4.56 0.9872 0.9844
Scheme A 36.73 3.26 0.9961 0.9971 34.33 4.37 0.9914 0.9909 33.12 4.97 0.9872 0.9844
Scheme B-I 36.71 3.35 0.9961 0.9972 34.31 4.45 0.9916 0.9911 33.11 5.03 0.9874 0.9848
Scheme B-II 36.65 3.44 0.9957 0.9967 34.27 4.54 0.9910 0.9903 33.07 5.10 0.9867 0.9838
Scheme B-III 36.43 3.53 0.9946 0.9957 34.13 4.62 0.9896 0.9888 32.95 5.16 0.9851 0.9820
Scheme B-IV 35.30 3.63 0.9891 0.9892 33.42 4.72 0.9828 0.9812 32.41 5.23 0.9779 0.9737
Scheme C 39.05 3.12 0.9968 0.9978 36.73 4.07 0.9939 0.9944 35.56 4.56 0.9913 0.9910

Lake

AMBTC 30.48 4.00 0.9869 0.9918 28.29 5.54 0.9674 0.9747 27.30 6.40 0.9519 0.9611
MBTC 30.93 4.00 0.9866 0.9904 28.82 5.54 0.9698 0.9714 27.94 6.40 0.9557 0.9529
ABTC-EQ 34.68 3.04 0.9928 0.9958 32.50 3.88 0.9853 0.9882 31.55 4.25 0.9796 0.9808
Scheme A 34.68 3.19 0.9928 0.9958 32.50 4.21 0.9853 0.9882 31.55 4.71 0.9796 0.9808
Scheme B-I 34.67 3.29 0.9928 0.9959 32.49 4.30 0.9854 0.9883 31.54 4.78 0.9798 0.9811
Scheme B-II 34.62 3.39 0.9925 0.9956 32.46 4.40 0.9849 0.9877 31.50 4.86 0.9792 0.9804
Scheme B-III 34.47 3.49 0.9919 0.9949 32.34 4.49 0.9839 0.9868 31.39 4.93 0.9778 0.9787
Scheme B-IV 33.87 3.60 0.9887 0.9922 31.86 4.60 0.9790 0.9822 30.93 5.01 0.9715 0.9730
Scheme C 36.71 3.04 0.9940 0.9966 34.74 3.88 0.9890 0.9919 33.81 4.25 0.9853 0.9877

Peppers

AMBTC 33.57 4.00 0.9908 0.9956 31.22 5.54 0.9772 0.9826 29.73 6.40 0.9619 0.9689
MBTC 34.05 4.00 0.9904 0.9946 31.87 5.54 0.9777 0.9802 30.49 6.40 0.9629 0.9621
ABTC-EQ 37.59 3.17 0.9939 0.9975 35.40 4.05 0.9878 0.9915 34.07 4.39 0.9818 0.9850
Scheme A 37.59 3.31 0.9939 0.9975 35.40 4.35 0.9878 0.9915 34.07 4.83 0.9818 0.9850
Scheme B-I 37.57 3.39 0.9939 0.9975 35.37 4.43 0.9879 0.9916 34.03 4.89 0.9819 0.9851
Scheme B-II 37.50 3.47 0.9936 0.9972 35.30 4.52 0.9873 0.9909 33.98 4.96 0.9811 0.9843
Scheme B-III 37.27 3.56 0.9926 0.9963 35.12 4.61 0.9859 0.9895 33.81 5.04 0.9793 0.9822
Scheme B-IV 36.11 3.65 0.9873 0.9916 34.25 4.70 0.9786 0.9832 33.09 5.11 0.9710 0.9749
Scheme C 39.26 3.17 0.9946 0.9977 37.06 4.05 0.9899 0.9932 35.77 4.39 0.9856 0.9891

For simplicity, we only show experimental results for Lena. The original image is given in
Figure 1a, and the reconstructed images from AMBTC, MBTC, ABTC-EQ, Scheme A, Scheme B-I,
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Scheme B-II, Scheme B-III, Scheme B-IV, and Scheme C using (4× 4) blocks are, respectively, illustrated
in Figure 1b–j. Scheme C (Figure 1j) has the best PSNR 39.62 dB.

         (a)                 (b)                    (c)               (d)              (e) 

     (f)                  (g)                 (h)                  (i)                 (j) 

Figure 1. The reconstructed images for Lena: (a) original image (b) absolute moment BTC (AMBTC):
33.42 dB (c) modified BTC (MBTC): 33.87 dB (d) adaptive block truncation coding based on edge
quantization (ABTC-EQ): 37.49 dB (e) Scheme A: 37.49 dB (f) Scheme B-I: 37.47 dB (g) Scheme B-II:
37.39 dB (h) Scheme B-III: 37.14 dB (i) Scheme B-IV: 35.96 dB (j) Scheme C: 39.62 dB.

