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Abstract: The increasing specialization of science is motivating the fragmentation of traditional
and well-established research areas into interdisciplinary communities of practice that focus on
cooperation between experts to solve problems in a wide range of domains. This is the case
of problem-driven visualization research (PDVR), in which groups of scholars use visualization
techniques in different application domains such as the digital humanities, bioinformatics,
sports science, or computer security. In this paper, we employ the findings obtained during
the development of a novel visual text analytics tool we built in previous studies, GlassViz,
to automatically detect interesting knowledge associations and groups of common interests
between these communities of practice. Our proposed method relies on the statistical modeling of
author-assigned keywords to make its findings, which are demonstrated in two use cases. The results
show that it is possible to propose interactive, semisupervised visual approaches that aim at
defragmenting a body of research using text-based, automatic literature analysis methods.

Keywords: visual text analytics; problem-driven visualization research; methodology transfer;
author-assigned keywords; distributional similarity; knowledge visualization

1. Introduction

The increasing specialization of science has motivated the surge of different novel interdisciplinary
collaborations between research communities in a wide range of domains. This is particularly the
case for problem-driven visualization research (PDVR) [1], a type of interdisciplinary practice that
connects domain and visualization experts to solve non-trivial, specific domain problems in diverse
areas such as biology, city planning, or sports science. In this regard, it is usual that scholars involved
in these kinds of collaborations gather in workshops and micro-conferences to discuss each area’s
particularities, fragmenting visualization research into communities of practice. Resulting from their
activity, these communities often produce reference publication datasets in a wide variety of focused
areas, a fact that reflects the need of these visualization practitioners to obtain information that
is tailored to their particular research aims. However, and despite the absolute utility value of
these collections, they may also be indicative of the creation of isolated communities within the
visualization practice, a fact that could lead to an excess of redundant visualization solutions for
generic, domain-agnostic tasks (establishing comparisons, creating summaries, or searching for specific
elements) that are replicated across collaborations [2]. Thus, this risk calls for novel approaches that
allow a fluid exchange of ideas among practitioners from different knowledge domains to avoid
wasting time and human resources that is potentially harming visualization research. To this aim,
in recent times, certain authors have started to introduce proposals to facilitate this desirable transfer of
knowledge across communities [3], which is known in HCI and visualization research as methodology
transfer (MT) [4]. In our recent work, GlassViz [5], we contributed a visual text analytics (VTA)
tool (built in the Vega-Lite grammar [6] and its Python API Altair [7]) that aims at supporting
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problem-driven visualization researchers in the task of exploring large collections of scientific papers
by visualizing automatically extracted candidate MTs fit to the researcher’s interests, which are
represented by an auxiliary collection. To achieve this aim, GlassViz finds entry points, which are groups
of distributionally related keywords that introduce the user to the corpus, offering a reading order of
discovered documents, among other advantages, effectively reducing the cognitive gap involved in the
exploration task. This is based on the idea that typically, interdisciplinary researchers employ general
keywords to browse a collection of papers to find unknown, potentially interesting techniques that
can be used to solve domain-specific problems, which are generally novel and cannot be found in the
collection. This idea is depicted in Figure 1, in which four interdisciplinary visualization researchers
seek visualization solutions for four different problems in their respective domains. To achieve their
goal, these researchers will employ intermediate general terms that these problems are commonly
related to (e.g., “network analysis”, “graphs”, “matrix”, or “relationships”). An extensive search
employing these terms might unveil visualizations and algorithms in the target collection that they
may use to solve the problems at hand.
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Figure 1. Document exploration model for four different interdisciplinary visualization researchers
in the humanities (red), bioinformatics (green), sports science (orange), and security (teal) domains
accessing a large collection of research papers containing unknown, potentially interesting techniques
(right, in blue) that could be applied to solve their domain-specific problems (e.g., characters,
biochemical reaction). Each problem is typically related to the same intermediate concepts (shown at
the center), which are the users’ entry points to the collection. This idea is employed in our study to
detect similarities between the different communities of practice and bring them together.

Reflecting on the theory for an interdisciplinary search methodology that we introduced in our
previous studies [5,8], we formed the new hypothesis that these groups of shared interests could
be automatically detected by analyzing domain-specific literatures on each of the implied areas of
knowledge. This hypothesis is the starting point of the work described in this paper, whose main
contributions are (1) a set of domain-specific metadata datasets of research papers in three typical
kinds of PDVR. These collections are combined with two others compiled by us [9] and other
researchers [10] in previous studies in the field and are the input data of our study (described in
Section 3); (2) an analysis based on keywords that measures coincidences and differences between
keyword sets extracted from the aforementioned collections (Section 4.1); (3) a method to measure
distributional similarity between these keywords (Sections 4.2 and 4.3); (4) an analysis of inter-collection
similarities as found by our method (Section 4.4); and (5) an enhanced version of our VTA tool,
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GlassViz, to allow the interactive navigation of distributionally-affine sets of domain-specific terms
(Sections 5 and 6).

