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Abstract: The microwave planar cutoff probe, recently proposed by Kim et al. is designed to measure
the cutoff frequency in a transmission (S21) spectrum. For real-time electron density measurement
in plasma processing, three different types have been demonstrated: point-type, ring-type (RCP),
and bar-type (BCP) planar cutoff probes. While Yeom et al. has shown that the RCP and BCP
are more suitable than the point-type probe for process monitoring, the basic characteristics of the
ring- and bar-type probes have yet to be investigated. The current work includes a computational
characterization of a RCP and BCP with various geometrical parameters, as well as a plasma parameter,
through a commercial three-dimensional electromagnetic simulation. The parameters of interest
include antenna size, antenna distance, dielectric thickness of the transmission line, and input electron
density. Simulation results showed that the RCP has several resonance frequencies originating from
standing-wave resonance in the S21 spectrum that the BCP does not. Moreover, the S21 signal level
increased with antenna size and dielectric thickness but decreased with antenna distance. Among the
investigated parameters, antenna distance was found to be the most important parameter to improve
the accuracy of both RCP and BCP.

Keywords: plasma diagnostics; electron density measurement; planar microwave cutoff probe;
bar-type cutoff probe; ring-type cutoff probe; computational characterization

1. Introduction

Consisting of charged particles (electrons and ions) and neutral particles (atoms, molecules, radicals,
excited and metastable species), plasma is controllable via electrostatic and electromagnetic fields [1].
Its application covers various fields such as material fabrication, nuclear fusion, and medical, environmental,
and aerospace industries [1,2]. In particular, plasma is one of the key factors in semiconductor and
display fabrication, since both its physical (energetic ions) and chemical (reactive radicals) properties can
be exploited.

Advanced process control (APC) refers to the fine-tuning of plasma processing based on real-time
feedback signals from various plasma process monitoring devices. In fabrication fields, recent demands
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for sub-nanometer patterning and high aspect ratio- and atomic scale-etching and deposition [3–5]
have greatly increased process difficulty, leading to wide interest in APC and real-time plasma process
monitoring. The latter has contributed to productivity improvements through providing feedback
signals to process control units; the feedback signals are produced via the gathering and post-processing
of myriad monitoring parameters, such as plasma emission light, voltage and current of the electrode,
antenna, electrostatic chuck, chamber pressure, gas flow rate, and plasma parameters (electron density,
electron temperature, etc.) [4]. Among these monitoring parameters, electron density is one of the
crucial factors because it is directly related to processing time and quality [1,2,6].

Many diagnostic techniques including electrical, laser, optical, and microwave methods have
been developed to measure electron density. Examples include the Langmuir probe, laser Thomson
scattering diagnostics, optical emission and absorption spectroscopy, and microwave probes. Most of
these approaches, though, are not suitable for plasma process monitoring; the Langmuir probe
cannot operate under conditions with probe tip contamination (especially in the deposition process),
laser Thomson scattering diagnostics is highly sensitive to the environment and requires quite a
large space, and the optical emission and absorption method operates only within a narrow window [7].

On the other hand, the microwave method has attracted great attention for application to plasma
process monitoring since microwave probes are not affected by probe tip contamination, afford high
measurement accuracy [8,9], and further, the required microwave power is small enough to not disturb
the plasma. One drawback, though, is that microwave probes provide few parameters, namely electron
density and temperature. Nowadays, research is focused on the development of a planar and compact
microwave probe for real-time plasma process monitoring, since a small and planar probe can be
embedded into a wafer chuck or chamber wall, and is therefore non-invasive. Variations such
as the curling probe (CP), the planar multipole resonance probe (pMRP), and the planar cutoff

probe have been developed and are currently under improvement via commercial three-dimensional
(3D) electromagnetic simulation (CST Microwave Studio [10]), as well as experimental validation.
Here, the computer simulation approach is quite simple and economical for the optimization and
analysis of microwave probes.

Ogawa et al. developed the CP to measure the shift of standing wave (SW) resonance frequency
caused by plasma in a reflection microwave frequency spectrum (S11) [11]. The authors optimized the
CP via computer simulation [11], as well as physical modeling [12,13]. They have recently demonstrated
the in situ simultaneous measurement of the thickness of a deposition film and electron density using
two CPs [14,15]. Developed by Schultz et al., the pMRP uses the resonance characteristics of the probe
itself and can measure muti-resonance frequencies in S11 [16]. The antenna of the pMRP consists of
two semi-circle planar plates with a dielectric cover. The authors also optimized the pMRP via CST
Microwave Studio [16], as well as physical modeling [17], and practically proved the feasibility of the
probe to be mounted on the chamber wall for industrial plasma processing.

