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Abstract: Anthracnose is a fungal disease that infects a large number of trees worldwide, damages
intensively the canopy, and spreads with ease to neighboring trees, resulting in the potential
destruction of whole crops. Even though it can be treated relatively easily with good sanitation,
proper pruning and copper spraying, the main issue is the early detection for the prevention of
spreading. Machine learning algorithms can offer the tools for the on-site classification of healthy
and affected leaves, as an initial step towards managing such diseases. The purpose of this study
was to build a robust convolutional neural network (CNN) model that is able to classify images of
leaves, depending on whether or not these are infected by anthracnose, and therefore determine
whether a tree is infected. A set of images were used both in grayscale and RGB mode, a fast Fourier
transform was implemented for feature extraction, and a CNN architecture was selected based on its
performance. Finally, the best performing method was compared with state-of-the-art convolutional
neural network architectures.

Keywords: machine learning; image classification; fungal diseases; fast Fourier transform

1. Introduction

Fungal diseases pose a major problem in agricultural environments, especially in orchard and
horticulture crops production. When trees suffer from infections, the production of the crop diminishes
substantially and the economic impact can be catastrophic [1]. As part of precision agriculture,
automatic plant disease detection and classification can alleviate this problem, with unsupervised early
detection systems that could identify the presence of disease on the leaves of the trees and classify
them appropriately for planning any precautionary measure or action to be taken. The rise of machine
learning (ML) in the past years has significantly boosted the progress in this research area [2–5].

Several studies can be found in the bibliography regarding machine learning approaches for
image-based plant disease identification. Leaf disease detection in various types of leaves and diseases
has been investigated by classic ML algorithms, such as, support vector machines (SVMs) [6] and
back-propagation artificial neural networks (ANNs), achieving 88–92% accuracy [7].

The feed forward neural network (FFNN), learning vector quantization (LVQ) and radial basis
function networks (RBFs) with accuracy range 56.7–90.7% [8], advanced deep residual neural networks

Appl. Sci. 2020, 10, 469; doi:10.3390/app10020469 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-2277-5846
https://orcid.org/0000-0003-2498-9661
https://orcid.org/0000-0002-7058-5986
http://dx.doi.org/10.3390/app10020469
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/2/469?type=check_update&version=2


Appl. Sci. 2020, 10, 469 2 of 24

that acquired 96% accuracy [9], as well as deep learning (DL) methods, such as convolutional neural
networks (CNN), that were able to achieve 96.3% accuracy [10].

In terms of advanced CNN architectures, a series of achievements have been reported, including
the identification of 13 types of plant diseases with an accuracy range of 91–98% [11], the identification of
58 different diseases for 25 types of plants with accuracy up to 99.53% [12], and some meta-architectures
of CNN (AlexNet, GoogleNet) also implemented resulting in the same accuracy over 14 crop species
and 26 types of diseases [13]. The size and variety of the leaf-image dataset on advanced CNN
structures has been investigated in [14], leading to the conclusion that large and diverse datasets
critically improve the performance of the models. In some studies, alternative imaging approaches
are investigated, such as triple channel convolutional networks [15], and the combination of visible,
thermal and depth imaging fungus detection on tomato leaves [16]. Other studies focus on specific
combinations of plants–disease, such as cucumbers–anthracnose, downy mildew, powdery mildew and
target leaf spots [17], apple trees-mosaic, rust, brown spot, alternaria leaf spot [18], apple trees/black
rot with four severity stages by [19], brinjal (aubergine)/bacterial wilt, cercospora leaf spot, tobacco
mosaic virus by [20], banana trees-sigatoka and speckle [21], wheat/wheat stripe rust, wheat leaf rust,
grape downy mildew, grape powdery mildew [22] and tomato leaves–gray mold, canker, leaf mold,
plague, leaf miner, whitefly, powdery mildew [23].

In our study, we aim for the anthracnose disease identification on walnut tree leaves, with images
that were taken in real conditions. An investigatory analysis takes place by testing and evaluating
various architectures of CNNs, as well as the effect of color in images, and the use of fast Fourier
transform (FFT) as an additional feature extractor.

2. Methodology

Our approach on classifying anthracnose-infected leaf images focuses on the recognition of marks
that appear (brown-yellowish in red green blue (RGB) images) on the leaf as spots or surrounding its
perimeter, as seen in Figure 1.

Figure 1. Anthracnose as it appears on leaves.

Deep learning methods such as convolutional neural networks (CNNs) are applied in order to
train a classifier to distinguish images with leaves containing the infection, and leaves which are
healthy. CNNs are using convolutions and pooling operations on an image in order to transform the
image in a way that will enhance desired features. This process creates several images where their
impact is constantly optimized, and the images with the most useful features are given higher weights
in the final model. These built-in operations give CNNs the advantage compared to other algorithms
in the task of image classification. Therefore, CNNs have been outperforming vanilla artificial neural
networks (ANNs) or support vector machines (SVMs), which were state-of-the-art up until the time
CNNs were introduced [24]. On top of that, a fast Fourier transform (FFT)-based pre-processing
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technique is implemented for feature extraction on the images. Lastly, an optional background removal
method is used in order to evaluate the effect of background on the performance of the classifier. These
methods are analytically described in the following subsections.

2.1. Process Description

The process followed in this study is shown in Figure 2. There are three stages: The preprocessing
stage, where the images are gathered, prepared and finally split; the machine learning (ML) stage,
where the images are used to train a classifier and allow it to self-improve until it reaches its maximum
potential; and the predictions stage, where characterized test images are provided to the classifier to
evaluate its actual performance. The stages are presented descriptively below.

Figure 2. Process flowchart of our approach.

2.1.1. Pre-Processing

• Load the dataset: The images are loaded recursively based on their pathnames. Depending on the
prefix of their filename, a label value of ‘0’ or ‘1’ is appended to each loaded image, explained in
detail in Section 2.3.

• Color conversion: Two functions for color conversion were implemented in this study: a conversion
from the BGR to the RGB color-space, where the order of the image’s color channels changes to
the most common (RGB) format, and a conversion from BGR to the grayscale color-space, where
the images lose all the color information and maintain only the brightness and saturation for
each pixel.