2. Related Work

Our contribution is inspired by other works in visualization design, visual analytics, information
science, and text mining that we introduce in this section.

2.1. Visual Text Analytics of Research Paper Collections

Visual text analytics (VTA) is a novel, text-centered specialization of a broader research discipline
known as visual analytics (VA) [11,12] that aims at augmenting the user’s analytical capabilities
and promoting analytical reasoning on textual data by exploiting the visual pattern recognition
mechanisms of the human brain. Concretely, VTA tools deal with unstructured or semistructured
text, and they have been typically demonstrated using diverse collections of research papers. In this
regard, many authors have combined visualization of multivariate research paper metadata with text
mining techniques applied to the papers’ contents to create browsable spatializations of a collection.
For example, this is the case of Berger et al. [13], who modified the popular word2vec model to
provide a joint bidimensional representation of keywords and documents based on citation contexts.
In a similar approach to ours, Fried and Kobourov in Maps of Computer Science [14] and Shahaf et al.
in Metro Maps of Science [15] employ different graph-based clustering techniques and force-directed
layout algorithms to explore a similarity matrix obtained from comparing vectors derived from paper
titles and abstracts in the DBLP database.

2.2. Cognitive Data Visualization

Cognitive data visualization refers to the area of multidisciplinary visualization research that
aims to augment the capabilities of the human cognitive system [16]. Researchers in this field employ
knowledge originating in cartography, statistics, neuroscience, and ergonomics to design visualizations
that accelerate knowledge acquisition. Examples of contributions in this field can typically be found in
the proceedings of the IEEE International Conference on Cognitive Infocommunications (CogInfoCom) [17],
among other venues. There are several examples in the literature of cognitive data visualizations
aiming to support the sense-making process of scientific documents collections worth mentioning
(see, e.g., in [18]). Specifically, we rely on previous work by Chen, who employs a psychometric graph
scaling method, pathfinder networks (PFNETs), to represent semantic spaces found in a collection of
conference proceedings [19,20] that were derived from a similarity matrix of co-authorship occurrences
using latent semantic analysis (LSA) and singular value decomposition (SVD). This approach was
further explored in more recent contributions [21,22] to build complete systems aiming to support the
literature review process. In our past work [8], we employed SVD to propose a similar analysis based
on author-assigned keywords that we adapted to this study (see Section 4). In particular, we used
shortest paths to partition a graph of distances between vector representations of keywords, which in
turn served to detect cross-domain affinities between two collections of research papers. The solution
is extended and complemented with our recent findings in GlassViz [5] to propose an interactive
system that enables the exploration of affinities between several communities of practice, as we show
in Section 5.

2.3. Literature-Based Discovery

Literature-Based Discovery (LBD) is a knowledge extraction technique that aims at making
scientific discoveries by connecting what is already available in the literature [23]. The term was
coined in the 1980s by Don R. Swanson, an information scientist who followed this method to unveil a
relationship between dietary fish oil and Raynaud’s disease, a circulatory disorder [24]. To this end,
he used the ABC model, a method that follows a syllogism to connect terms in two disjoint bodies of
literature A and B: if a concept A, exclusive to Literature A, is related to an intermediate concept B that
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appears in both Literatures A and B, and in turn, this concept B is related to another concept C which
is exclusive to literature C, then there is a relationship between the concept A (known by the user)
and the concept C (new to the user) that is characterized by the concept B. The ABC model supports
two modes of discovery (open and closed, see Figure 2), and it is currently in the process of being
applied to other domains, such as computer science, employing word embeddings [25] extracted from
online databases of scientific documents [26]. Our method extends and adapts these ideas to obtain
distributional embeddings from author-assigned keywords (see next section), which are used to detect
affinities between terms found exclusively on one of the interdisciplinary visualization research areas
that we centered our study around (see Section 3).
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Figure 2. Swanson’s LBD ABC Model in its open (left) and closed (right) discovery modes (figure
from our previous work [8]). The model relates concepts found in two disjoints bodies of scientific
literature by identifying connecting b-concepts found in both collections. In the open discovery mode,
an initial, user-provided term is used to find related c-concepts. This mode is purely exploratory, and it
is typically employed in the task of hypothesis generation. Differently, in the closed discovery mode,
the user provides an a-concept and a c-concept to detect intermediate related b-concepts, generally to
validate hypotheses. Our approach employs both modes to explore inter-domain affinities between
elements in different bodies of literature.

