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Abstract: The extraction of regulatory information is a prerequisite for automated code compliance
checking. Although a number of machine learning models have been explored for extracting
computer-understandable engineering constraints from code clauses written in natural language,
most are inadequate to address the complexity of the semantic relations between named entities.
In particular, the existence of two or more overlapping relations involving the same entity greatly
exacerbates the difficulty of information extraction. In this paper, a joint extraction model is proposed
to extract the relations among entities in the form of triplets. In the proposed model, a hybrid
deep learning algorithm combined with a decomposition strategy is applied. First, all candidate
subject entities are identified, and then, the associated object entities and predicate relations are
simultaneously detected. In this way, multiple relations, especially overlapping relations, can be
extracted. Furthermore, nonrelated pairs are excluded through the judicious recognition of subject
entities. Moreover, a collection of domain-specific entity and relation types is investigated for
model implementation. The experimental results indicate that the proposed model is promising for
extracting multiple relations and entities from building codes.

Keywords: regulation information extraction; building code; deep learning; automated code
compliance checking

1. Introduction

Automated code compliance checking is a promising alternative to manual checking that is
expected to reduce time consumption, cost, and errors [1]. Thus, this approach has received extensive
attention in the architectural, engineering, and construction industries for a number of applications.
Some recent examples of such efforts include construction site layout assessment [2], green building
evaluation [3], design-for-safety review [4], and building environmental monitoring [5]. For example,
e-PlanCheck in CORENET [6] automatically check electronic building plans against engineering
constraint, manually extracted from Singapore building codes. A typical case is to automatically
review the area of a kitchen in a residential building, where the code requirement “The area of a
kitchen shall not be less than 4 m2” should be satisfied. Such an engineering constraint is hard-coded
by software engineers into e-PlanCheck while the area of the kitchen is automatically calculated from
a digital drawing. Information extraction is often a crucial linkage between the natural language
and machine-readable language. In particular, named entities, such as “kitchen”, “area”, and “4 m2”
should be extracted from the aforementioned clause for kitchen design, and the semantic relations,
like “has property” between “kitchen” and “area” as well as "not less than" between “area” and “4 m2”,
should be extracted too. Automatic information extraction can save tremendous both time and cost
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for knowledge acquisition [7]. Therefore, numerous approaches have been proposed to automate the
extraction of regulation information.

A number of approaches applied a set of manually developed extraction rules to
extract engineering constraints from code documents. Zhang and El-Gohary [8,9] utilized a
rule-based extraction method with the assistance of natural language processing (NLP) techniques.
Later, Zhou and El-Gohary [10] further developed a cascaded extraction algorithm to address more
complex linguistic structures. Li et al. [11] proposed a specification language model for extracting
spatial configuration constraints [12]. In these studies, experts must direct considerable effort and time
toward the manual development of the extraction rules, which are often purpose-dependent rules
with limited reusability. Moreover, conflicts may exist between some of the extraction rules in such a
collection, and there are few systematic approaches available for identifying and resolving such rule
conflicts in advance.

To overcome the aforementioned limitations, machine learning approaches have been explored for
the extraction of regulatory information. They aim to automatically capture the underlying patterns of
the text data, by learning from a large size of text data. Zhang and El-Gohary [13] adopted a conditional
random field (CRF) algorithm to label the semantic roles of entities in building code sentences.
Xu and Cai [14] used the labeled data in the FrameNet database [15] to train a probability model
for extracting constraints in the form of semantic frames. However, most of these machine learning
algorithms rely on shallow learning; consequently, extensive manual intervention and supervised
NLP toolkits are still required to construct sophisticated features. As an emerging alternative, deep
learning techniques have recently demonstrated a promising capacity for automatic feature engineering
and have shown competitive performance for information extraction in fields such as medical text
analysis [16] and social media mining [17]. In addition, some pioneering research has been conducted
to explore the potential of deep learning techniques for improving the extraction of engineering
constraints. Song et al. [18] used the word2vec model [19] to learn the semantics of both words and
sentences in building codes. Later, the word2vec model was further integrated with a bidirectional
long short-term memory (Bi-LSTM) model based on a CRF algorithm for identifying the key elements
of semantic roles [20]. Zhong et al. [21] designed a pipeline combining named entity recognition
(NER) with sentence classification for the extraction of typical temporal relationships between two
construction activities (named entities).

Undoubtedly, these machine-learning-based methods offer a promising approach for
the automatic extraction of regulatory information without the need for handcrafted rules.
However, most of these studies have treated regulation information extraction as a process of NER
and have inadequately addressed the complexity of extracting the semantic relations between entities.
For instance, Zhong et al. [21] attempted to infer relations through sentence type classification.
However, this paradigm is confined to the extraction of one relation from one simple clause involving
two entities. By contrast, in practice, many Chinese code clauses describing engineering constraints
are written in natural language and express two or more relations among a set of entities. In particular,
due to the concise nature of code language, the entities in code clauses tend to appear at a high density.
Moreover, overlapping relations often exist, meaning that multiple relations involve a common entity
(herein called the “overlapping relation” problem).

Recent research has explored the joint extraction of entities and relations, which has shed some
light on the automatic extraction of multiple relations from code clauses with complex structures.
In contrast to the separate NER and relation classification tasks, the aim of joint extraction is
to simultaneously detect multiple entities along with their relations using a single model [22].
Unfortunately, the current joint extraction models are not suitable for analyzing code documents
since the entities and relations used for labeling documents and training the models are often
domain-specific and purpose-dependent. Furthermore, overlapping relations, which frequently
exist in code documents, exacerbate the difficulty of information extraction. Therefore, the main
purpose of this paper is to extract complex semantic relationships residing in code documents. For this
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purpose, a joint extraction model is developed based on the application of a decomposition strategy.
Meanwhile, a collection of domain-specific entity and relation types is proposed from the viewpoint
of the ontology of building design. Compared with the existing machine-learning-based regulation
information extraction, this research contributes to the body of knowledge by providing a joint learning
approach to enhance the acquisition of complex semantic relations in terms of multiple relations and
overlapping relations. Remarkably, this paper attempts to better utilize NLP techniques with the
assistance of the ontological description of semantic relations and named entities in the context of
regulation information extraction.