Kim et al. developed the first planar cutoff probe, which measures the cutoff frequency in a
transmission microwave frequency spectrum (S21), analyzed the basic characteristics of the point-type
probe, and optimized it via CST Microwave Studio [18]. They also fabricated the probe and firstly
demonstrated its operation. Advanced types of the planar cutoff probe were subsequently developed
by Yeom et al.: the ring-type planar cutoff probe (RCP) and bar-type planar cutoff probe (BCP) [19].
In [19], the authors simply compared the three designs in terms of the Q-factor of the cutoff peak using
CST Microwave Studio and fabricated the BCP based on their simulation results. The BCP was then
successfully applied to real-time plasma process monitoring. The basis of the planar cutoff probes
is the cutoff probe, which, despite being an invasive type of probe, is considered as one of the most
accurate diagnostic methods among microwave probes [20]. Therefore, it is believed that the three
types of planar cutoff probes will be able to show high measurement accuracy compared to other
planar microwave probes. Despite the promising potential and the fact that the RCP and BCP are more
suitable for plasma process monitoring than the point-type probe [19], the basic characteristics of the
ring- and bar-type probes have not been investigated yet. Hence, this paper characterizes the RCP
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and BCP considering various geometrical parameters, as well as a plasma parameter through the CST
Microwave Studio. The main parameters include antenna size, antenna distance, dielectric thickness,
and input electron density.

This paper consists of three parts. Section 2 gives the simulation details, such as simulation method,
geometry, boundary conditions, and materials. Section 3 presents the simulation results and analysis
of each case. Finally, Section 4 summarizes the paper.

2. Simulation Details

The high-frequency time domain solver in CST Microwave Suite was adopted in this study.
This solver used the finite-difference time-domain method to solve Maxwell’s equations in 3D space,
typically in the microwave range. Although this software did not solve the basic plasma equations
self-consistently, compared to fluid plasma simulation [21] or particle-in-cell simulation [22], it was a
useful tool to study the characteristics of the microwave probes mentioned in Section 1. Since electron
density was a controllable input parameter in this simulation, the software allowed us to easily establish
the ideal measurement accuracy by defining it as the deviation of the output electron density from the
input electron density.

Besides, it should be noted that this simulation did not need to define the plasma source, such
as a capacitively or inductively coupled plasma source, since plasma is regarded as a dispersive
dielectric material. Such a material can be represented by the Drude model, in which the plasma

dielectric constant (εp) is given by εp = ε0

(
1−
(
2π fpe

)2
/
{
ω(ω− jνm)

})
, where ε0 is the vacuum

dielectric constant, fpe
(
= 8980√ne,input

)
is the plasma oscillation frequency, ω is microwave frequency,

νm is electron-neutral collision frequency, and ne,input is the input electron density. Here, the νm term
only includes the momentum transfer collision between electrons and Argon atoms at an electron
temperature of 2.0 eV, with Maxwellian distribution for simplicity. The εp is related to the complex
wavenumber (k) from the dispersion relation for electromagnetic waves (k = ω/c√εp) [5]. The real
and imaginary parts of k are related to the refractive index and attenuation constant, respectively.

Figure 1a,b show schematic diagrams of the top and cross-sections of the RCP and BCP,
respectively, which are embedded in a cylindrical holder. Both probes consisted of radiating and
detecting antennae; the RCP had a point-type radiating antenna and ring-type detecting antenna,
while the BCP had bar-type radiating and detecting antennae. All antennae had 1.0 mm height,
were insulated by a dielectric of height 2.0 mm, and were connected with a 50 Ω coaxial line. The plasma
was a cylinder of 330 mm diameter and 40 mm height, and was positioned with an interlayer (sheath)
distance of 5.0 mm from the RCP and BCP, as shown in Figure 1c; here, the simulation considers the
sheath as a vacuum dielectric material (εsheath = ε0).Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 13 

 

Figure 1. Schematics of the (a) ring-type cutoff probe (RCP) and (b) bar-type cutoff probe (BCP), with 
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To analyze the antenna characteristics of the two probes, Sections 3.1 and 3.2 include an 
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parameters, such as α , 𝛽 , 𝛾 , a for the RCP, and e for the BCP. Furthermore, for simple 
understanding, visualizations of the antenna configurations in the RCP and BCP are provided for 
each condition. Afterward, in plasma conditions, the S21 spectrum with various antenna distances is 
examined. 