2.4. Distributional Similarity

Distributional similarity refers to the idea that linguistic items presenting similar distributions
in a corpus, which usually appear in the same contexts, have similar meanings [27]. This concept
is implemented in different available vector space models that produce vector representations of
the words in a corpus. The obtained representations are usually employed to conduct different
linguistic tasks, such as similarity or analogy detection and evaluation, or classification. Concerning
LBD, similarity evaluation with word embeddings has been tested to automate the LBD workflows
presented in the previous section [5,8,23]. Given that word embeddings can capture high order
co-occurrence, they seem to be an excellent alternative to discover hidden connections in the scientific
literature. This idea is exemplified in Figure 3. The chart shows a starting concept describing a problem
found in a body of literature. This concept is connected to two techniques described in a different body
of literature by co-occurrence relationships (represented by the edges) between these three concepts
and a number of intermediate concepts. By looking at the distribution of the edges in the network, it is
easy to see that the c-concept describing the second technique is more related to the problem described
by the a-concept than the other c-concept, as the number of high-level co-occurrences between these
two concepts is higher for the second c-concept than it is for the first one. Theoretically, this kind of
similarity could be detected with arithmetic operations performed on the implied concepts’ vector
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representations of a model trained with this data. Our embeddings are inspired by the proposal by
Levy et al. [28], which requires minimal hyperparameter tuning, and it is known to excel at word
similarity tasks [28,29]. To detect affinities between concepts in different areas of interdisciplinary
research, we rely on a cosine metric, which is the preferred option for conducting similarity-based
tasks, as seen in other works [30,31].

A-Concept
B-Concept
C-Concept

Problem
(a-concept)

Technique 1
(c-concept)

Technique 2
(c-concept)

co-occurrence
level (a-concept)

→
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L5 L4

L2 L3 L4 L5

L3 L2 L1 L0 ←
co-occurrence
level (c-concepts)

Figure 3. Co-occurrence network between a problem found in literature A and two potentially
interesting techniques found in literature B. High-order co-occurrence of terms found in the two
literatures can be measured to obtain evidence that supports technique 2 as a better option for solving
the problem at hand, according to the ABC model.

2.5. Methodology Transfer

Methodology Transfer (MT) refers to the practice of reusing available models to provide solutions
for novel, unsolved problems. The practice was first introduced into the visualization domain by
Burkhard in 2004 [4], who, inspired by previous work by Eppler [32] and standard practices in the
domain of architecture, advocated for transferring knowledge between different stakeholders and
communities of practice. To this end, he defined a framework of knowledge visualization (as opposed
to information visualization), which is defined as “the use of visual representations to improve the transfer
of knowledge between at least two persons or groups of persons”. Since then, the own Burkhard and others
have applied the framework to different areas of interdisciplinary visualization practice such as urban
planning [33], decision-making support in the medical domain [34], or education [35]. In more recent
times, Miller et al. elaborated on Burkhard’s ideas to frame a novel research field (visual musicology) as
per the principles of methodology transfer [3] using their methodology transfer model (MTM). In our
previous work [9], we augmented this model with concepts drawn from LBD to automate the discovery
of potential MTs in PDVR [5]. In Section 4, we explain how this model is evolved and adapted to detect
concept associations between different areas of interdisciplinary visualization research.
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3. Data Description

To demonstrate the advantages of our approach, we employ five different collections of research
papers in the context of four typical areas of PDVR (VIS4DH, BioVis, SportsVis, and VizSec). The main
collection, VIS, is the body of literature that connects the other four collections by providing a large set
of keyword associations that augments and extends those found on each of the domain-specific
collections. Specific details about each collection are provided below, which can be found as
supplemental materials to this paper.

3.1. Domain-Specific Literatures

3.1.1. VIS4DH

This domain-specific collection comprises 221 papers on visualization for the Digital Humanities
(VIS4DH) between the years 2016–2019 that were compiled in our previous study [9]. The publications
were obtained from two primary sources: The first one, the VIS4DH workshop, is a collocated
event with the IEEE VIS set of conferences that gathers researchers working at the intersection of
visualization and the humanities to discuss new research directions in visualization and digital
humanities research (https://vis4dh.dbvis.de/). The second source was obtained from visualization
papers located at the humanities side of the collaboration, namely, those published in the ADHO
(https://adho.org/) Digital Humanities Conference and its peer journal Digital Humanities Quarterly
(DHQ) (http://www.digitalhumanities.org/dhq/).

