

 applsci-10-07070

applsci-10-07070

Appl. Sci. 2020, 10(20), 7070; doi:10.3390/app10207070

Article

Semantics-Preserving RDB2RDF Data Transformation Using Hierarchical Direct Mapping

Hee-Gook Jun 1 and Dong-Hyuk Im 2,*[image: Orcid]

1

Openub, Seoul 06097, Korea

2

School of Information Convergence, Kwangwoon University, Seoul 01890, Korea

*

Correspondence: dhim@kw.ac.kr

Received: 22 September 2020 / Accepted: 8 October 2020 / Published: 12 October 2020

Abstract

:

Direct mapping is an automatic transformation method used to generate resource description framework (RDF) data from relational data. In the field of direct mapping, semantics preservation is critical to ensure that the mapping method outputs RDF data without information loss or incorrect semantic data generation. However, existing direct-mapping methods have problems that prevent semantics preservation in specific cases. For this reason, a mapping method is developed to perform a semantics-preserving transformation of relational databases (RDB) into RDF data without semantic information loss and to reduce the volume of incorrect RDF data. This research reviews cases that do not generate semantics-preserving results, and the corresponding problems into categories are arranged. This paper defines lemmas that represent the features of RDF data transformation to resolve those problems. Based on the lemmas, this work develops a hierarchical direct-mapping method to strictly abide by the definition of semantics preservation and to prevent semantic information loss, reducing the volume of incorrect RDF data generated. Experiments demonstrate the capability of the proposed method to perform semantics-preserving RDB2RDF data transformation, generating semantically accurate results. This work impacts future studies, which should involve the development of synchronization methods to achieve RDF data consistency when original RDB data are modified.

Keywords:

hierarchical direct mapping; relational database; semantic web; web ontological language

1. Introduction

The transformation of relational databases (RDB) into resource-description-framework (RDF) data is a key information extraction method used to publish semantics web data [1,2,3]. In 1998, Tim Berners–Lee proposed the concept of mapping RDBs to the Semantic Web [4]. Since then, several approaches have been proposed to improve the mapping of RDBs to semantic data. Additionally, the World Wide Web Consortium (W3C) has organized working groups to help standardize the technologies used for transforming RDBs into RDF data.

Direct mapping is a representative mapping method recommended by the W3C to support the automatic mapping of relational data to semantic data [5]. Figure 1 illustrates an example of direct mapping, which defines mapping rules for transforming both relational schema and instance data into RDF data. In the field of direct mapping, researchers have long-studied effective automated processes that focus on semantics preservation. The semantics preservation of the direct mapping process reflects the relational integrity constraints within the mapping result [6,7]. Because integrity constraints define the semantics of a database, mapping with integrity constraints generates more semantically accurate results.

Although the transformation of relational data using integrity constraints has been long-studied [8,9,10,11,12,13,14,15,16], several problems still occur during the direct-mapping processes under specific conditions (see Figure 2). If an attribute has two or more integrity constraints (e.g., NotNull and Unique in Figure 2a), the mapping result will output a single RDF graph structure that combines all of the integrity constraints (the subgraph rooted by name in Figure 2b). The mapping result preserves the semantics in view of the previous methods because relational data is transformed into RDF data. However, to date, no explicit transforming meta-information or well-designed hierarchical structure has been provided to trace the input relational data into the mapping result. RDF NotNull and Unique triples should have meta-information that reveals their NotNull and Unique constraints respectively, regarding the attribute name in table Lecture. Without this information, a new subgraph can be extracted from the merged RDF graph, which can then be misinterpreted, generating unintended constraints not found in the original data (see the primary key in Figure 2c). Thus, mapping methods based on weak definitions of semantics preservation can cause information loss and incorrect data generation. Therefore, to ensure the accuracy of the mapping process in all cases, a stringent definition is needed to quantify semantics preservation.

This paper proposes a hierarchical direct-mapping algorithm that prevents the problem illustrated in Figure 2 and preserves the semantics based on strict logical rules. Mapping problems occur when a mapping method simply focuses on data-type transformations. To prevent this, the proposed method uses a hierarchical semantics vocabulary and advanced mapping rules to map without semantic information loss. This paper also defines an evaluation metric using the inverse-mapping phase. That is, a mapping method is said to preserve the semantics if the result of inverse-mapping is semantically identical to the original input data (Figure 3). Evaluation results confirm the effectiveness and accuracy of semantics preservation of the proposed mapping methods.

This paper makes the following contributions:

	
Lemmas are defined to ensure semantics preservation and to demonstrate the soundness and completeness of direct mapping.

	
Hierarchical mapping rules are defined based on lemmas to perform semantics-preserving RDB-to-RDF (RDB2RDF) transformations and to prevent the loss of semantics and incorrect semantic data generation problems.

	
The scope of semantics preservation is extended, such that the inverse transformation of the output semantic data should be identical to the original input data.

The remainder of this paper is structured as follows. In the following section, the RDB2RDF mapping methods are briefly discussed. Section 3 presents preliminaries and problem descriptions of direct mapping. Section 4 describes the proposed mapping rules using logical definitions and the implementation of those rules in detail. Section 5 summarizes the results of our experiments. Finally, the conclusions and discussion of prospective future research are provided in Section 6.

2. Related Work

RDB2RDF is a mapping method that transforms relational data into semantic data represented by the RDF. The RDF data model [17] is a language that describes semantic information on the Semantic Web. The basic unit of RDF data is based on a graph structure (i.e., the triple: subject, property, and object) [18,19,20]. The RDF is a flexible and interoperable model used to publish information to the web relative to the relational data model. However, because ~70% of websites are backed up as RDBs [1], existing relational data must be used with the RDB2RDF methodology for the improvement of the Semantic Web.

RDB2RDF mapping approaches include mapping creation, mapping representation and accessibility, mapping implementation, query implementation, application domain, and data integration [21]. Mapping creation has been widely studied to improve the generation of mappings between relational data and semantic data, and it can be performed either automatically or manually [22] (see Table 1 for a list of previous mapping works). Domain semantics-driven mapping is a manual mapping method [23,24]. The W3C RDB2RDF Working Group has recommended the R2RML mapping language [25,26] for customizing mappings. Mapping tools, such as D2RQ [27,28], Virtuoso [29,30], Ultrawrap [31,32], etc. have also been provided to support manual mapping. On the other hand, direct mapping is an automatic mapping method that was published by the W3C RDB2RDF Working Group in 2012 [5]. It uses RDB instances and schemas as inputs and automatically generates RDF semantic data. In the field of RDF data creation, some methods used to transform various types of data (e.g., heterogeneous data [33], object-oriented data [34], and the Web of Data [35]) to RDF data have been devised. The current paper, however, mainly focuses on direct mapping to manage large-scale data on the web.

Further research has been conducted to obtain semantic data from relational data without information loss [6,8,9,10,11,12,13,14,15,16]. RDF schema (RDFS) and Web Ontology Language (OWL) are used to obtain a more accurate mapping for RDB2RDF transformation. The concept of RDF data can be modeled by RDFS or OWL in a manner similar to that used for defining the relational schema using SQL data definition language (DDL). Moreover, because OWL contains a more expressive semantic vocabulary, the mapping methods can better express the semantics of relational integrity constraints.

Sequeda et al. [7] proposed an augmented direct-mapping method that generates semantic data from the integrity constraints of the SQL DDL schema. Because integrity constraints define the semantics of the RDBs, the quality of augmented direct mapping depends on the transformation of the integrity constraints of the RDBs. DB2OWL [10] and RDBToOnto [11] also provided augmented direct mapping tools. However, they were restricted to supporting only referential integrity constraints. Lim et al. [13] used the OWL to process more rules and Jun et al. [14] proposed semantics-preserving optimization of mapping multi-column key constraints. However, their method still lacked support for use in the transformation of all integrity constraints of the relational SQL syntax. Moreover, this paper has observed that the problem of incorrect semantic data generation can occur in specific cases, as described in the next section.