The remaining of this paper is organized as follows: Section 2 presents the semantic types of
named entities and relations while the framework of the joint extraction model is proposed with
algorithm description of each module. In Section 3, the experiment process and the hardware platform
are introduced, and later the resultant data are evaluated to validate the performance of the proposed
model. Finally, the conclusions and limitations are summarized in Section 4.

2. Methodology

2.1. Semantic Types of Named Entities and Relations

In knowledge engineering, a binary relation between named entities is often represented by
a triplet, where the predicate defines the specific relation (directional arc) and the subject and
object denote the associated entities (node). Such a triplet is often called a subject-predicate-object
(SPO) triplet [23]. Due to the expressiveness and flexibility of SPO triplets, they have been widely
used to capture regulatory knowledge in the construction industry [24,25]. Accordingly, the triplet
representation can also be used to represent various types of constraints expressed in building
codes. In general, a named entity in a code clause can be a real-world building object, such as a
building, a built space, or a construction element (see Table 1). It can also be an engineering property,
a quantitative value, or a feature representing the function or purpose of an object.

Table 1. Named entity categories.

Entity Category Label Example

Building E1 residential building
Built space E2 kitchen

Construction element E3 wall
Feature E4 accessible

Property E5 height
Quantity E6 4.0 m

The predicates in code clauses can describe the system hierarchy in terms of the relations between
high-level building objects (in the subject role) and low-level building objects (in the object role);
see Table 2. In addition, an engineering property associated with a particular building object can be
represented by the “hasProperty” predicate. Likewise, a function or purpose realized by a building
object can be represented by the “hasFeature” predicate. Various types of spatial relationships can
also be modeled in the form of predicates such as “AccessTo”, “Within”, “Outside”, “Between”,
and “AdjacentTo”. Value constraints can be represented by comparative predicates, for example,
“LessThan”, “GreaterThan”, and “EqualTo”. In addition, a multiplicative factor for a value obtained by
referencing another property can be similarly defined by the “MultipliedBy” predicate.
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Table 2. Predicate relation categories and the alternative semantic roles of associated entities.

Relation Category Predicate Label
Semantic Role

Example
Subject Object

System hierarchy hasObject R1 E1 E1,E3 [building, hasObject, wall]
E2 E2,E3 [toilet, hasObject, window]
E3 E3 [stair, hasObject, step]

Engineering property hasProperty R2 E1,E2,E3 E5 [kitchen, hasProperty, area]

Function and purpose hasFeature R3 E1,E2,E3 E4 [entrance, hasFeature, accessible]

Spatial relationship Within R4 E1,E2,E3 E1,E2 [pipeline, Within, building]
Outside R5 E1,E2,E3 E1,E2 [fire hydrant, Outside, tunnel]
Between R6 E1,E2,E3,E5 E1,E2,E3 [clearance, Between, wall]

AdjacentTo R7 E1,E2,E3 E1,E2,E3 [road, AdjacentTo, entrance]
AccessTo R8 E1,E2,E3 E1,E2,E3 [corridor, AccessTo, bedroom]

Comparative relation NotLessThan R9 E5 E5,E6 [height, NotLessThan, 2 m]
NotGreaterThan R10 E5 E5,E6 [height, NotGreaterThan, 2 m]

LessThan R11 E5 E5,E6 [height, LessThan, 2 m]
GreaterThan R12 E5 E5,E6 [height, GreaterThan, 2 m]

EqualTo R13 E5 E5,E6 [height, EqualTo, 2 m]

Quantity reference MultipliedBy R14 E5 E6 [area, MultipliedBy, 1/2]

The fourth and fifth columns of Table 2 specify the alternative semantic roles of the two entities
associated with a particular predicate. In particular, physical buildings/elements are distinguished
from built (functional) spaces, as specified in ISO 12006-2 [26]. For example, construction elements
such as walls, slabs, doors, and windows can constitute a physical building and can also systematically
function as a living space. In this sense, a physical building (labeled E1) can contain low-level
building system (labeled E1) and/or construction elements (labeled E3), as shown in the first
row of Table 2. This distinction can facilitate the development of more accurate labeling rules.
Unfortunately, general information extraction research provides very little guidance for defining
the semantic roles of the subject and object entities associated with the domain predicates listed in
Table 2.

Figure 1 shows an example of multiple triplets in a Chinese building code clause: “由卧室,起居
室,厨房和卫生间等组成的住宅套型的厨房使用面积,不应小于4.0平方米 (The usable area of a kitchen
in an apartment consisting of a bedroom, living room, kitchen, and bathroom shall be no less than
4.0 square meters)”. In this sentence, eight entities and seven relations exist, constituting seven triplets.
The five “hasObject” predicates linking the subject “住宅套型#1 (apartment)” to five built spaces
(object entities) indicate the systematic organization of the apartment. The “hasProperty” predicate
describes the space-property relationship between the subject entity “厨房#2 (kitchen)” and the object
entity “使用面积#1 (usable area)”. The “NotLessThan” predicate describes a lower-value constraint
(“4.0 meters”) on the “使用面积#1 (usable area)”. Some entities, for example, “厨房 (kitchen)” in
Figure 1, may appear more than once in the same sentence. The two instances of this entity are further
labeled #1 and #2 in accordance with the order of their appearance.
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Extracted Triplets

由 卧室  ,   起居室  ,   厨房 和 卫生间 等组成的 住宅套型 的 厨房  使用面积  ,  不应小于 4.0平方米 .

hasObject

hasObject

hasObject

hasObject hasObject hasProperty NotLessThan

Bs Bs Bs Bs Bs Bs P Q
bedroom living room kitchen bathroom apartment kitchen usable area 4.0 square meters

Bs: Built space
P: Property
Q: Quantity

Subject entity Predicate relation Object entity

"住宅套型"#1(18,21) (apartment) hasObject "卧室"#1(1,2) (bedroom)

"住宅套型"#1(18,21) (apartment) hasObject "起居室"#1(4,6) (living room)

"住宅套型"#1(18,21) (apartment) hasObject "厨房"#1(8,9) (kitchen)

"住宅套型"#1(18,21) (apartment) hasObject "卫生间"#1(11,13) (bathroom)

"住宅套型"#1(18,21) (apartment) hasObject "厨房"#2(23,24) (kitchen)

"厨房"#2(23,24) (kitchen) hasProperty "使用面积"#1(25,28) (usable area)

"使用面积"#1(25,28) (usable area) NotLessThan "4.0平方米"#1(34,39) (4.0 square meters)

Format: ["entity" #index (start position, end position)]

Figure 1. Example illustrating multiple triplets in a clause.

