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Abstract: Primary and metastatic brain tumors are usually serious conditions with poor prognosis,
which reveal the urgent need of developing rapid diagnostic tools and efficacious treatments. To achieve
these objectives, progress must be made in the understanding of brain tumor biology, for example,
how they resist natural defenses and therapeutic intervention. One resistance mechanism involves
extracellular vesicles that are released by tumors to meet target cells nearby or distant via circulation
and reprogram them by introducing their cargo. This consists of different molecules among which are
microRNAs (miRNAs) and molecular chaperones, the focus of this article. miRNAs modify target
cells in the immune system to avoid antitumor reaction and chaperones are key survival molecules for
the tumor cell. Extracellular vesicles cargo reflects the composition and metabolism of the original
tumor cell; therefore, it is a source of markers, including the miRNAs and chaperones discussed in this
article, with potential diagnostic and prognostic value. This and their relatively easy availability by
minimally invasive procedures (e.g., drawing venous blood) illustrate the potential of extracellular
vesicles as useful materials to manage brain tumor patients. Furthermore, understanding extracellular
vesicles circulation and interaction with target cells will provide the basis for using this vesicle for
delivering therapeutic compounds to selected tumor cells.

Keywords: brain tumors; extracellular vesicles; miRNA; molecular chaperones; diagnostic tools;
drug delivery

1. Introduction

Brain tumors entail high mortality and morbidity worldwide, with 296,851 new cases and 241,037
deaths in 2018, according to the Global Cancer Observatory [1]. Currently, the diagnosis of brain
tumors is based on neuroimaging techniques complemented by biopsy. However, these methods are
not always applicable because of the type and/or the localization of the tumor. Therapeutic choices
include surgery, and radio-, chemo-, and immunotherapy. However, several complications can occur,
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such as venous thrombosis, pulmonary embolism, intracranial bleeding, wound and systemic infection,
seizures, depression, deteriorating neurologic conditions, and adverse drug reaction [2]. This worrying
scenario points to the need for novel methods that will allow earlier and more accurate diagnosis and
better patient monitoring and treatment than those currently available.

Remarkable achievements in the molecular and genetic fields have opened new frontiers in the
management of brain tumors, including the identification of new diagnostic and prognostic molecular
biomarkers released by the tumor. Noteworthy examples of these biomarkers are carried by extracellular
vesicles (EVs), released by tumors. EVs, which are considered mediators of intercellular communication,
carry bioactive molecules between cells close by or distant, affecting physiological and pathological
processes in recipient cells [3–9]. MicroRNAs (miRNAs) and molecular chaperones are among the
bioactive molecules carried by EVs that affect, either directly or indirectly, cancer initiation, cell
proliferation and growth, and metastasization [10–14]. Consequently, specific miRNAs and molecular
chaperones have been suggested as targets for analysis that can provide useful information for differential
diagnosis, assessing prognosis and response to treatment, and for developing novel therapies [15]. One
added advantage is that EVs can be obtained from biological fluids with minimally invasive procedures.

Here, we discuss the role of EVs in the pathogenesis of brain tumors, summarizing current
knowledge regarding their miRNAs and molecular chaperones cargo. We examine their role in the
development of brain tumors, and their impact on the tumor microenvironment.

2. Intercellular Communication: EVs

Cells can share between them biological information using lipids, proteins, or nucleic acids as
mediators, which are carried within small, nano-to-micrometer lipid-membraned EVs released by
them [16]. EVs are present in biological fluids, including blood, urine, milk, saliva, and cerebrospinal,
amniotic, and seminal fluids [17].

EVs play a key role in intercellular communication in physiological and pathological cellular
processes [18,19] and are considered a valuable source of useful biomarkers [20–22].

The International Society for Extracellular Vesicles (ISEV) encourages the use of the term “extracellular
vesicles (EVs)” as a generic term for all secreted vesicles, considering the lack of consensus for the
identification of specific markers to distinguish between the different subtypes of EVs [23]. Formerly,
the nomenclature assigned to EVs subgroups was based on differences in the size and formation
mechanism [23], and classified them into three main groups: 1. shedding microvesicles, with a size
range of 100–1000 nm [24]; 2. apoptotic bodies (1–5 µm diameter), released into the extracellular
environment by dying cells [25]; and 3. exosomes, small vesicles between 30–150 nm in size produced
from the endosomal compartment [23].