3.1. Ring-Type Cutoff Probe (RCP)  

Figure 2a shows the S21 spectra with various 𝛼 (normalized width of the detecting antenna) at 
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Figure 1. Schematics of the (a) ring-type cutoff probe (RCP) and (b) bar-type cutoff probe (BCP),
with various geometrical parameters: a—antenna diameter; b,h—antenna distances; c,g—dielectric thickness;
e—antenna length; d,f—antenna widths. (c) Geometry of the plasma and sheath.
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Input and output ports were located at the ends of the 50 Ω coaxial lines. First, a Gaussian voltage
pulse (Vin(t)) with 1 V maximum, including frequencies from zero to 10 GHz, was applied to the input
port and radiated by the radiating antenna. Then, a fraction of the pulses (Vout(t)) entered the output
port via the detecting antenna. The S21 is defined as S21 = 20 log10(Vin( f )/Vout( f )) (dB), where Vin(f )
and Vout(f ) are the processed data through a fast Fourier transform of Vin(t) and Vout(t).

All simulations were conducted in the open boundary condition except for the z = 0 plane where
the input and output ports are located. On this plane, the ground boundary condition (zero tangential
electric field) was applied.

Figure 1a,b represent the geometrical simulation variables (a to h), and Table 1 lists the
simulation conditions. For simple expression, except for antenna diameter (a) and antenna length (e),
all parameters were normalized as α (≡ d/a or f /e), β (≡ b/a or h/e), and γ (≡ c/a or g/e). In each
simulation case, α changed from 1 to 4 for the RCP, and β and γ changed from 4.5 to 7 and 0.5 to 1.5 for
both probes, respectively. Additionally, the normalized factors (a and e) changed from 2.0 to 3.0 mm.
Otherwise, the plasma parameter (input electron density) also changed from 1 × 109 to 1 × 1011 cm−3,
a range common in plasma processing conditions.

Table 1. Simulation conditions with various α, β, γ, and probe diameters. Parameters a–g are given in Figure 1.

Type Ring-Type Probe Type Bar-Type Probe

Number α (≡ d/a) β (≡ b/a) γ (≡ c/a) Number α (≡ f /e) β (≡ h/e) γ (≡ g/e)

#1 1 4.5 0.5 #8 4 4.5 0.5
#2 2 4.5 0.5 #9 6 4.5 0.5
#3 4 4.5 0.5 #10 10 4.5 0.5
#4 1 5.5 0.5 #11 4 5.5 0.5
#5 1 7.0 0.5 #12 4 7.0 0.5
#6 1 4.5 1.0 #13 4 4.5 1.0
#7 1 4.5 1.5 #14 4 4.5 1.5

3. Simulation Results and Discussion

To analyze the antenna characteristics of the two probes, Sections 3.1 and 3.2 include an
investigation of the S21 spectrum in a vacuum condition (without plasma) with various geometrical
parameters, such as α, β, γ, a for the RCP, and e for the BCP. Furthermore, for simple understanding,
visualizations of the antenna configurations in the RCP and BCP are provided for each condition.
Afterward, in plasma conditions, the S21 spectrum with various antenna distances is examined.

3.1. Ring-Type Cutoff Probe (RCP)

Figure 2a shows the S21 spectra with various α (normalized width of the detecting antenna) at
fixed β and γ. An increase in α led to a slight elevation of the S21 level. This was because of an increase
in the capacitive coupling between the radiating and detecting antenna. Furthermore, the S21 had
several resonance frequencies at its extremes. Except for the lowest resonance frequency, with an
increase in α, the resonance frequencies shifted toward lower values. When a increased, as shown in
Figure 2d,g, the low-frequency shift became enlarged. The origin of the resonance frequencies will be
analyzed later.
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Figure 2. S21 spectra of the RCP from various (a,d,g) antenna widths, (b,e,h) antenna distances,
and (c,f,i) dielectric thickness at various antenna diameters: (a–c) a = 2.0 mm, (d–f) a = 2.5 mm, and (g–i)
a = 3.0 mm.

Figure 2b plots the S21 spectra with several β (normalized antenna distance), with results
showing that the overall S21 signal level reduced with increasing β due to a decrease in the capacitive
coupling between the antennae [23]. Besides, an increase in β led to a low frequency shift of the
resonance frequencies. Compared with the effect of α, increasing β more clearly shifted the resonance
frequencies toward lower values.

As shown in Figure 2c, an increase in γ (normalized dielectric thickness) did not change the
resonance frequencies. The signal levels changed with γ, while there was no trend compared with the
α and β effects. This might have resulted from a characteristic impedance mismatching between the
radiation and detecting antennae, since they had no symmetry with each other. Impedance matching
might deteriorate at γ = 1.0.