2.2. Joint Extraction Model

Currently, a number of models have been developed for the joint extraction of entities and
relations [27–29]. However, few models excel at solving the overlapping relation problem. For example,
in Figure 1, eight entities exist in the clause, and five different relations refer to the common entity
“住宅套型#1 (apartment)”. To account for situations of this kind, some models assume that potential
relations exist between each pair of identified entities [30]. In general, N entities can produce
approximately N2 candidate pairs; however, most of these are meaningless, resulting in low relation
extraction performance, especially when entities are densely present in the sentences of building codes.
For instance, fifty clauses from Chinese building codes were randomly selected and labeled using the
predefined entity and relation types presented in Section 2.1 to investigate the existence of overlapping
relations in each sample clause. On average, 6.1 entities and 4.9 relations were identified per code
clause. These results show that compared with documents from other domains (such as the dataset
of New York Times articles, which contains, on average, 3.3 entities and 1.7 relations per sentence),
entities appear more densely in building codes, and the relations between these entities are richer.
Moreover, the overlapping relation problem is exacerbated by the fact that although each relation has
only one subject entity, a single subject entity may be involved in several relations.

To address the aforementioned overlapping relation problem, a joint extraction model is developed
based on the application of a decomposition strategy. In the proposed model, all subject entities are
first identified using a hybrid deep learning algorithm, and subsequently, for each identified subject
entity, its associated object entities and predicate relations are simultaneously extracted. In this
way, nonrelated pairs can be excluded through the judicious recognition of subject entities, and the
overlapping relation problem can be naturally addressed.

2.2.1. Model Framework

Figure 2 illustrates the framework of the joint extraction model. Following the pipeline of triplets
extraction model [22], four components, that is, augmented character embedding, a shared semantic
encoder, a subject extractor, and an object and predicate extractor are specifically developed. The first
module, augmented character embedding, transforms the sequence of discrete characters of a raw
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code clause into vectors of real numbers, herein called character vectors. Subsequently, a shared
semantic encoder is applied to learn the context features of each character, literally called task-shared
features [31], across different tasks via parameter sharing mechanism. Then, the subject extractor
uses the task-shared features to identify all potential entities that can act as subjects in predicate
relations. For each identified subject entity, its associated object entities and predicate relations are
then simultaneously identified by the object and predicate extractor. Finally, the initial raw code clause
is automatically transformed into a set of triplets that can be parsed by computers.

A raw clause

Augmented Character Embedding

Shared Semantic Encoder

Subject Extractor

Object and Predicate Extractor

A set of triplets

For each identified subject entity

Figure 2. Framework of the joint extraction model.

2.2.2. Augmented Character Embedding

Word embedding is a technique for representing characters/words as real-valued vectors of high
density and low dimensionality. Vectors representing a collection of words or characters with similar
semantic meanings exhibit high cosine similarity. For example, the cosine value of the angle between
the vector for “door” and that for “window” is 0.72, indicating high semantic similarity. In this way,
the sequence of discrete characters forming a sentence or even a paragraph can be transformed into a
numeric representation for further processing by deep learning algorithms.

Unlike written English, written Chinese does not use delimiters between words. Incorrect word
segmentation may lead to erroneous entity recognition and information extraction failure.
Therefore, for pragmatic reasons, each Chinese character is frequently treated as an atomic linguistic
unit. However, one drawback of general character embedding is the lack of word information
expressed, especially in the context of building code analysis, which involves dozens of characteristic
technical terms. Thus, an augmented embedding method is designed to enrich Chinese characters with
word information (see Figure 3, Part 1). Specifically, the Building Information Model Classification and
Coding Standard (GB/T 51269-2017) [32] is utilized as the terminology reference for deriving the prior
semantic information that needs to be represented by word-level embedding vectors. These word-level
vectors can then be integrated into character-level vectors. In this way, the resulting vectors can express
characters with richer semantics.

Formally, for a given clause S = {c1, c2, . . . , cn}, where ci represents the i-th character in S,
the input representation for each character xi ∈ Rdc is as follows:

xi = [ec (ci) + W Tew (word (ci))] , (1)

where ec and ew denote a pretrained character embedding lookup table and a pretrained word
embedding lookup table, respectively. The formula word (ci) represents the word to which character
ci belongs, which is implemented based on the Jieba segmentation library. W T ∈ Rdc×dw is a trainable
transformation matrix for aligning the dimensionality of a word vector (dw) with that of a character
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vector (dc). Finally, the sequence of characters that forms a raw clause can be expressed as a vector
matrix, where each column represents the character vector xi associated with the corresponding
position in the sentence.

Part 3. Subject Extractor

Bi-LSTM

Self-attention

Self-attention Dense && Softmax

Dense && Softmax

Part 1. Augmented Character Embedding Part 2. Shared Semantic Encoder

Word-level embedding

Character-level embedding

Linear

ADD

Bi-LSTM
Max 

Pooling

Input: A raw clause

Example: "梯段净宽不应小

于1.10米。" (The clear 
width of stair segments 
shall be no less than 1.10 
meters.)