ABTC-EQ and the proposed schemes deal with edged blocks and thus may have better
performance near edges. The edge images of the original image Cameraman and the reconstructed
images from AMBTC, MBTC, ABTC-EQ, and Scheme C are shown in Figure 2. The non-edge based
schemes (AMBTC and MBTC) do not retain the details of selected portions, as shown in the dashed
circle. However, both Scheme C and ABTC-EQ have better details. Moreover, it is observed that Scheme
C demonstrates more edges in the circle area than ABTC-EQ. Scheme C depicts the improvement in
the visual quality near edges, and its edge image is very similar to the original image.

   (a)                   (b)              (c)                (d)        (e) 

Figure 2. Selected portion of edge image for Cameraman: (a) original image (b) AMBTC (c) MBTC (d)
ABTC-EQ (e) Scheme C.

4.2. Discussion

We further discuss three important issues in-depth: (i) the visual quality of reconstructed image,
i.e., PSNR, (ii) the size of a compressed rate, i.e., CR, and (iii) an appropriate way of using Scheme A,
Scheme B, and Scheme C for applications.

(1) Visual Quality of Reconstructed Image:

In Schemes B and C, we adopt various quantization range for each cluster. Scheme B has three
quantization ranges Ri for δi, 0 ≤ i ≤ 2, while Scheme C has four quantization ranges Ri for δi, 0 ≤ i ≤ 3.
Consider Scheme C with four ranges R0 = (128 64 32 16 8 4), R1 = (64 32 16 8 4 2), R2 = (32 16 8 4 2 1),
and R3 = (32 16 8 4 2 1). By the definition µ′′0 = δ′0, we have the quantization error ±2(∵ R0 can
represent the values 0, 4, 8, . . . , and 252). Because of µ′′1 = δ′0 + δ′1 = µ′′0 + δ′1 with minimum distortion,
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if the values of quantization range R1 can catch up the difference δ′1 then the quantization error of µ′1 is
±1(∵ R1 can represent the values 0, 2, 4, . . . , and 126). By the same argument, we have no quantization
errors for µ′2 and µ′3, because R2 and R3 can represent the values 0, 1, 2, . . . , and 63.

Therefore, when comparing with the original values of four clusters (c0, c1, c2, c3), our recovered
values have very small distortion. In Example 3, the original values are (µ′′0 , µ′′1 , µ′′2 , µ′′3 ) =

(61, 83, 115, 139), and the recovered values are (60, 82, 115, 139), almost the same to the original
one. For this case, we still use 24 bits to represent four quantization values, which are the same to
ABTC-EQ using 24 bits to represent three quantization values.

By using the above analysis, we may derive quantization errors of (µ′0, µ′1, µ′2) for Schemes B-I, B-II,
B-III and B-IV as (±1, 0, 0), (±2,±1,±1), (±4,±2,±2), and (±8,±4,±4), respectively. For the original
values (µ′0, µ′1, µ′2) = (61, 89, 125), Example 2 demonstrates that the recovered values for Schemes B-I,
B-II, B-III and B-IV are (60, 89, 125), (60, 88, 124), (64, 88, 124) and (64, 88, 128). These recovered results
are consistent with the theoretical quantization errors. Now, we give an analysis on the probability of
whether a quantization range can catch up the previous difference. For example, for the case using
Scheme C, there are four clusters. On average, we may have four (µ′′0 , µ′′1 , µ′′2 , µ′′3 ) = (51, 102, 153, 204),
and the first value µ′0 and the differences (δ′1, δ′2, δ′3) are no larger than 51.

The quantization ranges of Scheme C R0 : 0 ∼ 252, R1 : 0 ∼ 126, R2 : 0 ∼ 63, and R3 : 0 ∼ 63
satisfy the requirement. For a (δ′0, δ′1, δ′2, δ′3), the difference δ′1 is bounded with the value (255− s),
where s = (µ′′0 + δ′2 + δ′3) = (δ′0 + δ′1 + δ′2). Because the quantization range R1 : 0 ∼ 126 is used for δ′1,
for an extreme case which s is very small, the value of (255− s) may be larger than 126, out of range
R1. This may give rise to large error of recovered value. As we know, k-means clustering algorithm is
a good quantization algorithm. Therefore, for most data, we may recover the original (µ′′0 , µ′′1 , µ′′2 , µ′′3 )

with small distortion. Experimental results in Table 1 also confirms the above statement.