• Feature extraction (only for grayscale): For the grayscale images, there is additionally applied a
feature extraction method, the Fast Fourier Transform (FFT). This method helps bring out the edge
features of the leaves, thus potentially improving the performance of the model compared to a
straightforward approach of grayscale images.

• Background segmentation (optional): This method removes the background from images with the
use of thresholding, dilation and erosion, as commonly used methods in computer vision.

• Data normalization: The dataset values are normalized within the (0, 1) range in order to ensure
that the loss function, which is usually not convex, finds the global minimum as easy as possible.
Reducing the range of input values also assists the convergence of the backpropagation algorithm.

• Dataset shuffling: The dataset is being shuffled by Python’s “random.shuffle” method, which is an
order-shuffling algorithm based on a random number generator. After the application, the order
of the images, which originally was alphabetical, is now mixed throughout the dataset.



Appl. Sci. 2020, 10, 469 4 of 24

• Dataset splitting: The dataset is being split in the following fashion: First, 15% of the total dataset
is held out and set as the testing set, then the remaining dataset is split again in the 80/20 fashion,
where the small portion is used as the validation set. The rest is used for training the algorithm.
The training and validation sets are used for the training of the algorithm, while the testing dataset
is used only after the classifier is trained, in order to make predictions.

2.1.2. Learning Process

• Convolutional Neural Network (CNN) architecture definition: The architecture of the CNN is defined
based on experimentation and trials. The number, type and order of layers is the important aspect
that can lead to effective network architecture.

• Functions definition: Various functions that are used throughout the network are being defined
through bibliographic research and trials. We carefully choose the activation function, which is
the function that defines the output of the layer, and the loss function, which is the function that is
used for the optimization of the network’s weights.

• Training: This is the process where the algorithm tries to create a function that describes the
desired relation, based on the training data. It then makes predictions based on this function and
moves to the next step.

• Validation: Following the previous step, the function that the algorithm created is being evaluated
against the validation dataset. The error in the predictions is being calculated, and the algorithm
tries to find a way to minimize this error. This part defines the “learning” of the process.

• Finalizing the model: The training-validation process repeats itself until the algorithm cannot
improve itself anymore. When the training loss and the validation loss have become almost
the same, lowest-possible value, and before the validation loss starts to increase, we stop the
procedure and finalize our model.

2.1.3. Prediction

• Test the CNN based on trained data: The performance of the finalized model is measured by its
validation accuracy; i.e., the accuracy it could achieve based on the data that it has been given to
train and evaluate. This is indicative of the model’s performance, but the real performance is only
evident when predictions on unknown data take place.

• Make predictions on the test data: We use the testing data, which is completely unknown to the model,
to make predictions on each image’s class. For each image, the classifier provides a predicted
class, which is stored alongside its true class.

• Calculate performance metrics: This is the final step where the predicted classes are being
cross-checked over the true classes of the testing images. Then, the testing accuracy, precision,
recall and f1-score of the model are calculated. A confusion matrix is also used in order to visually
evaluate the performance of the model, and also check if it is biased over any class.

After the performance metrics are calculated, they are stored, and the algorithm returns to the
shuffling of the original dataset, and continues the process. For the particular approach, the algorithm
runs a total of five times, and finally the mean value of the performance metrics are being calculated.
The reason why we perform this loop is to ensure the stability of the model and eliminate outliers that
are not representative.

2.2. Data Acquisition

Classification of images is a complex process that needs large amounts of feature-rich data, and a
good self-trained algorithm in order to be able to classify correctly. A Sony RX100 II with a F1.8 (T)
lens was used to take photos of raw format 5.472 × 3.648 pixels resolution, of the walnut trees located
in the orchard under various lighting conditions. Specifically, photos were taken during morning,
noon and afternoon times, having the sun across or behind the camera. This detail is important
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because the position of the sun affects the diffusion/refraction of light through/on the leaf, and creates
a difference of how anthracnose is captured on the image; as dark brown spots on a light green leaf
or light brown spots on dark green leaf. The leaves were manually cropped and split into categories.
A total of 4491 images of leaves, both with and without anthracnose, were gathered from a walnut
crop field located in the Volos region, Greece. The anthracnose-infected leaf images amounted to 2356,
which is slightly more than the healthy leaf images which amounted to 2135. In Figure 3a,c we can
see an indicative image from a leaf infected with anthracnose, with and without background, and in
Figure 3b,d, a healthy leaf again with and without background.

Figure 3. Images of anthracnose-infected ((a) with and (c) without background) and healthy ((b) with
and (d) without background) walnut leaves.

2.3. Data Preparation

Since all images had different proportions, their size was modified to a 256 × 256 pixels proportion.
This resolution was deemed satisfactory for both maintaining the images features, as well as keeping
computational time to a minimum.

All images were originally saved in an RGB 3-channel, and small script was set up in order to
assign a numerical value as a label to each image, according to its prefix. Therefore, images which had
“anthracnose_” as prefixes were assigned with the value ‘0’, and images which had “healthy_” prefixes
were assigned with the value ‘1’.

The images are loaded into the memory alphabetically due to their order in the containing folder,
as well as the script used to load them. If we split the dataset as is in training/validation/testing, it is
certain that at least the training and testing datasets will not contain sufficient or any images from one
or the other class. For example, if the testing set derives from the last images of the loaded dataset,
the set will only contain healthy images, therefore we will not be able to measure the performance of
the classifier correctly. Therefore, since the order of the images was defined by the name of each file,
a shuffling method based on a random-number generator is used to randomly reorder the images so
that the sampling is as unbiased as possible, thus avoiding improper training.

2.4. Data Split

The dataset was split into three sections: A training portion dedicated to train the classifier,
a validation portion that would allow the training process to improve, and a testing (held-out) portion
which is a part of the dataset that is completely hidden from the training process and will be used for
validating the classifier on unknown data. All splits create subsets that contain a 50/50 ratio of healthy
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and anthracnose-infected leaves photos in order to avoid the unnecessary bias that would incur if a
dataset would contain images from only one category.