Vector matrix of the clause

Task-shared features [ht ; g]
 
 
 
 
 
  
1.13 0.88 ⋯ 0.45
⋮ ⋮ ⋱ ⋮

0.35 0.55 ⋯ 1.24
 

2𝑑ℎ×14

 
1.55 1.55 ⋯ 1.55
⋮ ⋮ ⋱ ⋮

1.24 1.24 ⋯ 1.24
 

2𝑑ℎ×14 
 
 
 
 
 

 

Context 
features h

Sentence-
level features

E3 E5

梯 段 净 宽 不 应 小 于 1 . 1 0 米 。

E3 E5
Start 

Tagging 

End 
Tagging

(2)  "净宽" (clear width)
 Start position: 2, End position: 3   

(1)  "梯段"  (stair segment)
Start position: 0, End position: 1    

2 candidate subject entities:

repeat

 

0.96 0.84 0.46 ⋯ 0.04
0.22 1.11 0.19 ⋯ 0.79
⋮ ⋮ ⋮ ⋱ ⋮

1.17 0.38 0.44 ⋯ 0.06

 

𝑑𝑐×14

 

"梯" "段" "净" "。" 

Figure 3. The extraction of candidate subject entities. In this figure, the clause “The clear width of stair
segments shall be no less than 1.10 m (in Chinese: 梯段净宽不应小于1.10米”), with a length of n = 14,
is taken as an example.

2.2.3. Shared Semantic Encoder

The augmented character embedding vectors provide only prior semantic information for each
character in a clause. A character/word will also convey more specific information depending on how
it is used in a sentence. The sequence of characters in a sentence forms the context of those characters.
To further improve the analysis capabilities, this context information can also be embedded into the
character embedding vectors. Accordingly, a shared semantic encoder (see Figure 3, Part 2) is designed
to utilize a Bi-LSTM network to capture the context features for each character. In detail, in the forward
direction, the Bi-LSTM network computes along the sequence of input vectors from left to right, while in
the backward direction, it computes from right to left. An LSTM model includes gate mechanisms to
“remember” (obtain new information) and “forget” (discard unnecessary information) [33]. In this way,
the association between a character and its surrounding characters (on both the left- and right-hand
sides) is encoded by concatenating the forward and backward LSTM hidden states. The output of a
Bi-LSTM layer is as follows:

ht = BiLSTM(xt) = [
−→
ht ⊕

←−
ht ], (2)

where
−→
ht and

←−
ht are the forward and backward hidden states, respectively, at position t and

⊕ represents the concatenation operator. The function of BiLSTM is directly imported from the
TensorFlow library.

Moreover, in addition to the associations with adjacent characters within a certain “distance”,
a sentence-level feature g is computed via max pooling over all hidden states of the Bi-LSTM layer.
Finally, each hidden state ht is concatenated with g to form the task-shared feature vectors [ht; g].
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These vectors are input into two downstream processes, that is, the subject extractor and the object
and predicate extractor.

2.2.4. Subject Extractor

The subject extractor is responsible for perceiving all candidate subject entities for the target
SPO triplets. In Chinese code clauses, a domain-specific named entity is frequently composed
of multiple characters. For example, the named entity “变压器”, comprising three characters,
means “transformer”. To identify such entities, we first identify the start positions of the candidate
subject entities and then identify their end positions. Specifically, two tagging processes are employed:
one for the start position and the other for the end position. When a character is tagged as a start
or end position, its corresponding entity type is also labeled. In addition, the start position tagging
information is used as input to the end position tagging process to achieve more accurate predictions.

Figure 3, Part 3, illustrates the processing procedure of the subject extractor. First, a Bi-LSTM
model is used to extract task-specific feature vectors from the task-shared feature vectors.
Subsequently, a multihead self-attention model is applied to the feature vectors to tag the start position
of each subject entity along with its entity type. Self-attention is a method of encoding sequences
of vectors by relating these vectors to each other based on pairwise similarities [34]. By means of
self-attention mechanism, a model can determine which characters are important for specific tasks.
Essentially, an attention function is a mapping function that maps a query vector Q and a set of
key-value vector pairs (K, V) to an output. In this case, the scaled dot-product attention is adopted
(see Equation (3)). The query vector of a character is applied to the key vector of each other character
in the sentence and then scaled by the dimensionality of the hidden units. Subsequently, a softmax
function is utilized to compute the pairwise similarity between the query character and the key features
of each other character of the sentence. The softmax is a probabilistic function that takes real numbered
inputs and outputs a probability number. This function is directly imported from the TensorFlow
library. Finally, the attention result can be calculated by taking the dot product of the softmax output
and the value vector of each character.

Attention(Q, K, V) = Softmax

(
QKT
√

d

)
V , (3)

where Q ∈ Rn×2dh , K ∈ Rn×2dh , and V ∈ Rn×2dh are the query matrix, key matrix and value matrix,
respectively. Attention(Q, K, V) is the final attention value calculated by pairwise similarity scores
and value vector. hse = [hse

1 , hse
2 , . . . , hse

n ] denotes the task-specific features output by the Bi-LSTM layer.
In this paper, Q = K = V = hse. d is the dimensionality of the hidden units of the Bi-LSTM layer,
which is equal to 2dh.

Furthermore, the multihead attention model employs multiple different linear layers to linearly
map vectors Q, K, and V and then focuses on obtaining the multihead attention. The intuition behind
the multihead attention is that applying the attention multiple times may learn more abundant features
than single attention (also known as a head) in the sentence [34]. If the multihead attention contains m
heads, the i-th attention head can be calculated using Equation (4). And the final multihead attention
is the concatenation of all heads as shown in Equation (5).

headi = Attention(QW Q
i , KWK

i , VWV
i ) (4)

MultiHead(Q, K, V) = (head1 ⊕ . . .⊕ headm)WO, (5)

where W Q
i ∈ R2dh×dk , WK

i ∈ R2dh×dk , and WV
i ∈ R2dh×dk are trainable projection parameters.

dk = 2dh/m, and WO ∈ R2dh×2dh is also a trainable parameter. MultiHead(Q, K, V) is the final
multihead attention value. The function of MultiHead(Q, K, V) is implemented based on the
TensorFlow library according to the work of Vaswani et al. [34]. Subsequently, the output of the
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self-attention layer hse−sta =
[

hse−sta
1 , hse−sta

2 , . . . , hse−sta
n

]
is fed to a dense layer with softmax activation

to produce a probability distribution over all labels. The label of character ct when it is tagged as a
start position is predicted as shown in Equation (7):

P
(
yse−sta

t
)
= Softmax

(
W se−stahse−sta

t + bse−sta
)

(6)

SE-TAGsta (xt) = arg max
k

P
(
yse−sta

t = k
)
, (7)

where W se−sta ∈ R|T|×2dh and bse−sta ∈ R|T| are trainable parameters. |T| denotes the number of
output labels.