3.1.2. BioVis

The second domain-specific collection was specifically compiled for this study and holds
publications by researchers interested in biological data visualization. The symposium’s main
aims are “to educate, inspire, and engage visualization researchers in problems in biological data
visualization, as well as bioinformatics and biology researchers in state-of-the-art visualization
research”. The workshop started in 2011 as a parallel event with the IEEE Visualization conference
but has since then moved to other venues as well: currently, it is a dual meeting taking place at the
IEEE VIS Conference and the Conference on Intelligent Systems for Molecular Biology (ISMB). In total,
we obtained 69 publications presented at the BioVis (http://biovis.net/) symposium between the
years 2011–2019.

3.1.3. SportsVis

We wanted to include another important typical area of PDVR in this study: sports data
visualization. Although this type of collaboration is also well-established in the visualization
practice, and as opposed to the approach we followed to collect the previous datasets that drew
publications from discipline-specific venues, such gathering did not exist in this case. The only
attempt to hold an event on sports data visualization occurred in 2013 during the IEEE VIS
conference in Atlanta with the celebration of the 1st IEEE VIS Workshop on Sports Data Visualization
(http://workshop.sportvis.com/). Unfortunately, this was the only edition of the event, which did not
continue since. Instead, to build a representative dataset of the discipline, we relied on previous work
by Perin et al. [36], who created a survey of the state of the art of sports data visualization in 2018.
The authors also built a website as companion material of the paper (https://sportsdataviz.github.io/)
in which they list all works cited in the survey and keep updating regularly. Thus, we built the fourth
dataset with all papers appearing in this website that contained author-assigned keywords, which were
completed with works presented at the first edition of the VIS Workshop on Sports Data Visualization.
In the end, we could collect 59 documents related to this specialty.

https://vis4dh.dbvis.de/
https://adho.org/
http://www.digitalhumanities.org/dhq/
http://biovis.net/
http://workshop.sportvis.com/
https://sportsdataviz.github.io/
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3.1.4. VizSec

Finally, and following a similar method as in the first two cases, the fourth collection represents
publications in visualization for cybersecurity, which is also a long-established area of interdisciplinary
visualization research. The main venue that has been regularly capturing contributions in this field
since 2004 is the International Workshop/Symposium on Visualization for Cyber Security (VizSec)
(https://vizsec.org/), from which we obtained 175 papers presented at all its past editions (2004–2019).

3.2. Visualization Literature

The visualization literature (VIS) is a set of 2259 visualization research papers presented at the IEEE
set of conferences InfoVis, SciVis, VAST, and Vis between the years 1991 and 2019 that was compiled
by other authors [10]. The collection includes a great variety of different algorithms, techniques,
problems, and tasks typically related to visualization research in different and diverse application
domains. This collection is used to connect the different communities of practice represented by the
domain-specific literatures introduced in the previous sections.

4. Method

Our method aims to implement a standard visual text mining pipeline that is often seen in many
VTA tools. Generally, these pipelines employ diverse well-known text mining algorithms whose results
are presented to the user in an interactive graphical interface. To obtain deeper insight into text mining
techniques commonly employed for text visualization, we refer the reader to the recent survey by
Liu et al. [37], which offers a highly didactic introduction to the topic. Additionally, the work in [38]
provides a general introduction to machine learning methods for text analysis.

As explained in previous sections, our implementation aims to detect significant inter-collection
distributional similarities between exclusive terms appearing in each literature. To this end, we rely on
a distance matrix S that is obtained from comparing dense vector representations of keyword tokens in
a vector space model (VSM) using a cosine metric. The process to obtain the vectors from the keyword
tokens generated in Section 4.1 is replicated here from our previous work in the field [8], which was
inspired by other authors [28]. Figure 4 captures the steps we followed to build the embeddings,
which are detailed in this section.