3. Preliminaries

3.1. Direct Mapping

Developed in 2010 and recommended in 2012 by the W3C RDB2RDF Working Group, direct mapping is an automatic map-creation method that transforms relational input data, including schema data, into RDF graph data (i.e., a direct graph). Direct mapping can be viewed as a function of transforming relational data with integrity constraints to semantic data. Figure 4 provides an example of relational input data via the direct-mapping process. The table, “Product,” contains an attribute, pId, as its primary key, an attribute name, and an attribute production as a foreign key that references a table called “Production.” Production contains an attribute, pCd, as its primary key and an attribute name. Figure 5 presents the result of the direct-mapping process regarding the input data shown in Figure 4. The output graph comprises a set of RDF triples. Suppose that the base URI of the output data is <http://idb.snu.ac.kr/example/>. The primary key attributes with the base URI are used to generate the subject resource. Two Product resources and two Production resources are generated. Predicates are generated from the attribute names of relational tables, and objects are generated from the attribute values.

3.2. Semantics Preservation of Direct Mapping

Further research has been conducted on the improvement of direct mapping to reduce information loss and ensure semantics preservation. Semantics preservation is an important feature of direct mapping as the quality of direct mapping is heavily depends on the semantics preservation. Sequeda et al. [7] provided a theoretical definition of semantics preservation. In addition to the definition, this research provides a stricter definition to quantify semantics preservation and evaluate the accuracy of the mapping methods. This paper defines the semantics preservation of mapping methods as follows:

Semantics preservation: Suppose X is a set of relational data, F is a RDB to RDF mapping function, and G is an RDF to RDB inverse-mapping function of F, if |X| = |G(F(X))| and |G(F(X)) - X| = 0, then F is an ideal function that satisfies semantics preserving mappings (Figure 6).

3.3. Limitation of Direct Mapping for Semantics Preservation

This section defines the three challenging problems encountered during the direct-mapping process for semantic preservation. This paper observes loss of semantics (Problems 1 and 2) and incorrect semantic data generation (Problem 3), which may occur in specific cases. The problems and specific conditions in which the problems occur were found during studies of existing direct-mapping methods [8,9,10,11,12,13,14,15,16]. To overcome these drawbacks, the problems into three categories are organized.

Problem 1 illustrates the loss of information when relational tables are transformed into semantic data using an OWL class. Because the OWL class is associated with objects generated in a single semantic model structure, every semantic resource can be inferred from the OWL class. Therefore, additional methods are needed to indicate that the output data are particularly generated from the transformed relational table.

	
Problem 1: Suppose ya = Class(xa) is an RDB2RDF mapping rule for a relational table, where xa ∈ R, R is a set of relational tables, ya ∈ C, C is a set of OWL classes, and xb = Class_Inverse(yb) is an RDF2RDB inverse-mapping rule of an OWL class, where xb ∈ X, X is a set of results generated by Class_Inverse(yb), yb ∈ C, and C is a set of OWL classes. However, xb is not the same as xa, because R ⊂ X.

Problem 2 illustrates another type of information loss that occurs when semantic resources reference other resources. Each referencing object, including relational attributes and binary relations, can be transformed into the same type (i.e., OWL object property). Thus, a method of distinguishing each referencing object is discussed and provided in Section 4.

	
Problem 2: Suppose ya = ObjProp(xa) is an RDB2RDF mapping rule for a relational table, where xa = {xa1, xa2}, xa1 ∈ B, B is a set of binary relations, xa2 ∈ F, F is a set of foreign keys, ya ∈ O, O is a set of OWL object properties, and xb = ObjProp_Inverse(yb) is an RDF2RDB inverse-mapping rule of an OWL object property, where xb ∈ X, X is a set of results generated by ObjProp_Inverse(yb), yb ∈ O, and O is a set of OWL object properties. However, ObjProp_Inverse() does not work as intended, because it has not been given any information to determine whether yb is generated from xa1 or xa2.

Problem 3 illustrates incorrect semantic data generation when integrity constraints are transformed without considering that every subgraph having a specific identical root node can be merged into a single graph.

	
Problem 3: Assume that the mapping rules for integrity constraints of relational data are described in Figure 7. Here, the predicates on the right-hand side are used to verify the integrity constraints. DefaultCondition(p, v) is a function that assigns v as a default value of predicate p. CheckCondition (p, c) is a function that assigns c as a check condition of predicate p, and the other predicates on the left-hand side are defined in the Appendix A.

The subset relationships can be inferred, as shown in Figure 8. However, semantic data generated by the above rules can be misinterpreted. For example, assume that a relational attribute, x, has integrity constraints, “primary key” and “check,” F is a mapping function that contains the rules of Figure 7, and G is an inverse mapping function of F. Then, the integrity constraints of G(F(x)) are “primary key,” “check,” “foreign key,” and “unique,” because FK(p) ⊆ Check(p), and Unique (p) ⊆ PK(p) ∪ Check(p). Therefore, developing a method to avoid incorrect semantic data generation is a challenge associated with the semantics-preserving RDB2RDF transformation (the detailed example is provided in the Appendix B).

4. Hierarchical Mapping Rules

This section provides the hierarchical rules for learning general relational schemas and integrity constraints. Each rule is based on lemmas that are valid within the semantics domain. Then, this section then explains how the problems described in Section 3.3 can be prevented by using proposed rules via lemmas. This work uses predicate logic to define rules and add graphical examples for better understanding. Then, the hierarchically structured semantic vocabularies are provided in order to generate sound and precise semantic data. The relationships among the lemmas, rules, and problems are described in Figure 9 to clarify the concept of the rules.

4.1. Rules for General Relational Schemas

This section defines the rules using Lemmas 1 and 2 to generate accurate RDF data from relational data without information loss (proofs are provided in the Appendix C and Appendix D). Lemma 1 describes the feature of the OWL class during the mapping process.

	
Lemma 1: Suppose R is a relational table set, A is an attribute set, K is an integrity constraint set, I is a relational instance set, X is a set where X ⊂ (R ∪ A ∪ K ∪ I), and F is a direct mapping function. Then, every y ∈ F(X) by inference from owl:Class can be retrieved.

Thus, to avoid Problem 1 described in Section 3.3, Rule 1 for mapping relational tables based on Lemma 1 is defined as follows.

	
Rule 1: Rel(r) ∧ ¬BinRel(r, a1,…, am, s, b1,…,bn, t) → Relation(r), where the predicates used on the left-hand side are defined in the Appendix A, and Relation(r) is a predicate that verifies that r is a relational table and not a binary relation.

By Rule 1, relational tables are transformed into semantic resources using Relation (typed OWL class), which is a semantic vocabulary to notate relational tables. For example, if a relational table, “Student.” is transformed by a naive rule, “Rel(Student)→Class(Student),” then the transformed output Student loses the explicit information indicating that it is a relational table. This loss happens, because all semantic resources are typed only by the OWL class (Figure 10a). On the other hand, Student will not lose the information that it is a relational table if Rule 1 is implemented. Relation is defined as a type of Student using Rule 1, which provides explicit information that the RDF data is transformed from a relational table (Figure 10b).

Lemma 2 illustrates the feature of the OWL object property used to express the semantics of relationships between semantic resources.

	
Lemma 2: For any X in relational data, if x ∈ X references another y ∈ X, then x can be transformed into a semantic resource, which has a type of owl:ObjectProperty.

Based on Lemma 2, if a direct-mapping method does not manage the feature of an object property accurately, then Problem 2 described in Section 3.3 can occur during the mapping process. Thus, Rules 2–5 based on Lemma 2 for mapping the semantics of relationships are defined. Rule 2 is composed of five sub rules to specify the attributes within the hierarchical structure:

	
Rule 2: Prop(a, r, _) ∧ FP(a) → Attr(a, r)

	
   ObjProp(a, r, s) → FKeyAttr(a, r, s)

	
   DataProp(a, r, type(a)) → NonFKeyAttr(a, r)

	
   ∀a∀r FKeyAttr(a, r, s) ⊆ ∀a∀r Attr(a, r)

	
   ∀a∀r NonFKeyAttr(a, r) ⊆ ∀a∀r Attr(a, r),

where the predicates on the left-hand side are defined in the Appendix A, and the predicates on the right-hand side represent the transforms of relational attribute a.