Likewise, the multihead self-attention model can be adopted to capture the features for
subject-entity end position identification. Considering that the prediction of the end positions may
benefit from the prediction results for the start positions, the output of the first self-attention layer, hse−sta,
is concatenated with the task-specific features hse to initialize Q, K and V in the second self-attention
layer. The output of the second layer is denoted by hse−end =

[
hse−end

1 , hse−end
2 , . . . , hse−end

n

]
.

Then, the label of character ct when it is tagged as an end position is predicted as shown in Equation (9):

P
(

yse−end
t

)
= Softmax

(
W se−endhse−end

t + bse−end
)

(8)

SE-TAGend (xt) = arg max
k

P
(

yse−end
t = k

)
, (9)

where W se−end ∈ R|T|×4dh and bse−end ∈ R|T| are trainable parameters.
Figure 3 shows an example of subject-entity extraction. The candidate subject entities are each

tagged with the corresponding entity type label (“E3” for “construction element” and “E5” for
“property”) in the start and end tag sequences. Accordingly, a set of subject-entities (i.e., “梯段”
(stair segment) and “净宽” (clear width)) are extracted. In addition, the training loss of the subject
extractor (which is to be minimized) is defined as the sum of the negative log probabilities of the true
start and end tags based on the predicted distributions:

Lse = −
1
n

n

∑
i=1

(
log P

(
yse−sta

i = ŷse−sta
i

)
+ log P

(
yse−end

i = ŷse−end
i

))
, (10)

where ŷse−sta
i and ŷse−end

i are the true start and end tags, respectively, of the i-th character, and n is the
length of the input clause.

2.2.5. Object and Predicate Extractor

Following the extraction of a set of candidate subject entities, their corresponding object entities
and the predicates used to link a subject and an object are simultaneously derived by the object
and predicate extractor (see Figure 4). The semantic information of a subject entity is helpful for
predicting the corresponding object entities and predicate relations. For a given subject entity
composed of a sequence of characters, its semantic information can be encoded using an LSTM
model, character by character, to further enrich the task-shared feature vectors acquired from the
shared semantic encoder. Specifically, the task-shared features for each character in a subject entity
are sequentially input into the LSTM model. Finally, the last hidden states of the LSTM are used
as the semantic information of the given subject entity and are concatenated with the task-shared
features. The resulting concatenated vector contains both context-enriched character information
and the associated subject-entity information. Subsequently, two tagging processes are sequentially
performed to identify the start and end positions of each object entity. Moreover, whenever a character
is tagged as a start position, the associated predicate relation type is simultaneously labeled.
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Figure 4. The extraction of object entities and predicate relations. In this figure, the identified subject
entity “梯段” (stair segment) is taken as an example.

The identification of the start and end positions for the object entities is very similar to that for the
subject entities, except that the tags for both the start and end positions of an object entity indicate
the type of the predicate relation rather than the type of the object entity. For example, in Figure 4,
when the given subject entity is “梯段 (stair segment)”, the start and end positions of the entity “净宽”
(clear width) are tagged with the label of the predicate type “R2” (i.e., “hasProperty”) in the start
and end tag sequences, respectively. Accordingly, one candidate triplet for the given subject entity
“梯段 (stair segment)” is extracted, that is, [“梯段”, hasProperty, “净宽”] ([stair segment, hasProperty,
clear width]). In this way, for each identified subject entity, its associated object entities and predicate
relations are simultaneously extracted.

Formally, given an identified subject entity, the label of character ct when it is tagged as a start or
end position is predicted as shown in Equation (12) and Equation (14), respectively:

P
(

yope−sta
t

)
= Softmax

(
W ope−stahope−sta

t + bope−sta
)

(11)

OPE-TAGsta (xt) = arg max
k

P
(

yope−sta
t = k

)
(12)

P
(

yope−end
t

)
= Softmax

(
W ope−endhope−end

t + bope−end
)

(13)

OPE-TAGend (xt) = arg max
k

P
(

yope−end
t = k

)
, (14)

where hope−sta
t and hope−end

t are the outputs of the first and second self-attention layers, respectively,
at position t and W ope−sta ∈ R|T′ |×2dh , W ope−end ∈ R|T′ |×4dh , and bope−sta, bope−end ∈ R|T′ | are trainable
parameters. |T′| denotes the number of output labels. Finally, the training loss of the object and
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predicate extractor is defined as the sum of the negative log probabilities of the true start and end tags
based on the predicted distributions:

Lope = −
1
n

n

∑
i=1

(
log P

(
yope−sta

i = ŷope−sta
i

)
+ log P

(
yope−end

i = ŷope−end
i

))
, (15)

where ŷope−sta
i and ŷope−end

i are the true start and end tags, respectively, of the i-th character and n is
the length of the input clause.

2.3. Model Training and Inference

In the training phase, the subject extractor and the object and predicate extractor can be jointly
trained since they share the same input of the code clauses. For each training instance, a subject entity
is randomly selected from the training data set of subject entities as the specified input to the object and
predicate extractor. By comparing the model output with the actual labeled results, the loss functions
of the subject extractor and the object and predicate extractor can be calculated; these losses are then
combined to calculate the total loss, as follows:

L = Lse + Lope. (16)

The total loss function in Equation (16) can be optimized using the Adam algorithm [35] to
consider the mutual influence of the errors arising in the extraction of the subject entities, object entities,
and predicates such that the errors that occur in each task are constrained by the others.

Algorithm 1 Inference Algorithm.
Input:
S
S denotes the input clause
Output:
{< si, pij, oij >}
si denotes the i-th extracted subject entity; pij and oij are the j-th predicate relation and object entity, respectively,
associated with the i-th subject entity.