(2) Size of Compressed Rates (CRs):

Here, we deal with the enhancement of three modified ABTC-EQ schemes such as Scheme A,
Scheme B, and Scheme C. Except the Scheme C (using two bits to represent four clusters), the other two
schemes enhance the CR. As we know about compression technology, the CR is the most important
key property. Better CR implies that compression technology has a better performance. Therefore, we
showed a theoretical analysis of the estimated CRs in Theorems 1, 2, and 3. In addition, to prove the
accuracy for theorem, we show a comparison of the simulation results (Table 2) and the estimated
CRs derived by the Theorems. That is when k is {4,6,8} for all values of the given Pe, the expected
compression ratio of the proposed method is shown in Table 2.

Moreover, the average of CRs for five test images (Lena, Butterfly, Cameraman, Lake, Pepper)
are listed. Consider the CRs using Scheme A. For the case k = 4, the average CR of experimental
values is 3.23 near the theoretical CR = 3.24 (pe = 0.35). The average CR of experimental values is 4.27
(respectively, 4.78) for k = 6 (respectively, k = 8), which is near the theoretical CR = 4.27 (pe = 0.45)
(respectively, CR = 4.78 (pe = 0.50)). This result consists with the increment of pe for a large k. As we
know, if the edge values ei, 1 ≤ i ≤ k2, in E is “1” and not all the edge values are “1”, then the image
block is defined as an edge block. The number of edge blocks is increased when the value of k is
increased, and thus the probability is increase for the large k.
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Table 2. Estimated CRs of all proposed schemes with k = 4, 6 and 8 for 0.05 ≤ pe ≤ 0.6.

Pe
Scheme A Scheme B-I Scheme B-II Scheme B-III Scheme B-IV Scheme C

(AMBTC-EQ)

k = 4 k = 6 k = 8 k = 4 k = 6 k = 8 k = 4 k = 6 k = 8 k = 4 k = 6 k = 8 k = 4 k = 6 k = 8 k = 4 k = 6 k = 8

0.05 3.77 5.27 6.13 3.79 5.29 6.14 3.81 5.30 6.15 3.82 5.32 6.16 3.84 5.33 6.17 3.74 5.22 6.05
0.10 3.67 5.12 5.95 3.70 5.15 5.97 3.74 5.18 5.99 3.77 5.21 6.01 3.80 5.24 6.03 3.62 5.02 5.80
0.15 3.58 4.98 5.78 3.62 5.02 5.81 3.67 5.06 5.84 3.72 5.10 5.87 3.76 5.14 5.90 3.50 4.83 5.58
0.20 3.48 4.85 5.62 3.54 4.90 5.66 3.60 4.95 5.69 3.66 5.00 5.73 3.73 5.05 5.77 3.39 4.66 5.37
0.25 3.40 4.72 5.47 3.47 4.78 5.51 3.54 4.84 5.56 3.61 4.90 5.60 3.69 4.97 5.65 3.28 4.50 5.17
0.30 3.32 4.60 5.32 3.40 4.67 5.37 3.48 4.74 5.42 3.57 4.81 5.48 3.66 4.88 5.53 3.18 4.35 4.99
0.35 3.24 4.49 5.19 3.33 4.56 5.24 3.42 4.64 5.30 3.52 4.72 5.36 3.62 4.80 5.42 3.09 4.21 4.82
0.40 3.16 4.38 5.06 3.26 4.46 5.12 3.36 4.54 5.18 3.47 4.63 5.24 3.59 4.72 5.31 3.00 4.08 4.66
0.45 3.09 4.27 4.93 3.20 4.36 5.00 3.31 4.45 5.06 3.43 4.55 5.13 3.56 4.65 5.20 2.92 3.96 4.51
0.50 3.02 4.17 4.82 3.13 4.27 4.88 3.25 4.36 4.95 3.38 4.47 5.03 3.52 4.57 5.10 2.84 3.84 4.38
0.55 2.96 4.08 4.70 3.08 4.18 4.78 3.20 4.28 4.85 3.34 4.39 4.93 3.49 4.50 5.01 2.77 3.73 4.25
0.60 2.90 3.99 4.60 3.02 4.09 4.67 3.15 4.20 4.75 3.30 4.31 4.83 3.46 4.43 4.91 2.70 3.63 4.12

Avg. values 3.23 4.27 4.78 3.32 4.35 4.84 3.41 4.45 4.92 3.51 4.54 4.99 3.62 4.64 5.07 3.08 3.95 4.33

Notes: “Avg. values” show averages experimental values as generating given algorithms such as Scheme A ... Scheme C.