Python’s random.shuffle generator was used to shuffle the order of images and avoid having
datasets with similar external conditions. This way, images of leaves with different shapes, angles,
levels of infection, main leaf color, brightness, ambient lighting, etc., are all included in all categories
in order to achieve the highest possible variability. Variability in the datasets ensures that the model
will be trained in the most generalized fashion possible, and will be evaluated and tested under all
conditions [25].

The first data split takes place by removing 15% of the total dataset and saving it for later use
as testing. The remaining 85% of the dataset is then split again into an 80/20 ratio, resulting in the
following portions, as seen in Table 1.

Table 1. Data splitting percentages and purpose.

Dataset Training Validation Testing

% of total dataset 68% 17% 15%
# of images 3053 764 674

The validation set is used during the training process in order to help the algorithm update its
weights appropriately, so that it can improve its performance and avoid overfitting. After the model
has finished training, we run in on the testing data, and verify if it has classified the test images
correctly, thus creating the need to keep the testing set hidden.

2.5. Performance Metrics

In this paragraph, we describe the performance metrics that were used to evaluate the performance
of this study. In general, the performance metrics are used in order to provide a common measure of
the performance of the trained classifier, against new images from the testing set. The outcome of this
prediction, in comparison to the actual class label that was assigned to the image, can take one of the
four values, true positive (TP) or true negative (TN) if it is classified correctly, and false positive (FP) or
false negative (FN) if it is misclassified.

These values are then used to calculate the performance metrics that are most commonly used
in classification problems. In Table 2 we present the performance metrics used in our study for
evaluation of the performance of our classifier, together with their descriptions, as well as their
mathematical formula.

Table 2. Performance metrics used in our study.

Name Description Formula

Accuracy
ratio of correctly predicted observation to the

total observations (preferred in balanced
datasets)

(TP + TN/TP + FP + FN + TN)

Precision ratio of correctly predicted positive observations
to the total predicted positive observations (TP/TP + FP)

Recall ratio of correctly predicted positive observations
to all observations in actual class (TP/TP + FN)

F1 score is the weighted average of Precision and Recall
(preferred in unbalanced datasets) [2 · Recall · Precision]/[Recall + Precision]

Additional to the performance metrics, we choose to visualize the prediction results in confusion
matrices. The confusion matrix is a table that displays the aforementioned values in such a way that
one can easily view the number of properly classified examples, as well as false positives and false
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negatives. In our study, which is a binary classification, the confusion matrix is of size 2 × 2. The
template used for the confusion matrix is shown in Table 3.

Table 3. The confusion matrix template.

Confusion
Matrix

Predicted
Anthracnose Healthy

True
Anthracnose

Healthy

All the confusion matrices with the results for each tested scenario are located in the Appendix A
of this paper.

Finally, a loss function (or objective function, or cost function) is used to evaluate how well the
specific algorithm performs on the given data. In our study, we used the mean squared error (MSE),
where the average squared difference between the estimated values and the real values is calculated
during the training. It always has non-negative values and it is preferred, because large errors create
larger consequences than equivalent smaller errors.

The value of the loss function is important for the evaluation of the model’s performance, because
it can show us if the model can improve its performance and how well the predictions correspond to
the real values. The closest that this value is to 0, the better will be the performance of the model.

2.6. Feature Extraction Preprocessing with Fast Fourier Transform

Fast Fourier Transform (FFT) is used in image preprocessing for the easy detection of abrupt
changes in images, such as the presence of anthracnose in leaves. The image is considered as a signal
described in a two-dimensional spatial domain. Abrupt changes in images are mainly considered as
high-frequency signals. As a result, image representation in the frequency domain is a powerful tool
for the detection of such changes, so that they can be enhanced or removed, depending on the required
task. Moreover, applying filters to images in the frequency domain is computationally faster than to
do the same in the spatial domain. Similar applications of the FFT combined with ML algorithms have
been tested in image classification applications of different domains with promising results [26].

FFT is applied on an anthracnose-infected leaf image (Figure 4a) and decomposes the signal into
its periodic components in order to produce their frequencies. After the implementation of FFT the
image is converted from the spatial domain to the frequency domain. Each point represents a specific
frequency contained in the original image. After the FFT application, the image is shifted in such a
way that the DC-component F(0,0), which corresponds to the average brightness, is displayed in the
center of the image.

Figure 4. Fast Fourier transform (FFT) steps where: (a) the original image; (b) is analyzed into a
magnitude spectrum; (c) into a modulated spectrum; (d) and finally into the feature-rich image.

The next step is to calculate the magnitude of the Fourier Transform, as it contains most of the
information of the image structure. More specifically, if the magnitude changes abruptly, the signal is
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considered to be high frequency. Figure 4b shows the magnitude spectrum after the implementation of
FFT with the pixels in the center of the image representing its low frequencies. In general, anthracnose
is considered as an abrupt change, and is consisted of high frequencies. As a result, a high pass filter
which allows only high frequencies should be implemented. Since the low frequencies are near the
center of the Fourier image, a radius around the center is determined, and all the frequency components
within that radius are constricted. For that reason, each image gets multiplied by the Gaussian high
pass filter where a smooth cut off process is used. The cut off frequency is considered to be equal to the
standard deviation σ in the frequency domain, and is equal to 0.3.

The magnitude spectrum after the use of the filter where the low frequencies were successfully
removed, is shown in Figure 4c. Finally, the inverse Fourier transform was implemented in order to
obtain the original image without low frequencies, as it is shown in Figure 4d.

The choice of simple FFT over wavelet transforms or more advanced techniques is because the time
domain is irrelevant to the particular problem. The photographed leaves have no temporal information,
therefore we need only to focus on the frequency precision, and FFT is the most appropriate method
for this application [27].

2.7. Convolutional Neural Network Architecture

For our study, we built a deep neural network that utilizes convolution and pooling operations,
which have proven to be very effective on problems regarding image classification. Classic feature
extraction techniques, used in computer vision, required the manual feature selection in order to find
the appropriate feature to utilize. Convolutional Neural Networks (CNN), a subcategory of Artificial
Neural Networks (ANN), can do this automatically by applying multiple filters on the input images,
and then learn to select the ones that are necessary for the images’ proper classification.