1: Define n← clause length
2: Initialize T ← {}
3: Initialize S ← {}
4: Obtain SE-TAGsta(S) using Equation (7)
5: Obtain SE-TAGend(S) using Equation (9)
6: for i← 1 to n do
7: if SE-TAGsta(S)[i] 6= “O” then
8: for j← i to n do
9: if SE-TAGsta(S)[i] = SE-TAGsta(S)[j] then

10: s← S[i : j]
11: S ← S ∪ s
12: Break
13: for s∗ ← s in S do
14: Obtain OPE-TAGsta(S) using Equation (12)
15: Obtain OPE-TAGend(S) using Equation (14)
16: for i← 1 to n do
17: if OPE-TAGsta(S)[i] 6= “O” then
18: for j← i to n do
19: if OPE-TAGsta(S)[i] = OPE-TAGend(S)[j] then
20: o ← S[i : j]
21: p← OPE-TAGsta(S)[i]
22: t←< s∗, p, o >
23: T ← T ∪ t
24: Break
25: return T



Appl. Sci. 2020, 10, 7103 12 of 18

Algorithm 1 presents the pseudocode for decoding the tagging results from the subject extractor
and the object and predicate extractor. Lines 1–3 represent the initialization process for each input
clause S expressed in natural language. Lines 4–12 describe the algorithm for deriving candidate
subject entities from the tagging results of the subject extractor. Then, Lines 13–24 describe the
algorithm for acquiring all candidate triplets from the tagging results of the object and predicate
extractor. In detail, for a sentence with k subject entities, the entire task is finally deconstructed into
two tasks for subject-entity tagging and 2k tasks for object-entity and predicate tagging. By means of
this inference algorithm, the triplets can be directly identified from the start/end positions and tags of
the entities, thus helping to accelerate the inference process and reduce the demand for computing
resources. Moreover, nonrelated pairs can be excluded through the judicious recognition of the subject
entities, and the overlapping relation problem can be naturally resolved.

3. Experiment

3.1. Data Preparation and Labeling

An experiment was conducted to validate the performance of the proposed joint extraction method
on 1320 code clauses selected from 14 building codes written in Chinese (Table 3). Three domain experts
were invited to annotate all triplet instances appearing in the code clauses based on the predefined
types of entities and relations listed in Tables 1 and 2. First, text span annotations for the subject entities
and object entities were labeled, and then, the tags of the predicates were determined. The manual
labeling process was facilitated by BRAT, an intuitive web-based text labeling tool. Figure 5 presents
eight typical examples of labeled sentences.

motor vehicle garage

entrance road

turning radius 

6 meters

( The turning radius of a  motor vehicle road at the entrance t o  a 
garage shall be no less than 6 meters.)

(The lighting coefficient of the kitchen shall be no less than 1 %. )

lighting coefficient

(The clear width of the corridor access to the bedroom shall be no 
less than 1.00 m.)

bedroom

corridor

clear width 1.00 meter

(The clear width of a wheelchair ramp at an accessible entrance 
shall be no less than 1.20 m.)

accessible 
entrance

ramp

clear width

1.20 meters

( The clearance between the enclosure wall of the plant and the 
internal building shall be no less than 5 meters.)

plant

enclosure wall building

clearance 5 metersplant

(The area of the ventilation opening of a residence shall be no less 
than 5 % of its ground floor area.)

residence 

ventilation opening

floor areaarea

(The height of stair steps shall be no greater than 0.175 meters.)

stair step height 0.175 meters

(The flow rate of fire hydrants outside of the tunnel shall be no less 
than 30 L/s.)

tunnel

fire hydrant
flow rate

: Building : Built space : Construction element : Feature : Property : Quantity

kitchen

Figure 5. Labeled clauses for model training and testing (partial).
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Table 3. Chinese building codes used for dataset preparation.

Standard No. Name of Chinese Building Codes

GB50368-2005 《住宅建筑规范》(Residential building code)
GB50096-2011 《住宅设计规范》(Design code for residential buildings)
GB50352-2019 《民用建筑设计统一标准》(Uniform standard for the design of civil buildings)
GB50763-2012 《无障碍设计规范》(Code for accessibility design)
GB50016-2014 《建筑设计防火规范》(Code for the fire protection design of buildings)
GB50099-2011 《中小学校设计规范》(Code for the design of schools)
GB51039-2014 《综合医院建筑设计规范》(Code for the design of general hospitals)
GB50067-2014 《公共建筑节能设计标准》(Design standard for the energy efficiency of public buildings)
GB50038-2005 《人民防空地下室设计规范》(Code for the design of civil air defense basements)
JGJ100-2015 《车库建筑设计规范》(Code for the design of parking garage buildings)
JGJ450-2018 《老年人照料设施建筑设计标准》(Standard for the design of care facilities for the aged)
JGJ39-2016 《托儿所、幼儿园建筑设计规范》(Code for the design of nursery and kindergarten buildings)
JGJ48-2014 《商店建筑设计规范》(Code for the design of store buildings)
JGJ62-2014 《旅馆建筑设计规范》(Code for the design of hotel buildings)

3.2. Implementation of the Joint Extraction Model

A total of 924 clauses, 70% of the labeled clause set, were randomly selected as the training
set, while the others were used for testing. The model was implemented using TensorFlow on a PC
equipped with a 4.00 GHz Intel(R)i7-6700K CPU, two NVIDIA GeForce GTX 1080 GPUs and 64 GB of
RAM. The dimensionality of the LSTM hidden states was 128. Dropout was applied to the embeddings
and hidden states at a rate of 0.3. The number of attention heads was set to 8. The character and word
embeddings used in this experiment were pretrained on the Baidu Encyclopedia corpus using the
word2vec toolkit [19], and the number of embedding dimensions was set to 300. The model parameters
were optimized for 500 iterations using Adam [35] with a learning rate of 1e-4 and a batch size of 64.