1 
 

 

Figure 4. Diagram depicting the generation of distributional embeddings from keywords found
in research papers. (1) Term-document matrix containing documents in the source (S-) and target
(T-) literatures. (2) Keywords are tokenized and stemmed, (3) effectively reducing the number of
columns in the term-document matrix. (4) An SPPMI matrix is built from annotating co-occurring
keyword tokens in the corpus. (5) Rows in the resulting square matrix are sorted according to each
token’s provenance. Finally, the matrix is decomposed into the product of three matrices employing
singular value decomposition (SVD). Vectors representing each keyword token are obtained from the
left singular vectors of the factorization, U (6). Finally, we derive a distance matrix D employing a
cosine metric (7) and that we use to extract inter-domain similarities.

https://vizsec.org/
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4.1. Data Processing

Before attempting to create vector representations from the keywords found in the collections
presented in the previous section, we prepared the data in the same manner as in our previous studies:
first, we built a document-term matrix with keywords extracted from each document (documents
with less than two keywords were discarded), tokenized and translated into their American English
forms. Tokens matching NLTK’s list of English stop words (e.g., “and” or “of”) were removed from
the analysis, which yielded a total of 3005 different tokens. Next, each token was light-stemmed using
the Porter algorithm. As author-assigned keywords are a very sparse feature, the stemming procedure
had the positive effect of compressing the input vocabulary by linking related lexical forms together
under the same root. The number of extracted unique tokens for each collection is shown in Table 1.
Intersection sets between the five collections are displayed in Figure 5.

Table 1. Number of documents and keyword tokens per collection after processing. Among the four
domain-specific collections, VIS4DH held the largest number of unique tokens (different tokens in a
collection) and also had the highest ratio of exclusive (not found in any other collection) vs. unique
tokens. In total, 659 different tokens could be found in two or more collections.

Dataset # Documents # Unique Tokens Avg. Keyword Tokens per Doc. # Exclusive Tokens

VIS4DH 221 539 4.47± 0.99 230 (42.7%)
BioVis 69 284 4.57± 1.85 72 (25.4%)

SportsVis 59 225 4.73± 1.55 55 (24.4%)
VizSec 175 405 4.63± 1.75 125 (30.9%)

VIS 2253 2508 4.66± 1.61 1864 (74.3%)
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Figure 5. Venn Diagram (generated with the online tool at http://bioinformatics.psb.ugent.be/
webtools/Venn/) displaying intersections between the five datasets that were employed in our
study. The specific keyword sets found on each intersection can be consulted in Table S1 of
Supplemental Materials.

4.2. Embedding Generation

The process starts by building a document-term matrix (Figure 4(1)) Dm×n that contains all
documents and keywords in the five collections. This matrix was compressed (Figure 4(2)) by
tokenizing multi-term keywords and stemming all 1-grams, as explained in f1s4.1 (Figure 4(3)).
Next, we built a pointwise mutual information (PMI) matrix (Figure 4(4)) that encoded the probability
for a pair of tokens to be seen together in a document with respect to seeing those terms separately in the

http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
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whole corpus. In this approach, each document is treated as a bag-of-words in which the probabilities
inf1eq:pmi can be empirically calculated from the corpus in the following manner; a keyword w
appearing in a set of documents D with other keywords (its context c) can be counted, giving a number
#(w, c) · |D|. This number is divided by the product of the number of times that keyword appears in
the whole corpus (#(w)) and the number of times all the other context keywords appear in the corpus
(#(c)). As it is customary [29], we apply a smoothing factor α to the distribution of each token’s context
P(c) (Equation (3)), obtaining P̂α(c), which aims to counteract PMI bias towards very infrequent events.
During the experiments described in this paper, we employed α = 0.95, which seems to work well for
keyword similarity tasks and small-sized vocabularies like ours according to our past findings [5,8]
(note that α and the number of dimensions k are corpus-dependent factors).

PMI(w, c) = log
P(w, c)

P(w)P(c)
= log

#(w, c) · |D|
#(w) · #(c) (1)

SPMI(w, c) = log
P̂(w, c)

P̂(w)P̂α(c)
(2)

P̂α(c) =
#(c)α

∑c #(c)α
(3)

Finally, and as the matrix SPMI can take infinite negative values when two tokens are never seen
in the corpus since log(0) = −∞, we employ a positive version that takes 0 in such cases (Equation (4)).

SPPMI(w, c) = max(SPMI(w, c), 0) (4)

Then, we annotated the provenance for rows in the SPPMI matrix (Figure 4(5)) and recorded
whether they appeared exclusively in one of the collection, or in several. The provenance was
employed in a later step to detect similarities between elements in different collections (see the next
section). The resulting square matrix SPPMIn×n is then factorized into the product of three matrices
Un×k × Σk×k ×VT

k×n employing singular value decomposition (SVD) (Figure 4(6)), which is a popular
algebraic method among NLP scholars that was first employed in the 1990s by the authors behind
latent semantic analysis (LSA) [27]. The number of dimensions k was adjusted to 50, although we
obtained similar results with values of k in the 50± 10 range. The vector representations of keyword
tokens are the left singular values U of the decomposition from which we built a distance matrix D,
which we searched for significant inter-collection similarities as we explain the next section.