With these predicates, Rule 2 has a distinct advantage over previous approaches that simply used the OWL object property and the datatype property to map relational attributes. Because the OWL properties are provided to describe any resource with referencing semantics (not just for relational attributes), using only the OWL properties will not always guarantee that the output data was originally attributed data. As a result, previous approaches cannot avoid semantic information loss during mapping attributes. However, Rule 2 adopts hierarchical structured semantic vocabularies on attributes (Figure 11). The vocabularies describe various types of attributes, and each input attribute can be transformed into RDF data with detailed information.

Rule 3 is defined for mapping binary relations as follows:

	
Rule 3: BinRel(r, a1,…, am, s, b1,…,bn, t) ∧ ¬BinRel(s, _, _, _, _) ∧ ¬BinRel(t, _, _, _, _) → BinaryRelation(r, s, t),

where the predicates on the left-hand side are defined in the Appendix A, and BinaryRelation(r, s, t) is a predicate that verifies whether a binary relation, r, can be transformed into semantic resource BinaryRelation (typed OWL object property), which is a semantic vocabulary that notates binary relations.

Although both Rules 2 and 3 use owl:ObjectProperty during the mapping process, the mapping results of the two rules can be readily distinguished. The semantics of type owl:ObjectProperty are encapsulated by the mapping resource, FKeyAttr, in Rule 2 (Figure 11) and BinaryRelation in Rule 3 (Figure 12). Therefore, a mapping result having FKeyAttr implies that it was originally an attribute of relational data. Thus, from a result having BinaryRelation, we can infer that it was a binary relation before the mapping process.

Rules 4 and 5 indicate the relationships between relational tables:

	
Rule 4: Rel(s) ∧ Rel(t) ∧ PK(a, s) ∧ FK(a, s, _, t) ∧ ObjProp(r, s, t) ∧ FP(r) → IdentifyingRelationship(r, s, t)

	
Rule 5: Rel(s) ∧ Rel(t) ∧ PK(a, s) ∧ ¬FK(a, s,_,t) ∧ ObjProp(r, s, t) ∧ FP(r) → NonIdentifyingRelationship(r, s, t),

where the predicates on the left-hand side are defined in the Appendix A, IdentifyingRelationship(r, s, t) is a predicate that verifies identifying relationships, and NonIdentifyingRelationship(r, s, t) is a predicate that verifies nonidentifying relationships.

Figure 13 shows an example of mapping an identifying relationship. Because a primary key of Professor contains a foreign key referencing Person, the relation Professor is dependent on the relation Person. In such a case, relationships between Professor and Person can be mapped using IdentifyingRelationship(), as defined by Rule 4.

Figure 14 is an example of mapping a nonidentifying relationship. Because the foreign key of Student referencing Major is not an attribute for the primary key of Student, the relations, Student and Major, are independent. In such a case, relationships between Student and Major can be mapped using NonIdentifyingRelationship() by Rule 5.

4.2. Rules for Relational Integrity Constraints

This section provides additional rules for transforming relational integrity constraints to prevent incorrect RDF data generation problems. Lemma 3 illustrates the feature of RDF data, using a linked graph structure. This feature acts as a major factor that prevents the generation of incorrect RDF data. Thus, this section defines Rules 6–11 for the mapping integrity constraints based on Lemma 3 (proofs are provided in the Appendix E).

	
Lemma 3: Suppose G is an RDF graph, G1 and G2 are the components of G, there is no edge between G1 and G2, G1 is rooted at x ∈ R, and G2 is rooted at y ∈ R, where R is a set of semantic resources. Then,

	
If x and y have the same uniform resource identifier (URI) [36], then x is identical to y. Thus, G1 and G2 can be merged into one graph.

	
If x and y have different URIs, x has a property, p1, and y has a property, p2, that has the same URI as p1, then G1 and G2 cannot be merged into one graph, and p1 can be distinguished from p2 using x and y.

	
Rule 6: NonFKeyAttr(a, r) ∧ subClassOf(r, _b) ∧ Card(a, _b, 1) → NotNull(a, r)

	
Rule 7: NonFKeyAttr(a, r) ∧ IFP(a) ∧ subClassOf(r, _b) ∧ MaxCard(a, _b, 1) ∧ (∃!v) a(r, v) → Unique(a, r)

	
Rule 8: NonFKeyAttr(a, r) ∧ IFP(a) ∧ subClassOf(r, _b) ∧ Card(a, _b, 1) ∧ (∃!v) a(r, v) → PK(a, r)

	
Rule 9: FKeyAttr(a, r, s) ∧ subClassOf(r, _b) ∧ MinCard(a, _b, 1) → FK(a, r, s)

	
Rule 10: NonFKeyAttr(a, r) ∧ subClassOf(r, _b) ∧ MaxCard(a, _b, 1) ∧ DefVal(a, _b, v) → Default(a, r)

	
Rule 11: NonFKeyAttr(a, r) ∧ subClassOf(r, _b) ∧ MaxCard(a, _b, 1) ∧ CheckCond(a, _b, v) → Check(a, r),

where a is an attribute of relational table, r, _b is a blank node [37], v in Rules 7 and 8 is an attribute value, v in Rule 10 is a default attribute value, and v in Rule 11 is a check condition. The predicates on the left-hand side are defined in the Appendix A, and the predicates on the right-hand side preserve the integrity constraints: not null, unique, primary key, foreign key, default, and check.

Rule 6 describes the NotNull constraint. It also defines a predicate, Card(a, _b, 1), that restricts the cardinality of an attribute to be exactly one (Figure 15a). Rule 7 specifies a unique constraint and defines a predicate with a unique existential quantifier, (∃!v) a(r, v), such that there is only one attribute value, v, contained in the domain of a(r, v) (Figure 15b).

Rule 8 specifies the primary key defined by Card(a, _b, 1) and (∃!v) a(r, v), to assign an attribute, a, with a primary key (Figure 16a). To define a foreign-key constraint, Rule 9 specifies a lower bound of the cardinality using MinCard(a, _b, 1), because the relational tables can reference more than one other table. Rule 9 also uses FKeyAttr(a, r, s) to describe the semantics that the type of attribute a is an OWL object property with domain r and range s (Figure 16b).

Rule 10 specifies the default constraint, and it uses a function DefVal(a, _b, v) that returns a default value, v, if a value of the attribute, a, is omitted (Figure 17a). In Rule 11, a function CheckCond(a, _b, v) is used to restrict the value range for the check constraint. For example, CheckCond(quantity, _b, ‘quantity > 0’) means that a value of the attribute quantity must be greater than zero (Figure 17b).

4.3. Soundness and Completeness of the Rules

Lemmas describe the features of semantic resources during the mapping process. Lemma 1 states that every semantic resource can be inferred from the OWL class. Lemma 2 states that every semantic resource referencing other resources can be typed by the OWL object property. Lemma 3 states that every subgraph, which has the same semantic resource as a root node, can be merged into a single graph. On the other hand, the problems described in Section 3.3 are specific cases of violation of semantics preservation. Problem 1 illustrates the loss of information when the relational tables are transformed without considering Lemma 1. Problem 2 illustrates another case of loss of information when attributes, binary relations, or other referencing objects are transformed without considering Lemma 2. Problem 3 illustrates incorrect RDF data generation when integrity constraints are transformed without considering Lemma 3. Therefore, mapping rules are defined based on the lemmas to perform semantics-preserving transformation of RDBs to RDF data and to avoid the loss of semantics or incorrect RDF data generation. Lemma 4 demonstrates the soundness and completeness of the provided RDB2RDF data transformation methods (see the Appendix F for proof).

	
Lemma 4: Consider that X is a set of relational data, F is an RDB2RDF mapping function, and G is an RDF2RDB inverse-mapping function of F. If the mapping rules are defined based on Lemmas 1, 2, and 3, then,

	
Soundness: the mapping rules are sound if the rules generate only semantics in RDB data (X ⊇ G(F(X))).

	
Completeness: the mapping rules are complete if the rules generate all semantics in RDB data (X ⊆ G(F(X))).