For comparison, the following classic triplet extraction models were employed as baselines:
(1) Ren et al. [36] proposed a domain-independent framework for jointly learning representations of
entity mentions, relation mentions, and type labels; (2) Zheng et al. [37] converted the joint triplet
extraction task into a tagging problem based on a unified tagging scheme; (3) Tan et al. [28] designed
a joint extraction model based on a translation mechanism; (4) Zeng et al. [38] considered triplet
extraction as a sequence-to-sequence problem with a copy mechanism; and (5) Fu et al. [30] first
adopted graph convolutional networks to extract text features and then considered all word pairs for
triplet prediction. The test results of the aforementioned models are compared with those of our model
in the next section.

3.3. Experimental Results and Analysis

Figure 6 illustrates the test results of the trained joint extraction model. Specifically, the extracted
triplets with green backgrounds are correct, whereas a red background indicates an incorrect prediction,
and a yellow background indicates an omitted triplet. The test results imply that the model has the
capacity to discover multiple relations residing in code clauses, especially overlapping relations.
Moreover, the number of extracted triplets varies for many test sentences that cannot be processed
using the extraction model proposed in Reference [21].
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Clause 1: "楼梯踏步宽度不应小于0.26米。" (The width of a stair step shall be no less than 0.26 meters.)

Prediction:

Clause 3: "由卧室、起居室、厨房和卫生间等组成的套型，其使用面积不应小于30平方米。"(The usable area of an apartment consisting of  a 
bedroom, living room, kitchen and toilet shall be no less than 30 square meters.)

Clause 2: "卫生间内排水横管下表面与楼面的净距不得低于1.90米。"(The clearance between the undersurface of the drainage pipe in the 
toilet and the floor shall be no less than 1.90 m.)

Clause 4: "楼梯平台净宽不应小于梯段净宽，且不得小于1.20米。"(The clear width of a stair landing shall be no less than the clear width of 
the stair segment and shall be no less than 1.20 meters.)

["楼梯"#1(0,1),hasObject,"踏步"#1(2,3)]

(["stair"#1,hasObject,"step"#1])

["踏步"#1(2,3),hasProperty,"宽度"#1(4,5)]

(["step"#1,hasProperty,"width"#1])

["宽度"#1(2,3),NotLessThan,"0.26米"#1(10,14)]

(["width"#1,NotLessThan,"0.26 meters"#1])

Prediction:

["套型"#1(18,19),hasObject,"卧室"#1(1,2)]

(["apartment"#1,hasObject,"bedroom"#1])

Prediction:

Prediction:

["套型"#1(18,19),hasObject,"起居室"#1(4,6)]

(["apartment"#1,hasObject,"living room"#1])

["套型"#1(18,19),hasObject,"厨房"#1(8,9)]

(["apartment"#1,hasObject,"kitchen"#1])

["套型"#1(18,19),hasObject,"卫生间"#1(11,13)]

(["apartment"#1,hasObject,"toilet"#1])

["套型"#1(18,19),hasProperty,"使用面积"#1(22,25)]

(["apartment"#1,hasProperty,"usable area"#1])

["使用面积"#1(22,25),NotLessThan,"30平方米"#1(30,34)]

(["usable area"#1,NotLessThan,"30 square meters"#1])

["卫生间"#1(0,2),hasObject,"排水横管"#1(4,7)]

(["toilet"#1,hasObject,"drainage pipe"#1])

["排水横管"#1(4,7),hasObject,"下表面"#1(8,10)]

(["drainage pipe"#1, hasObject, "undersurface"#1])

["净距"#1(15,16),Between,"楼面"#1(12,13)]

(["clearance"#1,Between,"floor"#1])

["净距"#1(15,16),Between,"下表面"#1(8,10)]

(["clearance"#1,Between,"undersurface"#1])

["净距"#1(14,15),NotLessThan,"1.90米"#1(21,25)]

(["clearance"#1,NotLessThan,"1.90 meters"#1])

["排水横管"#1(4,7),Within,"卫生间"#1(0,2)]

(["drainage pipe"#1,Within,"toilet"#1])

["楼梯"#1(0,1),hasObject,"平台"#1(2,3)]

(["stair"#1,hasObject,"landing"#1])

["平台"#1(2,3),hasProperty,"净宽"#1(4,5)]

(["landing"#1,hasProperty,"clear width"#1])

["净宽"#1(4,5),NotLessThan,"净宽"#2(14,15)]

(["clear width"#1,NotLessThan,"clear width"#2])
["楼梯"#1(0,1),hasObject,"梯段"(10,11)]

(["stair"#1,hasObject,"segment"#1])

["梯段"#1(10,11),hasProperty,"净宽"#2(12,13)]

(["segment"#1,hasProperty,"clear width"#2])

["净宽"#1(4,5),NotLessThan,"1.20米"#1(20,24)]

(["clear width"#1,NotLessThan,"1.20 meters"#1])

["净宽"#2(14,15),NotLessThan,"1.20米"#1(20,24)]

(["clear width"#2,NotLessThan,"1.20 meters"#1])

Clause 5: "住宅层高宜为2.8米。"(The story height of an apartment should be 2.8 meters.)

Prediction:

["住宅"#1(0,1),hasProperty,"层高"#1(2,3)]

(["apartment"#1,hasProperty,"story height"#1])

["层高"#1(2,3),EqualTo,"2.8米"#1(6,9)]

(["story height"#1,EqualTo,"2.8 meters"#1])

["净宽"#1(4,5),NotLessThan,"1.20米"#1(20,24)]

(["clear width"#1,NotLessThan,"1.20 meters"#1])

Figure 6. Results of model testing (partial).

Three metrics, that is, the recall, precision, and F-measure, were calculated to evaluate the model
performance. The precision is defined as the percentage of correctly extracted triplets among the total
number of extracted triplets (Equation (17)). The recall is the fraction of correctly extracted triplets
among the total triplets existing in the source text (Equation (18)). The F-measure combines the recall
and precision into a single measure, where β is a parameter that is used to assign relative weights to
the recall and precision values (Equation (19)).

P =
number of correct triplets extracted

total number of triplets extracted
(17)

R =
number of correct triplets extracted

total number of triplets existing
(18)

F−measure =
(β2 + 1)PR

β2P + R
. (19)

Here, the value of β was set to 1 to assign equal weights to the precision and recall. In this
experiment, a triplet was considered correct only if its subject entity, object entity, and predicate
relation were all correct.