4.3. Distance Matrix

We calculated pairwise distances between keyword embeddings employing a cosine metric
(Equation (5)). This distances were later captured in a distance matrix D. In turn, the matrix D was
converted into a distance graph G that was later pruned by removing nodes that were not on the
shortest paths connecting domain-specific terms in the different literatures.

dist(x, y) = cos(x, y) = ∑n
i=1 xi · yi√

∑n
i=1 x2

i ·∑
n
i=1 y2

i

(5)

Keyword vectors with pairwise cosine distance equal to or less than 0.01 were considered to be
the distributionally identical for this task and were therefore combined into a single representation
(509 in total). From this distance matrix, we generated a graph G that was explored to find interesting
interdisciplinary connections. The exploration method we employed is discussed in the next section.
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4.4. Finding Interdisciplinary Connections

As discussed in previous sections, this study aimed to capture and visualize interesting
interdisciplinary knowledge associations between the different domains represented in the collected
sample data. To this end, we partitioned the graph G using Dijkstra’s algorithm to discover least-cost
paths connecting every domain-specific term in the four different domain-specific literatures to their
closest exclusive tokens in every other literature. After running the algorithm, we obtained 563 shortest
paths (note that P(a, b) = P(b, a)) for which we annotated their distances and the collections their
originating tokens belonged to. Average inter-collection distances are represented in the plot in Figure 6
as orange lines. From these depictions, some information can be decoded: for example, the collections
pair presenting the highest average distance between their terms was formed by the VIS4DH and
SportsVis datasets, whereas this last one showed the highest similarity of all with the VizSec dataset.
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Figure 6. Diagrams showing possible interactions between intersection sizes between two collections
(top) or two collections and the VIS collection (bottom) and average path distance between elements in
those collections.

At this point, we wondered whether the size of each collection (and thus their number of
overlapping tokens with other collections) had any influence on the distances obtained. To answer this
question, we calculated three metrics: (1) the average path distance obtained for all tokens on each
collection, (2) the Jaccard index between two sets of tokens (defined as J(A, B) = |A∩B|

|A∪B| ), and (3) the
combined Jaccard index between the two sets of tokens and the VIS collection (which would help
us clarify whether the number of overlapping items of both sets with VIS was also influencing the
distances in any manner). These two variables were plotted in blue in the charts of f1f6.

A Spearman correlation (p� 0.005) test verified what can also be observed in the charts: we could
not find any evidence that supported that the average proximity between collections was influenced
by the number of overlapping tokens between the collections, and thus neither by the size of each
collection, nor by the size of their intersections with the main VIS dataset. A plausible explanation
for this fact may be that the similarity score is more influenced by how specific keywords on each
collection associate with others in the rest of the dataset. Investigating the exact causes for this
observation, however, is something that we considered exceeded the aims of this paper and was left
for future studies.
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We continued our study by analyzing inter-collection path distances in the histogram in Figure 7.
By inspecting the charts, it can be seen that the distances of paths in the four collections approximately
follow a Weibull distribution (KS test: D = 0.029, p > 0.05). In light of these results, we decided to use
a cut-off value from the distribution head to filter longer, less interesting connections before moving to
the visualization stage.
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Figure 7. Left: histogram showing the distribution of distances for the found 563 shortest paths
connecting domain-specific terms (notice that values on the Y-axis are doubled given that P(a, b) =
P(b, a)). The blue line shows the 5th percentile (x = 0.3408), which was later used as a cut-off value
for filtering out longer, and thus less interesting paths that were not visualized in the last stage of the
study (see Figure 8). To the right, the same data are disaggregated into four charts, showing similar
distance distributions for paths originating at the four collections.
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Figure 8. Chart depicting the process to compose inter-domain paths. The method relies on calculating
a histogram of distances to find a cut-off value used to remove long paths from the final visualization.