(3) Time Complexity:

The time complexity of all the proposed methods is an important criterion for the performance
evaluation of compression algorithms. The suggested method fits this criterion very well. Because the
only difference between Scheme A and the original ABTC-EQ is that Scheme A adopts Huffman
code for representing three clusters, namely using (0), (10), and (11). This is a very simple Huffman
code. In fact, we do not need encoding/decoding for this Huffman code in Scheme A. From another
viewpoint, the original ABTC-EQ uses (00), (01), and (10) for representing three clusters, while Scheme
A uses (0), (10), and (11) instead. The Huffman code in Scheme A is only used to represent the index of
clusters c0, c1, and c2, and we do not need encoding/decoding of Huffman code. At this time, the (0),
(10), and (11) are to only assure the unique representation of the index of the cluster.

Scheme B uses the same approach as Scheme A, represent clusters using Huffman code, and this
approach combines various quantization ranges. Quantized pixels are used as representative pixels
(8 bits) of each block when the image is decompressed. We use Scheme B-I as an example for describing
the quantization representation is the same as a binary representation.

For a pixel with 8 bits (b8, b7, . . . , b1), its pixel value is ∑8
i=1(bi × 2i−1). For Scheme B-I, the value

in R0 is ∑7
i=1(bi × 2i), while the values in R1 and R2 are ∑7

i=1(bi × 2i−1) (note: R0, R1 and R2 use
the following quantization ranges: R0 : (r7, r6, . . . , r1) = (128 64 32 16 8 4 2), R1 : (r7, r6, . . . , r1) =

(64 32 16 8 4 2 1), R2 : (r7, r6, . . . , r1) = (64 32 16 8 4 2 1). From the above description, Scheme A and
Scheme B have almost the same execution time as the original ABTC-EQ. However, for Scheme C, we
use four clusters. Thus, we need to use k-means clustering algorithm to subdivide a (k× k)-pixel block
into four clusters. Running a fixed number t of iterations of the standard algorithm takes O(t× c× k2)

for k2 pixels in a block, where c is the number of clusters.
The original ABTC-EQ and Scheme C use c = 3 and 4, respectively. The proposed Scheme C

uses four clusters and the quantization ranges in Equation (14). As described above the quantization
approach has almost the same execution time as the original ABTC-EQ, but subdividing more clusters
in every block for Scheme C is slightly greater than ABTC-EQ (note: time complexity order of clustering
is O(t× c× k2).

(4) Appropriate Way Using Our Schemes:

Our goal is for consumers to understand and appropriately use application scenarios for the three
proposed ABTC-EQ schemes. To clearly describe their respective application scenarios, we create a
radar chart to illustrate the multiple performances (the number of clusters, the PSNR of a recovered
image, and the size of compressed file) and the variations among all the schemes (Scheme A, Scheme
B-I∼IV, and Scheme C). The values of PSNR and CR are adopted from Table 1 using the test image
Lena and the block size 4× 4 pixels. From Figure 3, we conclude the following results showing how to
appropriately use Scheme A, Scheme B-I∼B-IV, and Scheme C to develop their specialties according to
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applications. Because Scheme A has the same PSNR as ABTC-EQ, if we want to obtain a good PSNR
along with a good CR, we should choose Scheme A. On the other hand, Scheme C has a very high
PSNR. Therefore, if we want to have a significant improvement in PSNR, we may choose Scheme C,
which still has the same CR as ABTC-EQ. For the application that a high CR is a requirement, we may
use Scheme B to trade off the PSNR for the CR.

Figure 3. Radar chart for the proposed schemes using the variables of the number of clusters, the PSNR
of recovered image, and the CR.

5. Conclusions

In this paper, we propose a method to improve the compression performance of ABTC-EQ,
a method that overcomes the edge loss problem of the existing BTC-like image. It is very reasonable
that the tri-clustering approach is preferable to the bi-clustering approach for the quality of the image.
On the other hand, the problem of introducing the tri-clustering approach is that the file size increases.
In this paper, by introducing variable-length coding, we found a method that satisfies both the image
compression and image quality. In addition, we have mentioned in detail in the paper a sufficient
theoretical analysis of the proposed method. When compared with ABTC-EQ, Scheme A enhances
CR and does not change the PSNR, while Scheme C enhances PSNR without reducing CR. Scheme B
trades off PSNR for CR. From these properties, we demonstrate how to properly use these schemes
for intended applications. Moreover, experimental results are given to illustrate the effectiveness and
advantages of the proposed schemes.
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