5. Experimental Results

5.1. Environments

Experiments were conducted using five real datasets and one synthetic dataset on a cluster of 12 nodes using a 3.1-GHz quad-core processor, 4-GB memory, and a 2-TB hard disk. Each real dataset contains relational schema information with integrity constraints: Ensembl-compara (www.ensembl.org/info/docs/api/compara), Ensembl (www.ensembl.org), PHPmyadmin (https://www.phpmyadmin.net), and MusicBrainz (https://musicbrainz.org). The DBT2 (http://osdldbt.sourceforge.net) benchmark was used for the synthetic dataset. This work generated warehouse data using DBT2 and restructured the schema by adding integrity constraints to evaluate the semantics preservation of the mapping methods.

5.2. Analysis

Figure 18a presents the results for the number of triples transformed from the relational data. To perform a comparative analysis of cost efficiency of the mapping rules, this work employed OWL ontology-based augmented direct mapping [13], which provides implementation details of the mapping algorithm and demonstrates the improvement over other previous methods. The horizontal axis represents the relational data size of the input as mapping methods, and the vertical axis represents the number of semantic triples as output data. As viewed in Figure 18a, our approach generates fewer triples compared with the previous method. Figure 18b shows the average number of triples that result from each transformation method. The horizontal axis represents each relational dataset, and the vertical axis represents the average number of triples generated from the transformation of a single relational element. Assuming that two output results are identical in terms of semantics, the method that generates a smaller-sized result is better with regard to both space and computation. On one hand, when the input data are transformed into RDF data, the mapping rule uses the hierarchical RDF data model. On the other hand, previous methods generated output data without a predefined RDF data model, and repetitive RDF data were generated using primitive semantic model languages when the input data had several referential relationships or constraints. Thus, the results show that the proposed approach generates more compact RDF data that express the same information with fewer resources.

Figure 19 shows the failure rate of the mapping methods in each database. The horizontal axis represents each relational dataset, and the vertical axis represents the failure rate during the transformation of relational data into RDF data. The mapping failures of the previous approach result in the incorrect RDF data generation problem was discussed in Section 3. These failures occurred because the previous methods lacked support for handling the integrity constraints. Our approach followed Lemma 4 and guaranteed that the hierarchical mapping rules generated fewer false mapping results. By our method, the false results could occur when the input data are defined based on the practical SQL statements that are not included in standard SQL.

Figure 20 and Figure 21 illustrate the soundness and completeness of mapping rules when the size of the relational input data varies from 20 to 100. This experiment duplicated the experiments of Astrova et al. [8], Buccella et al. [9], Li et al. [12], Lim et al. [13], Shen et al. [15], and Tirmizi et al. [16]. The results show that the proposed method adheres to the definition of the semantics-preserving direct-mapping rule. The mapping rules generate only semantics in RDB data and generate most of the semantics of the RDF data.

6. Conclusions

The paper focuses on the problem of the existing direct-mapping methods that they do not fully support mapping-integrity constraints. The problems are observed in specific cases in which semantic information loss or incorrect RDF data generation occurred. In this paper, the improved definition of semantics preservation is provided to solve the problems and augment the RDB2RDF mapping methods.

Three lemmas are defined to describe the features of semantic resources during the mapping process. Lemma 1 stated that each semantic resource could be inferred from an OWL class (i.e., semantic resource). Lemma 2 stated that each semantic resource referencing other resources could be typed by an OWL object property (i.e., referential relationship). Lemma 3 stated that each subgraph having the same semantic resource as a root node could be merged into a single graph (i.e., union of semantic resources). A hierarchical structured semantic vocabulary was also defined for use in direct-mapping rules.

Rule sets are defined based on the lemmas to transform relational tables and attributes. The mapping rules comprised general- and constraint-mapping rules. The general-mapping rules are used for mapping relations, attributes, and other general relational objects and are defined to avoid semantic information loss during the transformation of general relational objects. Constraint mapping rules are used for mapping the integrity constraints and are defined to reduce the volume of incorrect RDF data generated.

Finally, the semantics-preserving direct-mapping method was implemented, and a comparative experimental study was performed with both synthetic and real datasets. The experiments demonstrated that the proposed mapping method performs semantics-preserving RDB2RDF transformation and generates semantically accurate results. In the future, we will study the methods of synchronization to achieve RDF data consistency when the original relational data are modified [38]. We will also build a cost-benefit model that reduces the number of repetitive processes.

Author Contributions

H.-G.J. conceive the problem and implemented the algorithm and performed the experiments; D.-H.I. supervised the whole research work and revised the algorithm and the theorems; H.-G.J. and D.-H.I. wrote the paper. All authors have read and agreed to the published version of the manuscript.

Funding

This research was supported by the Ministry of Science and ICT (MSIT), Korea, under the Information Technology Research Center (ITRC) support program (IITP-2020-2018-08-01417) supervised by the Institute for Information & communications Technology Promotion (IITP).

Conflicts of Interest

The authors declare no conflict of interest.

Appendix A. Definitions of Predicates Used in Mapping rules

The predicates shown in Table A1 are used for the verification of OWL ontology and to be used by the mapping rules.

[image: Table]

Table A1. List of predicates used in mapping rules.

Table A1. List of predicates used in mapping rules.

	Predicates
	Conditions of Predicates to Return True

	Class(r)

Prop(p, d, r)

ObjProp(p, d, r)

DataProp(p, d, t)

FP(p)

IFP(p)

Card(p, v)

MinCard(p, v)

MaxCard(p, v)

type(x, t)

subClassOf(x, y)

Rel(r)

BinRel(r, a1,…,am, s, b1,…,bn, t)

Attr(a, r)

FKeyAttr(a, r)

NonFKeyAttr(a, r)
	r is an OWL class

p is an RDF property with domain d and range r

p is an OWL object property (ObjProp) with domain d and range r

p is and OWL datatype property (DataProp) with domain d and datatype t

p is an OWL functional property (FP)

p is an OWL inverse functional property (IFP)

cardinality of property p is v

minimum cardinality of property p is v

maximum cardinality of property p is v

datatype of x is t

x is a subclass of y

r is a relation

r is a binary relation between relation s with primary key columns a1,…,am and t with primary key columns b1,…,bm

a is an attribute of relation r

a is a foreign key

a is not a foreign key

The properties in Table A1 (words in bold) are OWL properties. For better understanding, we provide the relationships among triples, OWL properties, and their semantics in Table A2.

[image: Table]

Table A2. Examples of semantic triple data using the OWL notation.

Table A2. Examples of semantic triple data using the OWL notation.

	(Subject, Property, Object)
	Types of Property
	Semantics

	(Professor, teaches, Student)

(Person, age, “23”)

(Product, produced, ProductLine)

(Shakespeare, writes, Book)

(Husband, marriage, Wife)
	Object property

Data type property

Functional property (FP)

Inverse functional property (IFP)

FP and IFP
	Relation between resources

Subject has a data type value

N:1 relationship

1:N relationship

1:1 relationship

Appendix B. An Example of Problem 3

Figure A1 shows an example of Problem3, assume that a relational attribute x has integrity constraints “unique” and “not null”, F is a mapping function that contains the rules in Figure 7, and G is an inverse-mapping function of F, then the integrity constraints of G(F(x)) are “unique”, “not null”, and “primary key” because FK(p) ⊆ Unique(p), NotNull(p) ⊆ Unique(p), and PK(p) ⊆ NotNull(p) ∪ Unique(p).

[image: Applsci 10 07070 g0a1 550]

Figure A1. An example of Problem 3.

Figure A1. An example of Problem 3.

[image: Applsci 10 07070 g0a1]

Appendix C. Proof of Lemma 1

If x ∈ R, then x can be transformed directly into owl:Class. If x ∈ A, then x can be transformed into either owl:ObjectProperty or owl:DatatypeProperty, which are types of rdfs:Class. If x ∈ A ∪ K, then x can be transformed into owl:FunctionalProperty or owl:InverseFunctionalProperty, which are types of rdfs:Class. If x ∈ K, then x can be transformed into owl:onProperty, owl:minCardinality, owl:maxCardinality, or owl:cardinality, all of which are types of rdf:Property, and the type of rdf:Property is rdfs:Class. As rdfs:Class is a subclass of owl:Class, semantic resources used in transformation are directly or indirectly assigned to owl:Class type. Therefore, transformed RDF data F(x) can be retrieved by inference using owl:Class.