However, distinguishing between the various groups is still problematic, so in this review, we
refer to EVs, regardless of the classification used in the works cited, which often do not report specific
data that would allow a precise identification of EVs subtypes.

It is known that EVs are involved in numerous physiological and pathological processes, including
immune response, signal transduction, tumor progression, and inflammation [4]. Consequently, EVs
have potential as carriers of molecular biomarkers for diagnosis and prognosis in a range of conditions,
including cardiovascular, renal, and neurodegenerative diseases, and cancer [26], or as transporters of
therapeutic agents [27,28].

EVs carry proteins, lipids, mRNA, and miRNAs, and their contents depend on the type and
function of the cell in which they originate [29].

EVs contain substantial amounts of different RNA species, such as miRNA, mRNA, ribosomal
RNA, long noncoding RNA, transfer RNA, and small nuclear RNA [30]. Although mRNAs are the most
abundant class of RNAs in EVs, many studies have focused on miRNAs because of their apparent role in
cancer progression. Vesicular miRNAs were suggested as novel diagnostic, prognostic, and predictive
biomarkers in several common cancers [31].
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Exosomes are highly enriched in proteins with various functions, such as proteins associated with
cell membrane interaction, invasion, and fusion, e.g., the tetraspanins CD9, CD63, CD81, and CD82.
The tetraspanins CD9, CD63, and CD81 are used as specific markers [23]. Furthermore, EVs contain
proteins involved in maintenance of cell homeostasis and protection of cells against stress/apoptosis,
e.g., molecular chaperones, some of which are called heat shock proteins (Hsp). Hsp60, Hsp70, and Hsp90
are the most commonly present Hsps in EVs and are among the most used vesicular markers [32].

3. miRNAs and Molecular Chaperones in Brain Tumors

Brain tumors are a heterogeneous group of neoplasms that differ in etiology, morphology, clinical
manifestations, prognosis, and treatment. They were initially classified by the World Health Organization
(WHO) according to their histologic features and presumed cellular origin. This type of characterization
was the main tool used for many years in the diagnosis and management of patients, including decision
on treatment strategy [33–36] (Table 1). However, increasing genetic and epigenetic discoveries have
shown that a classification only based on histopathological findings fell short of the mark. For this
reason, in 2016, the WHO formulated an updated classification, which went beyond the old principle
of diagnosis based only on microscopy and incorporated molecular parameters to define brain tumors
entities. This new classification allows a more objective and accurate diagnosis, ensuring a more
accurate assessment of prognosis and treatment response than the old one [37].

Brain tumors can be either benign (noncancerous), or malignant (cancerous). The latter can be
distinguished into primary, arising directly within the brain, and secondary, namely metastatic brain
tumors derived from other parts of the body that have metastasized to the brain [2,38–40] (Table 1).
Up to half of the metastatic brain tumors derive from lung cancer. Other types of tumors that commonly
spread to the brain include melanoma, and breast, kidney, and colon cancer, although determining the
site of the primary tumor is often difficult [38,41–44].

Genetic and environmental factors are implicated in the onset of primary brain tumors. The former
are exemplified by neurofibromatosis types 1 and 2, adenomatous polyposis syndrome, tuberous
sclerosis, nevoid basal cell carcinoma syndrome, Turcot syndrome, Li–Fraumeni syndrome, and von
Hippel–Lindau syndrome, whereas those linked to environmental factors are exemplified by those
caused by ionizing radiation, and they are all considerably less frequent than secondary tumors
(Table 1) [45–51] (Table 1).

Table 1. Characteristics of the most common primary brain tumors.

Tumor Cell of Origin Molecular Features Clinical Features Ref.

Astrocytomas
Diffuse astrocytoma (WHO Grade II);

Anaplastic astrocytoma (WHO
Grade III); Pilocytic astrocytoma
(WHO Grade I); Glioblastoma
multiforme (WHO Grade IV);

Gliosarcoma (WHO Grade IV) 1.

Astrocyte

p16 deletion
p53 mutation

PTEN mutation
EGFR amplification

IDH1 mutation

Astrocytomas,
oligodendrogliomas,

and ependimomas are
gliomas that originate in the

glia and are extremely
invasive and malignant.