The precision, recall, and F-measure scores achieved by the model in this test for each of the
14 predicate types are listed in Table 4. On average, a precision, recall, and F-measure of 0.8808,
0.8519, and 0.8661, respectively, were achieved. These results validate the effectiveness of the proposed
model in extracting multiple relations and entities from building code sentences. In addition, for 7 of
the 14 predicate types, the model achieved relatively high F-measure scores of more than 0.8. For the
other types (e.g., “LessThan” and “GreaterThan”), the scores of less than 0.8 may be attributable to the
small sample sizes for these types among all clauses.
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Table 4. Precision, recall, and F-measure results obtained through model testing.

Predicate Type In Gold Standard Extracted Correctly Extracted Precision Recall F-Measure

hasObject 305 298 243 0.8154 0.7967 0.8060
hasProperty 406 388 357 0.9201 0.8793 0.8992
hasFeature 279 266 240 0.9023 0.8602 0.8807
AccessTo 26 19 17 0.8947 0.6538 0.7556

Within 42 44 38 0.8636 0.9048 0.8837
Outside 21 15 13 0.8667 0.6190 0.7222
Between 115 108 95 0.8796 0.8261 0.8520

AdjacentTo 30 23 21 0.9130 0.7000 0.7925
NotLessThan 278 290 266 0.9172 0.9568 0.9366

NotGreaterThan 78 77 69 0.8961 0.8846 0.8903
LessThan 26 27 18 0.6667 0.6923 0.6792

GreaterThan 27 27 19 0.7037 0.7037 0.7037
EqualTo 17 20 14 0.7001 0.8235 0.7568

MultipliedBy 24 17 16 0.9412 0.6667 0.7805

Total 1674 1619 1426 0.8808 0.8519 0.8661

Table 5 compares the test results of the proposed model with those of the five classic extraction
models, from which it can be seen that the former achieved the best performance. The data in Table 5
indicate poor performance of the models proposed by Ren et al. [36] and Zheng et al. [37] since they
lack the ability to cope with complex overlapping relations. In addition, Tan’s model [28] can predict
only a fixed number of triplets, and not all triplets can be extracted; Zeng’s model [38] fails to extract
entities consisting of multiple words, and the final results were significantly influenced by the word
segmentation performance; and Fu’s work [30] assumes that every pair of entities has an associated
relation, causing the model to be misled by many nonrelated entity pairs.

Table 5. Comparison of results on the test set.

Model Precision Recall F-Measure

Ren et al. [36] 0.3748 0.3202 0.3454
Zheng et al. [37] 0.5039 0.4253 0.4613

Tan et al. [28] 0.6704 0.6099 0.6387
Zeng et al. [38] 0.7098 0.6780 0.6936

Fu et al. [30] 0.7440 0.7640 0.7539

Our Model 0.8808 0.8519 0.8661

To further demonstrate the contributions of some of the components illustrated in Figure 3,
one component at a time was intentionally removed to explore the impact on performance.
Concretely, the word-level embedding, character-level embedding, sentence-level feature vectors,
start tagging feature vectors, and joint learning framework were investigated in this way.
Specifically, the start tagging feature vectors were removed when predicting the end positions, and the
joint learning framework was removed by training the subject extractor and the object and predicate
extractor separately, without parameter sharing.

The ablation results presented in Table 6 indicate the following: (1) The integration of the
character-level and word-level embedding methods is useful for capturing the prior semantic
information of each character appearing in the code clauses. (2) Introducing sentence-level feature
vectors is an effective means of further encoding sentence information for use in prediction.
(3) Considering the predicted start positions when predicting the end positions is beneficial, as implied
by the 3.5% decline in the F-measure score observed when removing the start tagging features from
the end position prediction process. (4) The joint learning framework is also effective, as implied by
the 6.4% drop in the F-measure score seen when the subject extractor and the object-and-predicate
extractor are trained separately.
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Table 6. An ablation study on the test set.

Model Precision Recall F-Measure

Whole Model 0.8808 0.8519 0.8661
-word-level embedding 0.8535 0.8005 0.8261

-character-level embedding 0.8647 0.8094 0.8362
-sentence-level features 0.8692 0.8136 0.8404
-start tagging features 0.8582 0.8065 0.8315

-joint learning 0.8287 0.7772 0.8021

4. Conclusions

Chinese code clauses frequently contain complex semantic relations in terms of the multiple
relations among named entities and the overlapping relation problem, leading to difficulty for the
extraction of engineering constraints. Unfortunately, existing machine-learning based methods for
regulation information extraction are inadequate to address the complexity of the semantic relations
between entities. In this study, a joint extraction model was proposed for extracting multiple relations
and entities from code clauses.

In the proposed model, a hybrid deep learning algorithm combined with a decomposition
strategy was applied. In this way, multiple relations, especially overlapping relations, can be extracted.
Meanwhile, non-related pairs were excluded through the judicious recognition of the subject entities.
An experiment was conducted to validate the performance of the proposed model, which achieved an
average precision, recall, and F-measure of 0.8808, 0.8519, and 0.8661, respectively. The experimental
results indicate that the proposed model is promising for extracting multiple relations and entities from
building codes. With the proposed joint extraction model, the engineering constraints can be better
extracted and then formally represented with the assistance of the ontological description of semantic
relationships between named entities. In this way, the code clauses written in a natural language can
be automatically processed and understood by computers.

Although a collection of domain-specific entity and relation types was investigated, only the
principle types of entities and relations appearing in Chinese building codes were considered as
extraction targets. In the future, more entity/relation types will be considered to test the proposed
method. Although the experimental results showed a favorable outcome, the proposed methodology
was only tested on a relatively small size of datasets because a significant amount of time and human
efforts would be required to create a larger dataset. Thus, addressing the dataset size problem is needed
in the future to further verify and refine the performance of the presented approach. In addition,
this research has mainly focused on the process of information extraction; the question of how to
automatically convert the extracted triplets into logical inferences for automated code compliance
verification should be further explored in future work.
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