A typical structure of a CNN is to start with a convolutional layer, followed by a pooling layer,
repeating this combination as many times as necessary, continuing with one, or more fully-connected
layers, before ending with the final output layer. Additionally, a dropout layer can be added after
either a dense layer, a fully connected layer, or a pooling layer.

In our implementation we built a deep-layer network with five convolutional–pooling layers, a
dense layer followed by a dropout layer, and finally, the output layer with one node since it is a binary
classification. A layout of the network’s architecture along with the layers’ shapes and the number of
trainable parameters, is given in Table 4. A more detailed figure of the proposed CNN is presented in
the Appendix A.

Table 4. The selected convolutional neural network (CNN) architecture.

Layer (Type) Output Shape Param #

conv2d_1 (Conv2D) (None, 254, 254, 32) 896
max_pooling2d_1 (MaxPooling2) (None, 127, 127, 32) 0

conv2d_2 (Conv2D) (None, 125, 125, 64) 18,496
max_pooling2d_2 (MaxPooling2) (None, 62, 62, 64) 0

conv2d_3 (Conv2D) (None, 60, 60, 128) 73,856
max_pooling2d_3 (MaxPooling2) (None, 30, 30, 128) 0

conv2d_4 (Conv2D) (None, 28, 28, 256) 295,168
max_pooling2d_4 (MaxPooling2) (None, 14, 14, 256) 0

conv2d_5 (Conv2D) (None, 12, 12, 512) 1,180,160
max_pooling2d_5 (MaxPooling2) (None, 6, 6, 512) 0

flatten_1 (Flatten) (None, 18,432) 0
dropout_1 (Dropout) (None, 18,432) 0

dense_1 (Dense) (None, 512) 9,437,696
dense_2 (Dense) (None, 1) 513

Total params: 11,006,785
Trainable params: 11,006,785
Non-trainable params: 0
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The images enter the network at a 256 × 256 pixels dimension. The first (input) convolutional layer
consists of 32 filters (kernels) of size 3 × 3, always followed by a max-pooling layer of size 2 × 2, which
chooses the maximum value of each consecutive four (2 × 2) pixels. Each next convolutional layer
doubles the numbers of filters (32→ 64→ 128→ 256→ 512), just like the following max-pooling layers.
After the convolution and pooling operations, a flattening operation transforms the 2-dimensional
matrices, to 1-dimensional arrays in order to run through the hidden, fully connected (dense) layer
with 512 nodes. Following, a dropout layer drops randomly 20% of the learned weights in order to
avoid overfitting. Last is the output layer with one node, since we are dealing with binary classification.

The activation function that is used in all convolutional and fully connected (dense) layers is the
rectified linear unit (ReLU) and the final activation function is the sigmoid function. The algorithm is
set to train for 100 epochs, however an early stopping function prevents the network to over-fit by
stopping its training when the validation loss starts to increase and diverge from the training loss. For
the loss, the binary cross-entropy function is calculated with an Adam optimizer [28], and accuracy is
used as the measurable metric. For the model training, the ImageDataGenerator class [29] was used,
offering augmentations on images such as rotations, shifting, zoom and flips.

2.8. Visualization of Convolutions

Even though CNNs are considered “black boxes”, there is a way to visualize some of the
computations that take place, as well as their effect on the input image at each step. Here, we present
some of the filters that are being applied at each layer, as well as the activation maps that are produced
after the convolutions.

2.8.1. Filters

The filters are mathematical kernels that are being applied on the matrix that represents the image.
In computer vision applications, they are constructed in such ways so that when they are multiplied
with the image values, they bring out specific features, such as edges. In our study, we use a CNN
with five convolutional layers (Table 5).

Table 5. Filter dimensions for each convolutional layer.

Layer Filter Dimensions Number of Filters

Conv2d_1 3 × 3 32
Conv2d_2 3 × 3 64
Conv2d_3 3 × 3 128
Conv2d_4 3 × 3 256
Conv2d_5 3 × 3 512

While for the grayscale images the filter application is straightforward, for RGB images, each
channel has its own filters being applied. A visual representation of the filters for an RGB image is
shown in Figure 5.

These filters are important for the machine learning processing, since they bring out features of
the images that will be used for the proper classification.
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Figure 5. The three red green blue (RGB) color channels’ filters: (a) for the first convolutional layer; (b) the
second convolutional layer; (c) the third convolutional layer; (d) and the fourth convolutional layer.

2.8.2. Activation Maps for RGB

The activation maps are the result of the filter application on the input image or on other activation
maps when they enter the convolutional stage. These maps highlight features of the image that can
potentially be useful for the classification. We present two cases of the activation maps of a leaf
infected with anthracnose, one with the background information present, and one with the background
removed. The two images are shown in Figure 6.

Figure 6. (a) Walnut tree leaf before; (b) and after the background removal.

Since the images go through various transformations via mathematical operations, it is useful to
see how the activation maps look like after the first and after the last convolutional layer. Activation
maps for the leaf image that contains background information are shown in Figure 7, while activation
maps of the leaf image that had its background removed are shown in Figure 8.

We can also investigate how the filters affect each channel of the RGB images independently. First,
we split the image into each channel, and then we create three separate images, as shown in Figure 9.



Appl. Sci. 2020, 10, 469 11 of 24

Figure 7. Activation maps for the leaf image that contains background information: (a) for the first
convolutional layer; (b) and last convolutional layer; and individual maps for: (c) the first; (d) and last
convolutional layer.

Figure 8. Activation maps for the leaf image that had its background removed (a) for the first
convolutional layer; (b) and last convolutional layer; and individual maps: (c) for the first; (d) and last
convolutional layer.

Figure 9. Image of an anthracnose-infected leaf after the background was removed (a), the red channel
of the image (b), the green channel of the image (c) and the blue channel of the image (d).