To filter out paths and terms presenting long distances to other terms, we purposely selected a
highly restrictive cut-off value (5th percentile, x = 0.3408) to focus the visualization on representative
connections only. Given that, we assessed that (1) the distribution of distances was similar in the four
collections, and (2) the size of each collection did not influence these found distances; this cut-off
would obtain a sample of high inter-collection similarities in which all the collections would be evenly
represented according to their original sizes. The whole process to select these similarities is shown
in Figure 8. After merging paths with coincident nodes, we continued to the next stage in which we
employed our tool GlassViz to visualize the terms captured in the shortest paths and related documents.
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5. Visualization

After filtering, we obtained 29 paths originating at the VIS4DH, BioVis, SportsVis, and VizSec
collections, respectively. After merging paths with coincident tokens, we could identify 50 unique
tokens distributed across 16 different components. Using the document-term matrix constructed in
Section 4.2, these terms could be mapped to 64 different papers (21 VIS4DH, 10 BioVis, 11 SportsVis,
14 VizSec, and eight VIS). The 16 components were plotted in GlassViz’s main view using a node-link
graph representation and a force-directed layout algorithm [39] in which the edges capture pairwise
similarity (note that sim(x, y) = 1− dist(x, y) = 1− cos(x, y)) and nodes are tokens in the identified
paths (label size is log-scaled to the absolute frequency of the token in the combination of the five
corpora). The captured data were plotted in the GlassViz interface, which we modified to show paths
and related documents detected by our method (shown in Figure 9).

Figure 9. Screen capture of GlassViz showing the 16 components (view A) extracted in the previous
stage Section 4.4 and related documents (view B), along with their keyword tokens (view C) and
co-occurring terms with nodes on each component (contexts, view D). We encourage readers to
download the high-resolution images companion to this paper which can be zoomed and explored to
get a better understanding of how GlassViz works.

The components were plotted on a designated area of View A, showing labels colored as per the
categorical scheme employed throughout this paper, depending on the collection they can be found
on (VIS4DH: red; BioVis: green; SportsVis: orange; VizSec: teal). Besides, whenever a token was
found in multiple collections, it was colored in gray. Views B, C, and D are rank-frequency lists that
show documents and keyword tokens that can be traced to the items selected in view A (in the image,
the default selection, all, is applied). Specifically, view B lists documents according to the number of
matching tokens with the current selection, meaning that documents that are more relevant to the
user’s current selection are shown at the top. View C displays keyword tokens for each document
in view B in the same order as they were originally processed. Finally, view D provides a visual
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aggregation of the tokens in C, in which higher-ranked tokens are shown in larger font sizes and are
placed closer to the top of the list.

As we have mentioned, the 16 components of Figure 9 represent different inter-domain
associations that can be explored with the aid of GlassViz. Although in some cases, such as in
components #2 or #3, the main underlying themes can be partially guessed by reading the labels in the
graphs, GlassViz offers the user the possibility to zoom and brush each component separately to get
specific details about a component in the other three auxiliary views. For example, the relation between
“sonic” and “histone/hebbian” in component #12 is certainly not obvious and hard to interpret directly.
However, if the user brushes this component, the relationship is immediately revealed in view D
which, in this case, is “signatures” because the two terms can be mapped to papers in the BioVis and
VIS4DH collections that mention it. A compilation of documents, keywords, and contexts for each of
the 16 components, as shown in GlassViz, is provided in Table S2 of Supplemental Materials.

6. Use Cases

In this section, we exemplify the advantages of our method in two use cases in which we explore
interesting associations of terms and documents. Concretely, we selected those cases in which more
documents from distinct collections were captured, namely, components 2 and 4.

6.1. Case Study #1: Games and Virtual Reality

Component #2 links together six different terms appearing in distinct collections (“office”,
“pool”, and “narration” in SportsVis; “flag” and “trainee” in VizSec; purpose/serious in “BioVis”;
and “spectating” in VIS) which are linked through the term “game/games/gaming” that appears in
all listed documents and it is central to the theme, as it can be observed by its position at the top of
view D in Figure 10.

Figure 10. Close view of component #2 in GlassViz’s main view. We encourage readers to download
the high-resolution images companion to this paper which can be zoomed and explored to get a better
understanding of how GlassViz works.
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Further reading of the tokens in view D helps identify other sub-themes that can be found
among the documents, the first one being “comput.” for “computational biology” or “computer” for
“computer vision” or “computer game”. In relation to this stem, there are four documents included
in the list: the first two refer to games applied in the context of “computational biology” (documents
1.3 and 1.11, from collections BioViS and VIS, respectively), whereas the other two documents are
associated to computers, as in “computer vision,” and “computer game.” (documents 1.4 and 1.10,
both found in the SportsVis collection). Finally, another important sub-theme can also be identified,
formed by the tokens “augment” and “realiti”. If we inspect documents containing these terms,
we find document 1.4 again, and also 1.8, this last one pertaining to the VIS4DH collection. The papers
describe two research experiences with augmented reality that are highly related as found by our
model: the first one was built to assist novices in the game of pool, whereas the second one describes
different pedagogical experiences in the humanities domain, forming a potentially interesting pair for
knowledge transfer.