Appendix D. Proof of Lemma 2

Let a be an attribute and b a relational table. If a is a foreign key of table x referencing a primary key attribute in table y, then a can be transformed into owl:ObjectProperty with domain x and range y. If b is a binary relation over table t and u, then b can be transformed into owl:ObjectProperty with domain t and range u. Even if a bigger relationship exists, the relation can be transformed using owl:ObjectProperty. Therefore, owl:ObjectProperty can describe any referencing relationship among relational data sources.

Appendix E. Proof of Lemma 3

First, we prove (1). Assume that G1 and G2 cannot be merged into one graph, G1 has only one triple t(x, p1, o1), G2 has only one triple t(y, p2, o2) that is identical to t(x, p2, o2), and q(s, p, o) is a query function to find triples. If q(x, ?p, ?o) is the input of the query function, then the result is { t(x, p1, o1), (x, p2, o2) }. This contradicts our assumption that G1 and G2 cannot be merged into one graph. Therefore, if x and y have the same URI, then G1 and G2 can be merged into one graph. Second, we prove (2). Assume that G1 and G2 can be merged into one graph, p is a property that has the same URI as p1 and p2, p = p1 = p2, G1 has only one triple t(x, p, o1), G2 has only one triple t(y, p, o2), and q(s, p, o) is a query function to find triples. If q(y, p, o2) is the input of the query function, then there is no matching result. If q(x, p, o1) is the input for the query function, then the result is also empty. This contradicts our assumption that G1 and G2 can be merged into one graph. Therefore, if x and y have different URIs, then G1 and G2 cannot be merged into one graph.

Appendix F. Proof of Lemma 4

First, we prove the completeness of the mapping rules by induction. Suppose S is an RDB schema set, S’ is the semantic graph data that represents every schema in S, F is a mapping function and G is an inverse-function of F, and X is input data, where X ⊂ S. (1) Base: Assume X = { }, then F(X) = { } and G(F(X)) = { }, thus X ⊆ G(F(X)). (2) Inductive hypothesis: Given a set X = {x1, x2,…,xk} and |X| = k. Assume F(X) is a mapping function for all X ⊂ S, which transforms X to RDF data that F(X) ⊂ S’. (3) Inductive step: Given a set of RDB data {x1, x2,.. xk+1} and |X| = k+1. Consider the set X’ without x, where x is any element of X, and |X’| = k. We have X’ and x that are excluded from X. Now, we can apply the inductive hypothesis to X’, mapping them all to be transformed into RDF data F(X’) ⊂ Y and G(F(X’)) ⊂ S. We can also apply the inductive hypothesis to x, which is identical to X when k is one. Therefore, by the mapping rules, X ⊆ G(F(X)). Second, we prove the soundness of the mapping rules. Assume S is an RDB schema set, S’ is the semantic graph data that represents every schema in S, F is a mapping function that generates a directed graph with a root node containing a unique URI value, and G is an inverse-mapping function of F. If input data X is a disjoint set, |X| = k, X = {x1, x2, …, xk}, then F(X) = yk is a graph data and F(X) is a disjoint set by Lemma 3.

References

	

He, B.; Patel, M.; Zhang, Z.; Chang, K.C.C. Accessing the deep web. Commun. ACM 2007, 50, 94–101. [Google Scholar] [CrossRef]

	

De Laborda, C.P.; Conrad, S. Database to Semantic Web mapping using RDF query languages. In International Conference on Conceptual Modeling; Springer: Berlin/Heidelberg, Germany, 2006; pp. 241–254. [Google Scholar]

	

Spanos, D.E.; Stavrou, P.; Mitrou, N. Bringing relational databases into the semantic web: A survey. Semant. Web 2012, 3, 169–209. [Google Scholar] [CrossRef]

	

Relational Databases on the Semantic Web. Available online: http://www.w3.org/DesignIssues/RDB-RDF.html (accessed on 28 August 2019).

	

Arenas, M.; Bertails, A.; Prud’hommeaux, E.; Sequeda, J. A direct mapping of relational data to RDF. W3C Recomm. 2012, 27, 1–11. [Google Scholar]

	

Sequeda, J.F.; Arenas, M.; Miranker, D.P. A completely automatic direct mapping of relational databases to RDF and OWL. In Proceedings of the 10th International Semantic Web Conference (ISWC2011), Bonn, Germany, 23–27 October 2011. [Google Scholar]

	

Sequeda, J.F.; Arenas, M.; Miranker, D.P. On directly mapping relational databases to RDF and OWL. In Proceedings of the 21st international conference on World Wide Web, Lyon, France, 16–20 April 2012; pp. 649–658. [Google Scholar]

	

Astrova, I.; Korda, N.; Kalja, A. Rule-based transformation of SQL relational databases to OWL ontologies. In Proceedings of the 2nd International Conference on Metadata & Semantics Research, Corfu, Greece, 2–11 October 2007; pp. 415–424. [Google Scholar]

	

Buccella, A.; Penabad, M.R.; Rodriguez, F.J.; Farina, A.; Cechich, A. From relational databases to OWL ontologies. In Proceedings of the 6th National Russian Research Conference, 29 September–1 October 2004. [Google Scholar]

	

Cerbah, F. Learning highly structured semantic repositories from relational databases. In European Semantic Web Conference; Springer: Berlin/Heidelberg, Germany, 2008; pp. 777–781. [Google Scholar]

	

Cullot, N.; Ghawi, R.; Yétongnon, K. DB2OWL: A tool for automatic database-to-ontology mapping. SEBD 2007, 7, 491–494. [Google Scholar]

	

Li, M.; Du, X.Y.; Wang, S. Learning ontology from relational database. In Proceedings of the 2005 International Conference on Machine Learning and Cybernetics, Guangzhou, China, 18–21 August 2005; Volume 6, pp. 3410–3415. [Google Scholar]

	

Lim, K.B.; Jun, H.G.; Kim, H.J. Semantics preserving MapReduce process for RDB to RDF transformation. Int. J. Metadata Semant. Ontol. 2015, 10, 229–239. [Google Scholar] [CrossRef]

	

Jun, H.G.; Im, D.H.; Kim, H.J. Semantics preserving optimisation of mapping multi-column key constraints for RDB to RDF transformation. J. Inf. Sci. 2020. [Google Scholar] [CrossRef]

	

Shen, G.; Huang, Z.; Zhu, X.; Zhao, X. Research on the rules of mapping from relational model to OWL. OWLED 2006, 216. Available online: http://ceur-ws.org/Vol-216/ (accessed on 11 October 2020).

	

Tirmizi, S.H.; Sequeda, J.; Miranker, D. Translating SQL applications to the semantic web. In International Conference on Database and Expert Systems Applications; Springer: Berlin/Heidelberg, Germany, 2008; pp. 450–464. [Google Scholar]

	

Lassila, O.; Swick, R.R. Resource Description Framework (RDF) Model and Syntax Specification. 1998. Available online: https://www.w3.org/TR/1998/WD-rdf-syntax-19980720/ (accessed on 11 October 2020).

	

Lee, T.B.; Connolly, D. Delta: An Ontology for the Distribution of Differences between RDF Graphs. Available online: https://www.w3.org/DesignIssues/lncs04/Diff.pdf (accessed on 11 October 2020).

	

Dau, F. RDF as graph-based, diagrammatic logic. In International Symposium on Methodologies for Intelligent Systems; Springer: Berlin/Heidelberg, Germany, 2006; pp. 332–337. [Google Scholar]

	

Hayes, J. A Graph Model for RDF. Darmstadt University of Technology/University of Chile. 2004. Available online: http://users.dcc.uchile.cl/cgutierr/papers/rdfgraphmodel.pdf (accessed on 11 October 2020).

	

Sahoo, S.S.; Halb, W.; Hellmann, S.; Idehen, K.; Thibodeau, T., Jr.; Auer, S.; Sequeda, J.; Ezzat, A. A survey of current approaches for mapping of relational databases to RDF. W3C RDB2RDF Incubator Group Rep. 2009, 1, 113–130. [Google Scholar]

	

Michel, F.; Montagnat, J.; Faron–Zucker, C. A Survey of RDB to RDF Translation Approaches and Tools; [Research Report] I3S, 2014, ffhal-00903568v2f. Available online: https://hal.archives-ouvertes.fr/hal-00903568/file/Rapport_Rech_I3S_v2_-_Michel_et_al_2013__A_survey_of_RDB_to_RDF_translation_approaches_and_tools.pdf (accessed on 11 October 2020).