To figure out the origin of the resonance frequencies as shown in Figure 2, the electric field on the
detecting antenna surface was examined, the direction of which was normal to the antenna surface
(z-axis as shown in Figure 1). Figure 3 exhibits the normalized electric field as a function of the
normalized antenna length (θ̂-axis as shown in Figure 1) at resonance (2.61, 5.17, and 7.71 GHz) and
non-resonance (3.90 and 6.50 GHz) frequencies of the #6 condition at a = 3.0 mm. The simulation result
showed that the oscillation amplitude at the resonances was larger than that at the non-resonances.
Furthermore, the wavelength at the three resonances was one, two, and three times the antenna length.
Based on these two facts, the resonance frequencies resulted from the SW resonances of the electric
field on the detecting antenna [20,24]. Due to this SW resonance, electric field energy was strongly
localized on the detecting antenna surface such that it could not propagate toward the Signal Out
(Figure 1); the S21 value at the resonances, therefore, dramatically decreased, as shown in Figure 2.
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Figure 3. Normalized Ez-field distribution (Ez/Ez,max) on the detecting antenna of the RCP along
normalized antenna length (L/Lmax), where the z-direction is parallel to the normal direction of the
antenna surface.

The RCP essentially featured resonance peaks induced by SW resonance in the simulated frequency
ranges (<10 GHz), resulting from the length of the detecting antenna. This fact ultimately brought
some negative aspects to the RCP, since the resonance peaks made finding the cutoff peak difficult in
an S21 spectrum, as discussed below.

Figure 4 shows the S21 spectra of the RCP with various electron density values ranging from
1 × 109 to 1 × 1011 cm−3 with various β. In Figure 4a, an increase in β produced a high frequency
shift of the cutoff frequency, which was the extreme in the S21 spectrum and marked by an arrow.
Eventually, the cutoff frequency became equal to the plasma frequency (f pe in Figure 4). This might
have resulted from a larger rate of reduction in the capacitive coupling in the sheath (Path 1 in
Figure 1c) compared to that in the plasma (Path 2 in Figure 1c) with increasing antenna distance [25].
In other words, at a short antenna distance, capacitive coupling in the sheath was dominant, so the
effective electron density became smaller than the input electron density due to the sheath, where the
electron density was zero.

This means that the cutoff frequency was lower than the plasma frequency. But at longer
antenna distances, coupling in the plasma was dominant, and the effective electron density became the input
electron density, and thereby, the cutoff frequency matched the plasma frequency [26]. Deeper analysis of
the different coupling reduction trends between Path 1 and Path 2 in terms of antenna distance is beyond
the scope of this paper, but will be discussed in detail in a later paper with rigorous theory.

The trend of cutoff frequency saturating to the plasma frequency at large antenna distances
was the same as for other high density cases, as shown in Figure 4b,c. If measurement accuracy is

defined as the discrepancy between the cutoff frequency (f c) and the plasma frequency (f pe) as
fpe− fc

fpe
,

the measurement accuracy of the RCP, therefore, strongly depended on the antenna distance; it was
recommended that the distance be as large as possible. However, since the overall level of an S21

spectrum diminished as the antenna distance increased, there was a trade-off between signal-to-noise
ratio and measurement accuracy. Additionally, the larger the antenna distance was, the more complex
the spectrum shape became due to the SW resonance.
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3.2. Bar-Type Cutoff Probe (BCP)

Figure 5a shows the S21 spectra of the BCP with various α at fixed β and γ in a vacuum condition.
An increase in α led to a slight increase of the S21 level, which was similar to the RCP case and for
the same reason. Here, there were no significant resonance peaks in the S21 spectra from the BCP,
except for case #3, because the length of the radiating and detecting antennae was much smaller than
the RCP detecting antenna; the SW resonance took place at high frequencies beyond the interested
range (<10 GHz). When the antenna length e increased, as shown in Figure 5d,g, a low frequency shift
of the resonance frequency with low Q-factor took place near 8 GHz (cases #2 and #3), but this could
be negligible. The signal level of the BCP, however, was lower than that of the RCP, by as much as
20 dB due to the small size of the BCP antennae.Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 13 
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Figure 5. S21 spectra of the BCP from various (a,d,g) antenna widths, (b,e,h) antenna distances,
and (c,f,i) dielectric thickness at various antenna lengths: (a–c) e = 2.0 mm, (d–f) e = 2.5 mm, and (g–i)
e = 3.0 mm.