Appl. Sci. 2020, 10, 469 12 of 24

We then apply the filters and visualize the activation maps for each image on the first and last
convolutional layers of our network. The separate feature maps of each RGB color are presented in
Figure 10 for the red channel, in Figure 11 for the green channel and Figure 12 for the blue channel. We
notice that the filters have different effects on the different channels, obvious both in the first layer, as
well as the last.

Figure 10. Feature maps of the red channel: (a) for the first; (b) and last convolutional layer; and
individual maps: (c) for the first; (d) and last convolutional layer.

Figure 11. Feature maps of the green channel: (a) for the first; (b) and last convolutional layer; and
individual maps: (c) for the first; (d) and last convolutional layer.
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Figure 12. (a) Feature maps of the blue channel for the first; (b) and last convolutional layer (c) and
individual maps for the first (d) and last convolutional layer.

2.8.3. Activation Maps for Grayscale

We apply the same methodology on three categories of the grayscale images in Figure 13 and the
images that have been transformed with the FFT method in Figure 14.

Figure 13. Feature maps for the image that was transformed to grayscale, without background,
(a) for the first; (b) and the last convolutional layer; (c) and individual maps for the first; (d) and last
convolutional layer.
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Figure 14. Feature maps for the image that was transformed to grayscale, without background, and
after the application of the fast Fourier transform: (a) for the first (b) and the last convolutional layer
and individual maps (c) for the first (d) and last convolutional layer.

2.8.4. Filter Effect on Images

We can examine the effect of the filters by visualizing the optical pattern of the filter itself, both on
a white image, and on the image of the leaf. This is done by applying gradient ascent to the input
image, in order to maximize the response of the particular filter. We apply the filters of the first and
last convolutional layers on a blank image, just to visualize the filter itself, as shown in Figure 15.

Figure 15. Filters’ effect on a blank image: (a) for the first; (b) the last convolutional layer; and individual
filters: (c) for the first; (d) and last convolutional layer.

Following this, we then use as input the image with the anthracnose-infected leaf and see the
effect of the filters on the leaf image itself, as seen in Figure 16.
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Figure 16. Filters’ effect on the image with the anthracnose-infected leaf, without the background:
(a) for the first; (b) the last convolutional layer; and individual filter effect: (c) for the first; (d) last
convolutional layer.

This way, we can have some insight into the depths of the deep neural network, and specifically
how the convolutions affect the features of an image that contains leaves.

3. Results

The Jupyter Notebooks [30] interactive computing product under the Python programming
language was used for encoding the whole process, with the neural network being programmed with
Keras (with Tensorflow backend [31]). In addition, the data normalization, data splitting, confusion
matrices and classification reports were being programmed with Sci-Kit Learn, while OpenCV was
used for loading and manipulating images, SciPy was used for the FFT application, Glob was used for
reading filenames from a folder, Matplotlib was used for plot visualizations, and finally Numpy was
used for all mathematical and array operations. The script was run on an Intel®Core™ i7-6950X CPU
@ 3.00GHz × 20, and the CNN was trained on a Nvidia Titan GeForce GTX 1080 Ti. The computation
times ranged between 15’ to 100’ per training, depending on the different input, with the grayscale
images requiring the lowest training time and the RGB images requiring the longest training time.

Before starting with the exploratory analysis of the optimal CNN setup, it is necessary to see
where the other famous classification ML algorithms stand in the particular problem. In a previous
work [32], it was shown that neural networks outperform other algorithms in a similar dataset, thus
pointing to investigating the best neural network implementation. However, some of the most famous
classical ML algorithms were tested on this new dataset for the comparison. The results are shown in
Table 6.

Table 6. Comparison of classical machine learning (ML) algorithms.

Decision Trees Random Forest Ada-Boost Support Vector
Machines

Artificial Neural
Networks

Accuracy 64.59 79.55 77.45 81.37 83.38
Precision 0.65 0.80 0.78 0.81 0.84

Recall 0.65 0.80 0.77 0.81 0.84
F1 score 0.65 0.80 0.77 0.81 0.84

Again, it is shown that ANNs perform better in a particular problem, and therefore our choice of
focusing on CNNs is justified and validated.
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The first comparative analysis was dedicated to measure the accuracy as well as the loss of both
the validation and the testing dataset for images containing background information. Measuring
accuracies allows us to see if the predictions made to the unknown set match the performance of the
model while training. In Table 7 the accuracy percentage and the loss for each method used are listed.

Table 7. Accuracy and loss for the validation and testing sets, for the three preprocessing algorithms,
on images with background information.

Accuracy Loss

Validation Testing Validation Testing

Grayscale 92.869 92.469 0.192 0.197
Fast Fourier 93.153 92.938 0.198 0.176
RGB 96.847 95.969 0.086 0.111

The second comparative analysis was to measure the accuracy and loss for each method, but
with additionally applying the background removal method. This way, the images contain less
relevant-to-the-infection information, which should lead to increased performance. In Table 8 we see
that indeed by removing unnecessary information, the performance of each model has increased.

Table 8. Accuracy and loss for the validation and testing sets, for the three preprocessing algorithms,
on images without background information.

Accuracy Loss

Validation Testing Validation Testing

Grayscale 95.710 95.469 0.116 0.130
Fast Fourier 96.591 96.531 0.108 0.105
RGB 99.006 98.719 0.031 0.049

More results such as training and validation plots and confusion matrices are presented in the
Appendix B.

Finally, we select the best performing model, being the one using RGB images with background
removal, and compare it to state-of-the-art CNNs for image classification. These CNNs are specifically
selected for comparison, since they set new accuracy records when originally trained on the
Imagenet [33] database. In detail, we used DenseNet121 [34] a version of DenseNet (Densely
Connected Convolutional Networks) that is 121 layers deep. Despite its depth, DenseNet managed to
solve the problem of vanishing gradients, having both 1 × 1 and 3 × 3 convolutional layers, as well
as batch normalization in its architecture. Another architecture we used is VGG16 [35], a version of
VGG (Visual Geometry Group). Generally, in VGGs there are only 3 × 3 convolutional layers which are
stacked on top of each other. ResNet50 [36] is the 50-layer deep version of ResNet (Residual neural
Network), an exotic architecture that is based on “network-in-network” micro-architectures. Due to
global average pooling, instead of fully connected layers, the size of ResNet50 is significantly smaller
than VGG16. Finally, Inception V3 [37] is Inception’s third instalment, and is 48-layers deep. Inception
V3 incorporated RMSProp optimizer and 7 × 7 convolution in the 1 × 1, 3 × 3 and 5 × 5 convolutions
which were already presented within the same module of the network.