	

Byrne, K. Having triplets-holding cultural data as RDF. In Proceedings of the ECDL 2008 Workshop on Information Access to Cultural Heritage, Aarhus, Denmark, 18 September 2008. [Google Scholar]

	

Green, J.; Dolbear, C.; Hart, G.; Goodwin, J.; Engelbrecht, P. Creating a semantic integration system using spatial data. In Proceedings of the 2007 International Conference on Posters and Demonstration Session at the 7th International Semantic Web Conference (ISWC2008), Karlsruhe, Germany, 26–30 October 2008; Volume 401, pp. 70–71. [Google Scholar]

	

Hert, M.; Reif, G.; Gall, H.C. A comparison of RDB-to-RDF mapping languages. In Proceedings of the 7th International Conference on Semantic Systems, Graz, Austria, 7–9 September 2011; pp. 25–32. [Google Scholar]

	

R2RML: RDB to RDF Mapping Language. Available online: https://www.w3.org/TR/r2rml/ (accessed on 9 October 2019).

	

Bizer, C.; Seaborne, A. D2RQ-treating non-RDF databases as virtual RDF graphs. In Proceedings of the 3rd International Semantic Web Conference (ISWC2004), Hiroshima, Japan, 7–11 November 2004. [Google Scholar]

	

The D2RQ Platform v0.7-Treating Non-RDF Relational Databases as Virtual RDF Graphs. User Manual and Language Specification. Available online: http://wifo5-03.informatik.uni-mannheim.de/bizer/d2rq/spec/20090810/ (accessed on 30 January 2018).

	

Blakeley, C. Mapping Relational Data to RDF with Virtuoso’s RDF Views. OpenLink Software. 2007. Available online: http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VOSSQLRDF (accessed on 11 October 2020).

	

Erling, O.; Mikhailov, I. RDF Support in the Virtuoso DBMS. In Networked Knowledge-Networked Media; Springer: Berlin/Heidelberg, Germany, 2009; pp. 7–24. [Google Scholar]

	

Sequeda, J.F.; Depena, R.; Miranker, D.P. Ultrawrap: Using SQL views for RDB2RDF; ISWC 2009 Posters & Demonstrations Track: Seattle, WA, USA, 2009. [Google Scholar]

	

Sequeda, J.F.; Miranker, D.P. Ultrawrap: SPARQL execution on relational data. J. Web Semant. 2013, 22, 19–39. [Google Scholar] [CrossRef]

	

Malik, K.R.; Ahmad, T.; Farhan, M.; Aslam, M.; Jabbar, S.; Khalid, S.; Kim, M. Big-data: Transformation from heterogeneous data to semantically-enriched simplified data. Multimed. Tools Appl. 2016, 75, 12727–12747. [Google Scholar] [CrossRef]

	

Sharma, K.; Marjit, U.; Biswas, U. RDF link generation by exploring related links on the Web of data. Int. J. Inf. Technol. Comput. Sci. 2018, 10, 62–68. [Google Scholar] [CrossRef]

	

Tong, Q. Mapping object-oriented database models into RDF (S). IEEE Access 2018, 6, 47125–47130. [Google Scholar] [CrossRef]

	

URIs, URLs, and URNs: Clarifications and Recommendations 1.0. Available online: https://www.w3.org/TR/uri-clarification/ (accessed on 9 October 2019).

	

Mallea, A.; Arenas, M.; Hogan, A.; Polleres, A. On blank nodes. In International Semantic Web Conference; Springer: Berline/Heidelberg, Germany, 2011; pp. 421–437. [Google Scholar]

	

Im, D.H.; Lee, S.W.; Kim, H.J. A version management framework for RDF triple stores. Int. J. Softw. Eng. Knowl. Eng. 2012, 22, 85–106. [Google Scholar] [CrossRef]

[image: Applsci 10 07070 g001 550]

Figure 1. A simplified example of direct mapping. RDB represents relational database, RDF represents relational databases resource-description-framework.

Figure 1. A simplified example of direct mapping. RDB represents relational database, RDF represents relational databases resource-description-framework.

[image: Applsci 10 07070 g001]

[image: Applsci 10 07070 g002 550]

Figure 2. An example of problems encountered during a direct-mapping process.

Figure 2. An example of problems encountered during a direct-mapping process.

[image: Applsci 10 07070 g002]

[image: Applsci 10 07070 g003 550]

Figure 3. Overview of our direct-mapping method.

Figure 3. Overview of our direct-mapping method.

[image: Applsci 10 07070 g003]

[image: Applsci 10 07070 g004 550]

Figure 4. An example input relational data of the direct mapping.

Figure 4. An example input relational data of the direct mapping.

[image: Applsci 10 07070 g004]

[image: Applsci 10 07070 g005 550]

Figure 5. An example result of the direct mapping.

Figure 5. An example result of the direct mapping.

[image: Applsci 10 07070 g005]

[image: Applsci 10 07070 g006 550]

Figure 6. Graphical view of semantics preservation of direct mapping.

Figure 6. Graphical view of semantics preservation of direct mapping.

[image: Applsci 10 07070 g006]

[image: Applsci 10 07070 g007 550]

Figure 7. Simple mapping rules of integrity constraints.

Figure 7. Simple mapping rules of integrity constraints.

[image: Applsci 10 07070 g007]

[image: Applsci 10 07070 g008 550]

Figure 8. Subset relationships by mapping rules of integrity constraints.

Figure 8. Subset relationships by mapping rules of integrity constraints.

[image: Applsci 10 07070 g008]

[image: Applsci 10 07070 g009 550]

Figure 9. Relationships among the lemmas, rules, and problems.

Figure 9. Relationships among the lemmas, rules, and problems.

[image: Applsci 10 07070 g009]

[image: Applsci 10 07070 g010 550]

Figure 10. A comparative example of rules for mapping relational tables (Rule 1).

Figure 10. A comparative example of rules for mapping relational tables (Rule 1).

[image: Applsci 10 07070 g010]

[image: Applsci 10 07070 g011 550]

Figure 11. Set of attributes as a hierarchical structured semantic vocabulary (Rule 2).

Figure 11. Set of attributes as a hierarchical structured semantic vocabulary (Rule 2).

[image: Applsci 10 07070 g011]

[image: Applsci 10 07070 g012 550]

Figure 12. Semantic vocabulary of a binary relation (Rule 3).

Figure 12. Semantic vocabulary of a binary relation (Rule 3).

[image: Applsci 10 07070 g012]

[image: Applsci 10 07070 g013 550]

Figure 13. An example of mapping an identifying relationship (Rule 4).

Figure 13. An example of mapping an identifying relationship (Rule 4).

[image: Applsci 10 07070 g013]

[image: Applsci 10 07070 g014 550]

Figure 14. An example of mapping a nonidentifying relationship (Rule 5).

Figure 14. An example of mapping a nonidentifying relationship (Rule 5).

[image: Applsci 10 07070 g014]

[image: Applsci 10 07070 g015 550]

Figure 15. Examples of mapping integrity constraints (Rule 6,7).

Figure 15. Examples of mapping integrity constraints (Rule 6,7).

[image: Applsci 10 07070 g015]

[image: Applsci 10 07070 g016 550]

Figure 16. Examples of mapping integrity constraints (Rule 8,9).

Figure 16. Examples of mapping integrity constraints (Rule 8,9).

[image: Applsci 10 07070 g016]

[image: Applsci 10 07070 g017 550]

Figure 17. Examples of mapping integrity constraints (Rule 10,11).

Figure 17. Examples of mapping integrity constraints (Rule 10,11).

[image: Applsci 10 07070 g017]

[image: Applsci 10 07070 g018 550]

Figure 18. Comparative results of the mapping methods.

Figure 18. Comparative results of the mapping methods.

[image: Applsci 10 07070 g018]

[image: Applsci 10 07070 g019 550]

Figure 19. RDB2RDF failure rate of the mapping methods.