Figure 6 shows the S21 spectra of the BCP with various electron densities ranging from 1 × 109 cm−3

to 1 × 1011 cm−3 and various β, with the same conditions as in Figure 4. In Figure 6a, an increase in β
produced the same results as the RCP case. With increasing antenna distance, the cutoff frequency
saturated to the plasma frequency, which might have resulted from a reduction in capacitive coupling
between the antennae for the same reason as in the RCP. Figure 6b,c show smooth spectral shapes,
and it is therefore easy to determine the cutoff frequency in each spectrum. They also manifested the
same trend as Figure 6a in terms of β dependence.
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It should be noted for the BCP here that the critical antenna distance (dc), where the cutoff frequency
matched the plasma frequency, was much lower than that in the RCP, at 14 mm compared to 30 mm as
shown in Figure 7, which showed the ratio of the cutoff frequency to the plasma frequency by antenna
distance. Additionally, the S21 spectrum of the BCP was much straighter, without any resonance peaks,
than that of the RCP. This fact facilitated simple cutoff frequency monitoring by just measuring the
minimum S21 value, which indicated the possibility for a simple plasma monitoring system based on
the BCP. In summary, the BCP was more practical than the RCP in terms of miniaturization as well
as electron density monitoring, since it was much easier to determine the cutoff frequency in the S21

spectrum of the BCP than that of the RCP.
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4. Conclusions

This paper investigated the basic properties of two types of planar cutoff probes, the ring-type
and the bar-type planar cutoff probes, with various geometrical parameters as well as a plasma
parameter through a commercial 3D electromagnetic simulation. Simulation results showed that
the RCP had several resonance frequencies that originated from standing-wave resonance on the
detecting antenna, while the BCP did not. Moreover, the signal level of both the RCP and BCP increased
with increasing antenna size and decreased with increasing antenna distance between the radiating and
detecting antennae because of elevated and diminished capacitive coupling, respectively. Among the
studied parameters, antenna distance was found to be the key parameter highly related to the accuracy
of both probes. As a result, the BCP was more practical than the RCP for use in non-invasive electron
density measurement systems since it allowed for much easier determination of cutoff frequency in
S21 spectra.
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low-temperature plasma discharges: benchmarks and kinetic effects. J. Phys. D Appl. Phys. 2005, 38,
R283–R301. [CrossRef]

22. Verboncoeur, J.P. Particle simulation of plasmas: review and advances. Plasma Phys. Control. Fusion 2005, 47,
A231–A260. [CrossRef]

23. Jackson, J.D. Classical Electrodynamics, 3rd ed.; Wiley & Sons. Inc.: Hobken, NJ, USA, 1999; p. 310.
24. Na, B.-K.; Kim, D.-W.; Kwon, J.-H.; Chang, H.-Y.; Kim, J.-H.; You, S.J. Computational characterization of

cutoff probe system for the measurement of electron density. Phys. Plasmas 2012, 19, 53504. [CrossRef]
25. Walker, J.; Halliday, D.; Resnick, R. Principles of Physics, 10th ed.; John Wiley & Sons: Singapore, 2014;

pp. 413–416.
26. Mehdizadeh, M. Microwave/RF Applicators and Probes: for Material Heating, Sensing, and Plasma Generation, 2nd ed.;

Elsevier Inc.: Cambridge, MA, USA, 2015; p. 99.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TSM.2019.2938546
http://dx.doi.org/10.1109/TSM.2018.2824314
http://dx.doi.org/10.5573/JSTS.2011.11.1.001
http://dx.doi.org/10.1088/1361-6595/ab1dc8
http://dx.doi.org/10.1088/1361-6595/ab6880
http://dx.doi.org/10.1063/1.4951029
http://dx.doi.org/10.1063/1.1771487
www.cst.com
http://dx.doi.org/10.1143/APEX.4.066101
http://dx.doi.org/10.1088/1361-6595/aa60f2
http://dx.doi.org/10.1088/0963-0252/26/1/015011
http://dx.doi.org/10.7567/JJAP.57.046201
http://dx.doi.org/10.1088/1361-6595/ab7609
http://dx.doi.org/10.1109/TIM.2014.2358111
http://dx.doi.org/10.1140/epjti/s40485-018-0049-x
http://dx.doi.org/10.1088/1361-6595/aaf2b0
http://dx.doi.org/10.1088/1361-6595/ab62d9
http://dx.doi.org/10.1088/0963-0252/25/3/035026
http://dx.doi.org/10.1088/0022-3727/38/19/R01
http://dx.doi.org/10.1088/0741-3335/47/5A/017
http://dx.doi.org/10.1063/1.4719699
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Simulation Details 
	Simulation Results and Discussion 
	Ring-Type Cutoff Probe (RCP) 
	Bar-Type Cutoff Probe (BCP) 

	Conclusions 
	References