For our comparison, we use them together with their weights, and retrain only the last layers for our
specific dataset, something that is called transfer learning. Thus, each algorithm is re-trained/fine-tuned
on our dataset, with the same preprocessing functions, in order to compare only the models’ performance.
Additionally, the training times of each algorithm have been measured with the %%time function of
Python under a Jupyter Notebook. This function affects only the cell where it is called from, and was
set to measure the execution time of only the training of the model and none of the preprocessing or
the processing of the predictions. The results are shown in Table 9.



Appl. Sci. 2020, 10, 469 17 of 24

Table 9. Comparison of most common CNNs with the proposed CNN.

VGG16 DenseNet121 ResNet50 Inception V3 Proposed CNN

Validation accuracy 96.875 99.049 98.505 99.290 99.006
Validation loss 0.096 0.033 0.050 0.027 0.031

Testing accuracy 95.781 96.577 98.363 99.375 98.719
Testing loss 0.120 0.071 0.067 0.013 0.049

Execution time (s) 1391.31 1866.893 1290.42 1712.213 989.185

We notice that the proposed CNN architecture has performed better than the rest of the
state-of-the-art architectures, except Inception V3, which achieved better accuracy both in the validation
dataset, as well as in the testing dataset. A significant difference between the proposed architecture
and the others, is that the proposed CNN is significantly shallower compared to the others, therefore it
can be trained a lot faster on the same dataset.

It is clear that the proposed network achieves a similar accuracy to the state-of-the-art Inception V3
network, in less time due to its shallower architecture. The tradeoff is in favor of the proposed network,
since the difference in time is significant, while the accuracy difference is minimum. Given that in this
particular problem the useful features are not so complex, the proposed CNN performs satisfactorily.

4. Discussion and Conclusions

The problem of the automatic identification of anthracnose on walnut tree leaves has been tackled
with the use of deep learning algorithms, specifically convolutional neural networks. A total of 4.491
images was acquired, balanced in terms of healthy and infected leaves depictions. A number of
pre-processing techniques, such as fast Fourier transform and background removal, were tested in
order to evaluate their contribution to the increase of performance.

Several CNN architectures were tested, with accuracies ranging from 92.4% to 98.7%, leading to
the one that performed best under all pre-processing scenarios.

The proposed methodology was designed from the ground up in order to address the specific
issues of the anthracnose–detection problem. Initially, we needed to address the background issue,
and investigate whether or not the background plays any role in the accuracy of our classifier. Another
issue that needed addressing was the type of images that we would process, meaning if they would be
colored or monochromatic. Colored images contained the color information, which is important in this
specific use case, since anthracnose discolors areas of the green leaf into brown spots. However, there is
value in the monochromatic approach, since the images can be taken in different times within a day (or
night), and the color variations might change. Monochromatic images can create a more generalized
classifier, even if the accuracy appears to be lower, because it diminishes this color dependency. Because
of the reduced accuracy of the monochromatic approach, a feature extractor was selected and tested
on its performance. The fast Fourier transform indeed improved the results of the monochromatic
approach by extracting edge information with a high pass filter, leading to clearer view of the leaves’
abrupt changes on their surface.

The best performing algorithm was then compared with a series of state-of-the-art CNNs commonly
used for image classification problems. We note that our algorithm for the particular problem performed
equally, and in some cases even better, compared to these algorithms. This study validates the premise
that CNNs are algorithms that can offer high accuracy in image classification-based problems. This has
a direct application on precision agriculture where the automatic identification of diseases is crucial for
the crops.

The main outcomes of this study can be summarized as follows:
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1. The proposed CNN method exhibits outstanding performance when RGB analysis is performed
for the examined images of this case study. This can be emanated from the fact that the results
produced from the application of the CNN architecture are based on distinct features that appear
specifically on the anthracnose-infected leaves, compared to the healthy leaves, i.e. brown spots
and areas.

2. The fast Fourier transform method seems to be of major significance in feature extraction in the
case of the grayscale images, because it accentuates the abrupt changes and edges of the leaves.
This denotes that the infected leaves have more edgy features than the healthy ones.

3. The proposed CNN architecture exhibits high performance in all scenarios in which it has been
tested considering the case of anthracnose disease identification on walnut tree leaves. As it is
observed from Tables 7 and 8, the accuracies range from 92.4% to 98.7%.

4. The proposed CNN architecture exhibits better, or similar, performance to well-known CNN
architectures (i.e., DenseNet121, VGG16, ResNet50 and InceptionV3) which have been efficiently
used as benchmarks in image processing problems for the past years.

5. Overall, for the purpose of image analysis and classification, the CNN methodology is proved to
be proper for complex image classification tasks, such as the one under hand here, when a large
number of images is considered, outweighing the popular CNN architectures for image analysis,
such as DenseNet121, VGG16, ResNet50 and InceptionV3.

Future plans include the further investigation of the proposed architecture with images collected by
infrared, near-infrared and RGB cameras, as well as with images taken at all times of day and in all
kinds of weather. This will help us build a more robust classifier that will be even more invariant
to external conditions. Additionally, the algorithmic part of this study will be focused towards the
development and application of hybrid algorithms that utilize fuzzy cognitive maps in convolutional
neural networks in order to integrate experts’ knowledge on this problem.

The aim is to increase furthermore the accuracy of the model while simultaneously offering
interpretability to the classification process.
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Appendix A. Proposed CNN Architecture

Figure A1. Proposed CNN’s architecture.
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Appendix B. Model Performance

Appendix B.1. Grayscale without Background Removal

Table A1. Confusion matrix of grayscale images with background information.