Figure 19. RDB2RDF failure rate of the mapping methods.

[image: Applsci 10 07070 g019]

[image: Applsci 10 07070 g020 550]

Figure 20. Soundness of RDB2RDF data transformation methods.

Figure 20. Soundness of RDB2RDF data transformation methods.

[image: Applsci 10 07070 g020]

[image: Applsci 10 07070 g021 550]

Figure 21. Completeness of RDB2RDF data transformation methods.

Figure 21. Completeness of RDB2RDF data transformation methods.

[image: Applsci 10 07070 g021]

[image: Table]

Table 1. Classification of previously reported mapping methods.

Table 1. Classification of previously reported mapping methods.

	
Type

	
Method

	
Authors

	
Manual

RDB2RDF

(Domain semantics-driven mapping)

	
R2RML

	
Hert et al. (2011)

RDB2RDF Working Group (2012)

	
D2RQ

	
Bizer et al. (2004, 2009)

	
Virtuoso

	
Blakeley (2007)

Erling and Mikhailov (2009)

	
Ultrawrap

	
Sequeda et al. (2009, 2013)

	
Automatic

RDB2RDF

(Direct mapping)

	
Augmented mapping

using OWL

	
Sequeda et al. (2012)

Buccella et al. (2004)

Astrova et al. (2007)

Li et al. (2005)

Lim et al. (2015)

Tirmizi et al. (2008)

Jun et al. (2020)

	
DB2OWL

	
Cullot et al. (2007)

	
RDBToOnto

	
Cerbah (2008)

	
OWLED

	
Shen (2006)

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

media/file8.jpg
Semantics preserving hierarchical direct mapping

—
H Goal: mapping method for stable semantics, such that R = R*

(inverse-mapping)

media/file27.png
C Relation >\ Relation)
rdfs:domain rdfs:range

BinaryRelation

rdftype owI:ObjectPropertD

media/file43.png
Precision

0.8

0.6

0.4

0.2

Input data size

mPM1 ®PM2 EPM3I EPM4 EPMS S PMGE6 M Our method

media/file12.jpg
P ——

> attpe ot
> <Producepe> 1

> <Prosuctnane> tade”

> <ProducHproduon> 11"

> <PIOGUEML BRI <PTOAKIONPCE=11>
<Productparz> oty <Procut>

Produciorz> <o 2

Productpa-z> <Prodetinanes <har-
<ProductonpCaett>attpe <rocuctons
<ProductonpCaet > <roGKIGWpCa> 11
<ProductonCaet > Prodictansnanes M-
<ProductonpCa=12>attpe Procuctons
<ProductonpCae12> ProduanmpCa 12
<ProductonpCo-12> Productansnane> CH

media/file14.jpg
x B GE)

(2) Magping and inverse-mapping to
evaluate semaniic preservation

X=GEUD)

©

(6) Semancs preserving result

X GEW) X aen

(©)Not semantics preserving esults

media/file35.png
CREATE TABLE Book (
ISBN ... PK|
pld .. Foreign Key (pld)

References Publisher (id)

)

Input schema

Book
rdfs:subClassOf

owl:label PK |

Y
rdf:.type
(:b)%M:Restriction)
— \

| owl:onProperty

owI Cardinality ISBN

y rdf:type

~

‘ | G)wi InverseFunctlonaIProperty)/

(a) Rule 8: primary key

rdfs:subClassOf

owl:label FK \|
rdf-type
%wl:RestrictiorD
~

owl:onProperty

owl:minCardinality pld
y rdfs:range

C publisher)

(b) Rule 9: foreign key

media/file20.jpg
Lemmas Rules Related data Rolated provems
Lommat Rule 1| Relatonal tabies Probiem 1
S i Rus2 | Relsional aiibutes
oral mapping rues Rule3 | Binary relaons.

Lamsz Ruled | Identiing relatonships PRt
Rule5 | Non-identting relatonships
Rule | Integityconstrain: not nll
Rule7 | Integrty constaint unique.
Rulsd | Integry constraint primary key

Lomma [Rules forintgrty constains | R0 | gty conskain: ey o Prosiom3
Rulo 10 | Integrty constraint.dofaut
Rule 11 _| Integrty constaint: check

media/file5.png
RDB H Direct Mapping F

3 e ™
schema data (h
RDB — RDF Student rdf:Property
table Student (. -
name varchar(50) rdfs:domain rdf:type
) table owl:Class
instance data = attribute | rdf:Property =
name . varchar | xsd:string
Alice name _
(#S01) ={ Alice |
Kim L)
. J/

media/file19.png
FK(p) = Unique(p) NotNull(p) = PK(p)

FK(p) = Default(p) Unigue (p) = PK(p) U FK(p)
FK(p) = Check(p) Unique (p) = PK(p) U Default(p)
PK(p) = NotNull(p) U Unique(p) Unique (p) = PK(p) U Check(p)

media/file45.png
0.8

0.6

Recall

0.4

0.2

20 40 60 80

100
Input data size

HmPM1 EPM2 EPM3I EPM4 EPMS S PMGE6 M Ourmethod

nav.xhtml

 applsci-10-07070

 		
 applsci-10-07070

media/file11.png
Product Production

PK FK PK

pld name |production pCd name
1 table 11 > 11 MY
2 chair NULL 12 CH

CREATE TABLE Product
pld INT PRIMARY KEY,
name CHAR(20),
production CHAR(20) REFERENCES Production (pCd)

CREATE TABLE Product (
pCd INT PRIMARY KEY,
name CHAR(20)

media/file41.png
Failure rate

0.4

0.3

0.2

0.1

DBl DB2 DB3

— Previous method = Our method

DB4

media/file37.png
CREATE TABLE SalesOrder (
discount ... Default ‘0.0%’,
quantity ... Check (quantity > 0)

)

Input schema

(SalesOrder)

rdfs:subClassOf

b

owl:label
rdf:type

owl FaxCardlm discount)

Default \l

owl: RestrictiorD
owI onProperty

efaultValue

0.0% J|

(a) Rule 10: default

(SalesOrder)

rdfs:subClassOf

/ OMV
rdf:type

b

Check \|

owl: RestrictioD
owI onProperty

owl*maxCardlnalltyC quantity)

checkCondition
\| quantity > y|

(b) Rule 11: check

media/file10.jpg
Product Production

PK FK PK

pld name _|production| pCd name
1 table N | m MW
D chair NULL 12 CH

CREATE TABLE Product (

pld INT PRIMARY KEY,

name CHAR(20),

production CHAR(20) REFERENCES Production (pCd)
)

CREATE TABLE Product (
pCd INT PRIMARY KEY,
name CHAR(20)

)

media/file40.jpg
Failure rate

04

03

02

01

—~_

DBI DB2

~—— Previous method

DB3

——Our method

DB4

media/file16.jpg
FP(p) A Card(p, 1) — NotNull(p)
FP(p) A IFP(p) A MinCard (p,0) A MaxCard (p,7) — Unique(p)

FP(p) A IFP(p) A Card(p,) —» PK(p)

FP(p) A MinCard(p,0) A MaxCard (p, 1) - FK(p)

FP(p) A MinCard(p,0) » MaxCard (p,) DefaultCondition(p, v) —» Default(p, v)
FP(p) A MinCard(p,0) » MaxCard (p,7) A CheckCondition(p, ¢) —» Check(p, ¢)

media/file3.png
X RDBto RDF

CREATE TABLE tmp(

)

) r

x..UNIQUE NOTNULL |mmmp

H

G(F(X)

CREATE TABLE tmp(

)

« . UNIQUE NOTNULL PK | €=

y N

P — e ———————————————————

——————— —

—_—

———— —————————

N o —————————

e ————————

RDF to RDB

media/file22.jpg
(GREATE TABLE Studont

2 o)
;

Coeams
R 3

)

‘Simplo input schama (a) Mapping resit by nave ul. _ (b) Result of Rul 1 with herarhical srctur.