6.2. Case Study #2: Topic Models and Interaction Techniques

The next example is derived from examining component #4, and comprises fewer elements (only
four in this case) which form a smaller and more concise theme than in the previous case. Again,
the general composition of the theme is revealed in view D (Figure 11), whose top items refer to
different topic modeling (e.g., “non-negative matrix factorization” and “latent dirichlet allocation”)
and dimensionality reduction techniques (“t-SNE” and “h-SNE”) often employed in visualization
approaches conceived to support classification tasks.

Figure 11. Close view of component #4 in GlassViz’s main view. We encourage readers to download
the high-resolution images companion to this paper which can be zoomed and explored to get a better
understanding of how GlassViz works.

The inspection of the documents captured under this component shows four documents
pertaining to three different collections (SportsVis, document 4.1; BioVis, document 4.3; and VIS,
documents 4.2 and 4.4) that are centered around the aforementioned main concepts. Using the
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graph representation of the component, more information can be decoded: for example, it can be
seen that the domain-specific keywords shown in green (“rare”, “sne”, and “cytometry”) are placed
closer to the terms “neighbor” and “t-distributed” in the lower part of the chart. This effect can be
understood by manually inspecting the documents and keywords in views B and C: there, it can be
seen that the authors of paper 4.3 employ a variation of t-sne, h-sne, to visualize mass cytometry data.
Relatedly, the authors of paper 4.2 propose an interaction technique based on t-sne and the magic lens
metaphor [40] to inspect topic models in textual data. These authors also employ the topic modeling
technique “non-negative matrix factorization” to conduct their study, which is in turn used by the
authors in publications 4.4 and 4.1 and serves as the connecting theme of the component.

7. Future Work

In previous sections, we have presented a proposal for automatically detecting shared interests
between different communities of practice in PDVR. The results presented in Sections 4.1, 5, and 6 show
that keywords carry great implicit knowledge by the authors that deserves being studied and analyzed
in full. Although we are aware that the study of the language of keywords has many beneficial
implications in science, in this paper we have seen how it can be used to determine important points of
confluence between a priori unrelated groups of researchers, which represents an advancement towards
addressing the critical problem of knowledge fragmentation in modern science. Not only knowing
the number, but also understanding the manner in which the fundamental semantic components of
keywords are combined, may open up novel ways to obtain holistic panoramas of science that may help
overcome some of science’s current difficulties. In this contribution, we proposed a model and a VTA
tool to capture and explore rare conceptual associations between research areas that would be hard to
find for a human actor. Although we consider the work presented in this paper to be still ongoing,
and despite the development of GlassViz still is in its early stages, in light of the results, we are positive
about the results and aim to keep improving the system in future research to cover more datasets and
support more complex use cases. In this regard, we aim to improve GlassViz’s interactivity, which at
the moment is rather limited. For example, it is currently not possible to obtain information on how
the different components in view A are related to each other, and also how they relate to other parts
in the different collection. To address this issue, we are currently conducting experiments on our
data employing a novel dimensionality reduction technique, uniform manifold approximation and
projection (UMAP) [41], that is showing very promising results. This would allow us to obtain a joint
projection of documents and keywords, which should be preferred to our linked views approach due
to its reduced cognitive load. In addition, a combination of UMAP with hierarchical density-based
clustering (HDBSCAN) [42] could offer an automatic way to cluster connected components into larger
thematic areas, an addition that would yield great opportunities for implementing direct manipulation
interaction techniques [43]. This would in turn allow us to receive fine-grained information from the
user to, for example, denormalize certain terms that were linked together by the stemming algorithm
and that the user may want to split. These cases are usually hard to detect by automatic means,
as they much depend on the user’s own aims of the exploration. By adopting direct manipulation
principles, the user could drive the execution of the algorithm at each step to obtain personalized
results seamlessly.

8. Summary

In this paper, we have presented a study on keywords to identify thematic similarities and
potential methodology transfers between different areas of PDVR. Our approach was supported by
the collection and composition of four different datasets that represented keyword associations made
by authors of research papers in diverse interdisciplinary visualization research areas. In addition,
we proved that there is evidence to support the hypothesis that text-based, automatic methods to
accomplish the aim of connecting communities of practice within a body of research may be proposed.
Beyond that, we believe our approach could be further extended to other areas experiencing the same
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fragmentation. In this regard, we desire that our work serves to inspire future researchers to build
more complex VTA tools that address this issue of modern science.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/10/20/7248/
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