Confusion
Matrix

Predicted
Anthracnose Healthy

True
Anthracnose 331 14

Healthy 27 302

Figure A2. Training and validation loss and accuracy for grayscale images with background information.

Appendix B.2. Fast Fourier without Background Removal

Table A2. Confusion matrix of grayscale images applied with FFT and background information.

Confusion
Matrix

Predicted
Anthracnose Healthy

True
Anthracnose 358 6

Healthy 33 277

Figure A3. Training and validation loss and accuracy for grayscale images applied with FFT and
background information.
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Appendix B.3. RGB without Background Removal

Table A3. Confusion matrix of RGB images with background information.

Confusion
Matrix

Predicted
Anthracnose Healthy

True
Anthracnose 352 7

Healthy 7 308

Figure A4. Training and validation loss and accuracy for RGB images with background information.

Appendix B.4. Grayscale with Background Removal

Table A4. Confusion matrix of grayscale images with background information.

Confusion
Matrix

Predicted
Anthracnose Healthy

True
Anthracnose 343 18

Healthy 9 304

Figure A5. Training and validation loss and accuracy for grayscale images without
background information.

Appendix B.5. Fast Fourier with Background Removal

Table A5. Confusion matrix of grayscale images applied with FFT and background information.

Confusion
Matrix

Predicted
Anthracnose Healthy

True
Anthracnose 344 5

Healthy 15 310
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Figure A6. Training and validation loss and accuracy for grayscale images applied with FFT and no
background information.

Appendix B.6. RGB with Background Removal

Table A6. Confusion matrix of RGB images with background information.

Confusion
Matrix

Predicted
Anthracnose Healthy

True
Anthracnose 366 2

Healthy 1 305

Figure A7. Training and validation loss and accuracy for RGB images with background information.

References

1. Moshou, D.; Bravo, C.; Oberti, R.; West, J.S.; Ramon, H.; Vougioukas, S.; Bochtis, D. Intelligent multi-sensor
system for the detection and treatment of fungal diseases in arable crops. Biosyst. Eng. 2011, 108, 311–321.
[CrossRef]

2. Patrício, D.I.; Rieder, R. Computer vision and artificial intelligence in precision agriculture for grain crops: A
systematic review. Comput. Electron. Agric. 2018, 153, 69–81. [CrossRef]

3. Chou, Y.C.; Kuo, C.J.; Chen, T.T.; Horng, G.J.; Pai, M.Y.; Wu, M.E.; Lin, Y.C.; Hung, M.H.; Su, W.T.;
Chen, Y.C.; et al. Deep-learning-based defective bean inspection with GAN-structured automated labeled
data augmentation in coffee industry. Appl. Sci. 2019, 9, 4166. [CrossRef]

4. Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine learning in agriculture: A review.
Sensors 2018, 18, 2674. [CrossRef] [PubMed]

5. Pantazi, X.-E.; Moshou, D.; Bochtis, D. Intelligent Data Mining and Fusion Systems in Agriculture; Academic
Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2020.

6. Pantazi, X.E.; Moshou, D.; Tamouridou, A.A. Automated leaf disease detection in different crop species
through image features analysis and One Class Classifiers. Comput. Electron. Agric. 2019, 156, 96–104.
[CrossRef]

http://dx.doi.org/10.1016/j.biosystemseng.2011.01.003
http://dx.doi.org/10.1016/j.compag.2018.08.001
http://dx.doi.org/10.3390/app9194166
http://dx.doi.org/10.3390/s18082674
http://www.ncbi.nlm.nih.gov/pubmed/30110960
http://dx.doi.org/10.1016/j.compag.2018.11.005


Appl. Sci. 2020, 10, 469 23 of 24

7. Ramya, V.; Lydia, M.A. Leaf Disease Detection and Classification using Neural Networks. Int. J. Adv. Res.
Comput. Commun. Eng. 2016, 5, 207–210.

8. Muthukannan, K.; Latha, P.; Selvi, R.P.; Nisha, P. Classification of diseased plant leaves using neural network
algorithms. ARPN J. Eng. Appl. Sci. 2015, 10, 1913–1919.

9. Picon, A.; Alvarez-Gila, A.; Seitz, M.; Ortiz-Barredo, A.; Echazarra, J.; Johannes, A. Deep convolutional
neural networks for mobile capture device-based crop disease classification in the wild. Comput. Electron.
Agric. 2019, 161, 280–290. [CrossRef]

10. Hanson, A.M.G.J.; Joel, M.G.; Joy, A.; Francis, J. Plant Leaf Disease Detection using Deep Learning and
Convolutional Neural Network. Int. J. Eng. Sci. Comput. 2017, 7, 2324.

11. Sladojevic, S.; Arsenovic, M.; Anderla, A.; Culibrk, D.; Stefanovic, D. Deep Neural Networks Based
Recognition of Plant Diseases by Leaf Image Classification. Comput. Intell. Neurosci. 2016, 2016, 11.
[CrossRef]

12. Ferentinos, K.P. Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric.
2018, 145, 311–318. [CrossRef]

13. Mohanty, S.P.; Hughes, D.P.; Salathé, M. Using Deep Learning for Image-Based Plant Disease Detection.
Front. Plant Sci. 2016, 7, 1419. [CrossRef] [PubMed]

14. Barbedo, J.G.A. Impact of dataset size and variety on the effectiveness of deep learning and transfer learning
for plant disease classification. Comput. Electron. Agric. 2018, 153, 46–53. [CrossRef]

15. Zhang, S.; Huang, W.; Zhang, C. Three-channel convolutional neural networks for vegetable leaf disease
recognition. Cogn. Syst. Res. 2019, 53, 31–41. [CrossRef]

16. Raza, S.E.A.; Prince, G.; Clarkson, J.P.; Rajpoot, N.M. Automatic detection of diseased tomato plants using
thermal and stereo visible light images. PLoS ONE 2015, 10, e0123262. [CrossRef] [PubMed]

17. Ma, J.; Du, K.; Zheng, F.; Zhang, L.; Gong, Z.; Sun, Z. A recognition method for cucumber diseases using leaf
symptom images based on deep convolutional neural network. Comput. Electron. Agric. 2018, 154, 18–24.
[CrossRef]

18. Liu, B.; Zhang, Y.; He, D.J.; Li, Y. Identification of apple leaf diseases based on deep convolutional neural
networks. Symmetry 2018, 10, 11. [CrossRef]

19. Wang, G.; Sun, Y.; Wang, J. Automatic Image-Based Plant Disease Severity Estimation Using Deep Learning.
Comput. Intell. Neurosci. 2017, 2017, 8. [CrossRef]

20. Anand, R.; Veni, S.; Aravinth, J. An application of image processing techniques for detection of diseases on
brinjal leaves using k-means clustering method. In Proceedings of the 2016 International Conference on
Recent Trends in Information Technology, Bengaluru, India, 12 November 2016.