[e

media/file25.png
C Relation

Crdf:Prope rty)

=(owl:FunctionaIProperty)

rdfs:domain

Attribute)

Vel N
rdfs:subClassOf rdfs:subClassOf
rdfs:range

CNonFKe/yAttD (FKeyAttr H Relation)
rdf:type rdf:type

C owl:DatatypeProperty) (owl:ObjectProperty)

media/file26.jpg
Relation

‘owtObjectProperty

media/file34.jpg
(CREATE TABLE Book (
ISEN ... PK,
pld . Foreign Key (ld)
Roferences Pubisher ()

)

Input schema

(0)Rule 8 primary key. (6)Rule 8 foreign koy.

media/file13.png
ref-production
* pCd

@base <http:/fidb snu.ac_kriexample/> |

<Product/pld=1> rdf-type <Product> _
<Product/pld=1= <Product#pld= 1 .
<Product/pld=1=> <Product#name:= “table” .
<Product/pld=1> <Product#production="11" .
<Product/pld=1> <Product#ref-production> <Production/pCd=11> .

<Product/pld=2> rdf type <Product= .
<Product/pld=2> <Product#pld= 2 .
<Product/pld=2= <Product#name:= “chair” .
<Production/pCd=11> rdf type <Production=> .
<Production/pCd=11> <Production#pCd:= 11 .
<Production/pCd=11> <Production#name:= “MW" .
<Production/pCd=12> rdf type <Production= _
<Production/pCd=12> <Production#pCd= 12
<Production/pCd=12> <Production#name= “CH"

media/file31.png
Student
PK FK
sID mID
1111 m1
1112 m1
1113 m3

Major

_—

PK

ID | name
m1 art
m2 | bio
m3 | math

(a) Relational data

[—

@onIdentlfylngReIatlonsh@

(Student \; — ; >@

(b) Mapping result by Rule 5

media/file39.png
60,000 8

50,000 o !
2
§ 40,000 E

s o5
5 5
T 30,000 o

3 g 4
o z

3 20,000 o 3
2

10,000 4 2
=

0 4 1

362 724 1,086 1,810 2,896 4,344 5,792 7,602 0

Input data size DBI1 DB2 DB3 DB4
m Previous method ® Our method # Previous method ® Our method
(a) The number of triples over relational data. (b) The average number of triples for one input

data.

media/file18.jpg
FK(p) Unique(p) NotNull(p) = PK(p)
FK(p) < Default(p) Unique (p) < PK(p) U FK(p)

FK(p) < Check(p) Unique (p) < PK(p) U Default(p)
PK(p) = NotNull(p) U Unique(p) Unique (p) < PK(p) U Check(p)

media/file9.png
Semantics preserving hierarchical direct mapping
3

u Goal: mapping method for stable semantics, suchthat R=R"

(inverse-mapping)

media/file42.jpg
Precision

20 a0

mpm1 mPM2 mPM3

50 50
Input data size

WPM EPMS ©PMs ®Ourmethod

100

media/file23.png
CREATE TABLE Student (

name ... C Student owl:Class 2\
) errran e n sy

Lecture)—{ owl:Class : Relatlon i name
CREATE TABLE Lecture (C) - C ' i
)" C name C Student) (Lecture)

Simple input schema (a) Mapping result by naive rule. (b) Result of Rule 1 with a hierarchical structure.

| —— rdfitype

media/file36.jpg
(CREATE TABLE SalesOrder (
discount ... Default ‘0.0%,
iy ek >)

Input schama

(2)Rule 10:dofault (6)Rule 11:check

media/file15.png
X F(X) G(F(X)) X=G(F(X) X G(F(X) X G(F(X)

(a) Mapping and inverse-mapping to |(b) Semantics preserving result (c) Not semantics preserving results
evaluate semantic preservation

media/file28.jpg
Prosesece. Person
P(EK) PK
PO personiD. —
o2 - (Frotossor
L ooz | ..

(a) Relational data (5) Mapping result by Rule 4

media/file2.jpg
x RDBto ROF)

CREATE TABLE tmp(
X ... UNIQUE NOTNULL

#

G(F(D)

UNIQUE
WinCard

CREATE TABLE tmp(
X... UNIQUE NOTNULL PK

)

RDF to RDB

media/file32.jpg
outovs_o|_Nowan
e,
crente TaBLE Sudene(| ()
iy o
SN Unaue
) owtCarck
opit schema () Rule & not () Rule 7 uicue

media/file6.jpg
(a) More than two constraints of an atlribute

table Lecture (/.
name .. notnull unique
)

RDB to ROF
mapping () Constraint graphs are merged into a single graph rooted name

‘5 RDF triples of NotNull
i RDF triples of Unique

(2

ROF to RDB
inverse-mapping (c) By the linked graph structure, “not null and unique’ renders
semantics of ‘primary key"

— table Lecture (
m name .. notruil unique(PK)

)

Incorrect semantic data generated, such that R# R

media/file24.jpg
s subCSOr s subClassOf
tsrange

Gowram) (rrper

witpo, ity

owDatatypeProperty owObjectProperty

media/file29.png
Professor Person
PK(FK) PK
proflD personlD
0001 0001
0002 0002

(" IdentifyingRelationship)

(a) Relational data

Professor\ »(Person

(b) Mapping result by Rule 4

media/file7.png
(a) More than two constraints of an attribute
/

table Lecture (/
name ... notnull unique

)

RDB to RDF
mapping (b) Constraint graphs are merged into a single graph rooted name

e-

' ,_——-—'CRDF triples of NotNuID
\‘CRDF triples of Unique)

e i - 4

RDF to RDB
inverse-mapping (c) By the linked graph structure, “not null and unique” renders
semantics of “primary key’

table Lecture (
name ... notnull unique@
)

Incorrect semantic data generated, suchthat R# R’

a‘

~

media/file33.png
(Student) C Student)

rdfs:subClassOf rdfs:subClassOf

/ OWW NotNull\‘ OWW Unique |
\
CREATE TABLE Student (| | (U=)%@W‘i%stficﬁon) (b)%wiﬂestrictio@

name ... NotNull, owl:onProperty owl:onProperty
SSN ... Unique name) owl:*naxCardinal“?‘(SSN

) owl:Cardinali y rdf:type

k | 1 /l Cowl:InverseFunctionaIPropert9

Input schema (a) Rule 6: not null (b) Rule 7: unique

media/file44.jpg
20 a0 50
Input data size.

WPML HPM2 HPM3 WPMA EPMS

50

PM6 = Our method

100

media/file38.jpg
jur i

E i

- i
() The number of triples over relational data, (b) The average number of triples for one input

dati.

media/file0.png

media/file17.png
FP(p) ~ Card(p, 7) — NotNull(p)

FP(p) ~ IFP(p) ~ MinCard (p,0) ~ MaxCard (p, 1) — Unique(p)

FP(p) ~ IFP(p) ~ Card(p, 1) — PK(p)

FP(p) ~ MinCard(p,0) ~ MaxCard (p, 1) — FK(p)

FP(p) ~ MinCard(p,0) ~ MaxCard (p, 1) ~ DefaultCondition(p, v) — Default(p, v)
FP(p) ~ MinCard(p,0) ~ MaxCard (p, 1) ~ CheckCondition(p, ¢) — Check(p, c)

media/file4.jpg
et

‘schema data

table Student (
name varchar(0)

)

RDB — RDF Student

instance data

name

Alice.
Kim

table | owiClass
atrbute | ratProperty| =]
varchar | xsd:string

media/file30.jpg
Student Major
PR K K

a0 .. [miD 1D [name
a1 [[m m | an
112 [fmt] m2 [b
1113 [| m3 m3 | main

(o) Rolational data

(6) Mapping result by Rule 5

media/file21.png
Lemmas Rules Related data Related problems
Lemma‘ Rule 1 Relational tables Problem 1
3 |) l Rule 2 Relational attributes
eneral mapping ruies Rule 3 Binary relations

LammaZ Rule4 | Identifying relationships Problem <
Rule 5 Non-identifying relationships
Rule 6 Integrity constraint: not null
Rule 7 Integrity constraint: unique

. . . Rule 8 Integrity constraint: primary key

Lemma3 Rules for integrity constraints Rule 9 Integrity constraint: foreign key Problem 3
Rule 10 | Integrity constraint: default
Rule 11 Integrity constraint: check