21. Amara, J.; Bouaziz, B.; Algergawy, A. A Deep Learning-Based Approach for Banana Leaf
Diseases Classification. BTW 2017. Available online: https://pdfs.semanticscholar.org/adae/

9446cb66eaa6645dca78fd81b21d43aebdda.pdf (accessed on 23 December 2019).
22. Wang, H.; Li, G.; Ma, Z.; Li, X. Application of neural networks to image recognition of plant diseases. In

Proceedings of the 2012 International Conference on Systems and Informatics, Yantai, China, 19–20 May 2012.
23. Fuentes, A.; Yoon, S.; Kim, S.C.; Park, D.S. A robust deep-learning-based detector for real-time tomato plant

diseases and pests recognition. Sensors 2017, 17, 2022. [CrossRef]
24. Hasan, M.; Ullah, S.; Khan, M.J.; Khurshid, K. Comparative analysis of SVM, ann and cnn for classifying

vegetation species using hyperspectral thermal infrared data. In Proceedings of the International Archives
of the Photogrammetry, Remote Sensing and Spatial Information Sciences—ISPRS Archives, Enschede,
The Netherlands, 10–14 June 2019.

25. Arsenovic, M.; Karanovic, M.; Sladojevic, S.; Anderla, A.; Stefanovic, D. Solving Current Limitations of Deep
Learning Based Approaches for Plant Disease Detection. Symmetry 2019, 11, 939. [CrossRef]

26. Stuchi, J.A.; Angeloni, M.A.; Pereira, R.F.; Boccato, L.; Folego, G.; Prado, P.V.; Attux, R.R. Improving
image classification with frequency domain layers for feature extraction. In Proceedings of the IEEE 27th
International Workshop on Machine Learning for Signal Processing (MLSP), Tokyo, Japan, 25–28 September
2017; pp. 1–6.

27. Leversha, G.; Bachman, G.; Narici, L.; Beckenstein, E. Fourier and Wavelet Analysis; Springer: Berlin/Heidelberg,
Germany, 2001.

http://dx.doi.org/10.1016/j.compag.2018.04.002
http://dx.doi.org/10.1155/2016/3289801
http://dx.doi.org/10.1016/j.compag.2018.01.009
http://dx.doi.org/10.3389/fpls.2016.01419
http://www.ncbi.nlm.nih.gov/pubmed/27713752
http://dx.doi.org/10.1016/j.compag.2018.08.013
http://dx.doi.org/10.1016/j.cogsys.2018.04.006
http://dx.doi.org/10.1371/journal.pone.0123262
http://www.ncbi.nlm.nih.gov/pubmed/25861025
http://dx.doi.org/10.1016/j.compag.2018.08.048
http://dx.doi.org/10.3390/sym10010011
http://dx.doi.org/10.1155/2017/2917536
https://pdfs.semanticscholar.org/adae/9446cb66eaa6645dca78fd81b21d43aebdda.pdf
https://pdfs.semanticscholar.org/adae/9446cb66eaa6645dca78fd81b21d43aebdda.pdf
http://dx.doi.org/10.3390/s17092022
http://dx.doi.org/10.3390/sym11070939


Appl. Sci. 2020, 10, 469 24 of 24

28. Kingma, D.P.; Ba, J.L. Adam: A method for stochastic optimization. In Proceedings of the 3rd International
Conference on Learning Representations, ICLR 2015—Conference Track Proceedings, San Diego, CA, USA,
7–9 May 2015.

29. Chollet, F. Keras. 2015. Available online: https://github.com/fchollet/keras (accessed on 23 December 2019).
30. Jupyter.org. Available online: https://jupyter.org/ (accessed on 23 December 2019).
31. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.;

Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv
2016, arXiv:1603.04467.

32. Anagnostis, A.; Asiminari, G.; Dolias, G.; Arvanitis, C.; Papageorgiou, E.; Myresiotis, C.; Bochtis, D. Machine
Learning Algorithms Comparison for Image Classification on Anthracnose Infected Walnut Tree Canopies.
In Proceedings of the XXXVIII CIOSTA & CIGR V International Conference, Rhodes, Greece, 24–26 June
2019; p. 6.

33. Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. ImageNet: A Large-Scale Hierarchical Image
Database. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL,
USA, 20–25 June 2009.

34. Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In
Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu,
HI, USA, 21–26 July 2017.

35. Simonyan, K.; Zisserman, A. VGG-16. arXiv 2014, arXiv:409.1556.
36. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.
37. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer

Vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Las Vegas, NV, USA, 27–30 June 2016.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://github.com/fchollet/keras
https://jupyter.org/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methodology 
	Process Description 
	Pre-Processing 
	Learning Process 
	Prediction 

	Data Acquisition 
	Data Preparation 
	Data Split 
	Performance Metrics 
	Feature Extraction Preprocessing with Fast Fourier Transform 
	Convolutional Neural Network Architecture 
	Visualization of Convolutions 
	Filters 
	Activation Maps for RGB 
	Activation Maps for Grayscale 
	Filter Effect on Images 


	Results 
	Discussion and Conclusions 
	Proposed CNN Architecture 
	Model Performance 
	Grayscale without Background Removal 
	Fast Fourier without Background Removal 
	RGB without Background Removal 
	Grayscale with Background Removal 
	Fast Fourier with Background Removal 
	RGB with Background Removal 

	References