Main symptoms are
headache, seizures, nausea,

vomiting, disturbed
vision, tingling

sensations, weakness,
difficult ambulation.

[52–64]

Oligodendrogliomas
Oligodendroglioma (WHO Grade II);

-Anaplastic Oligodendroglioma;
(WHO Grade III).

Oligodendrocyte

PEG3 deletion
EGFR amplification

p53 mutation
p16 deletion

IDH1, IDH2 mutation
Ependymomas

Subependymoma (WHO Grade I);
-Myxopapillary ependymoma (WHO

Grade I); Ependymoma (WHO
Grade II); Ependymoma, RELA

fusion-positive (WHO Grade II or III);
Anaplastic ependymoma

(WHO Grade III).

Ependymal cell

NF2 mutation
MT3 underexpression
hTERT overexpression

miR-485-5p downregulation
IGF1 upregulation

p16 deletion
EGFR amplification
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Table 1. Cont.

Tumor Cell of Origin Molecular Features Clinical Features Ref.

Meningiomas
Meningioma (WHO Grade I);
Atypical meningioma (WHO

Grade II); Anaplastic meningioma
(WHO Grade III).

Meningeal cell

NF2 mutation
DAL1 loss

PTEN mutation
p16 deletion

EGFR overexpression

Meningiomas are tumors of
the meninges. Main

symptoms are headache,
seizures, psychotic–motor

disabilities, mental
weakening, personality

changes, visual disorders,
language dysfunction.

[37,65–69]

Medulloblastomas
Medulloblastoma (WHO Grade IV);

Desmoplastic/Nodular
Medulloblastoma (WHO Grade IV);

Medulloblastoma with Extensive
Nodularity (WHO Grade IV);
Anaplastic Medulloblastoma

(WHO Grade IV).

Neuron

p53 mutation
TRKC, ERBB2, FSTL5

overexpression
PTCH1, CTNNB1 mutation

MYC amplification
DDX3X mutation

Medulloblastomas are
tumors of the cerebellum.

Main symptoms are
headache, morning

vomiting, ataxia.

[70–78]

1 WHO, World Health Organization.

Current diagnostic approaches are based on imaging methods with subsequent histological
examination of a biopsy. However, these approaches are limited by tumor localization and heterogeneity.
Treatment choices can vary depending on tumor type and location, malignancy potential and patient’s
conditions, and include surgery, radiotherapy, chemotherapy, or a combination. Complete safe surgical
resection, followed by radio/chemotherapy, represents the most common initial treatment for many
primary brain tumors. The main aims are to achieve an accurate histological diagnosis, define the
tumor’s molecular genotype, reduce the mass effect and tumor burden, improve patient’s quality of
life, and prolong survival time [2,79,80].

Despite efforts to develop new therapeutic strategies, including surgical procedures, and radio-,
chemo-, and immunotherapies, brain tumors continue to be a substantial source of morbidity and
mortality worldwide, a situation compounded by late diagnosis and the development of resistance to
anticancer agents [81–83].

For this reason, repeated attempts have been made over the last few years to identify specific
biomarkers that could be detected/measured using noninvasive methods and that would allow early
diagnosis and disease monitoring, including controlling the response to treatment [84].

Among the diagnostic and prognostic markers currently under investigation, miRNAs and molecular
chaperones released by EVs hold promise, considering their roles in physiology and pathology. For example,
they are implicated in the regulation of the cellular proteome at transcriptional and post-transcriptional
levels. Thus, it is likely that cancer cells may use miRNAs and chaperones by delivering them to other
cells and influence them in ways favoring tumorigenesis.

3.1. miRNAs in Brain Tumors

MicroRNAs are short noncoding single stranded RNA (ssRNA) molecules, 19–25 nucleotides long,
which regulate the expression of target genes post-transcriptionally by affecting either the stability or
the translation of their mRNA [85].

The biogenesis of miRNAs consists of two highly regulated cleavage events [86]. The first one,
occurring within the nucleus, generates a long hairpin-shaped RNA molecule called pre-miRNA [87–92]
which is exported to the cytoplasm, in which the second step occurs, producing a shorter double
stranded RNA [93–97]. One of the strands, the star (*) strand or passenger strand, is degraded. The other
strand (the guide strand or mature miRNA) forms the miRNA-induced silencing complex (miRISC) that
specifically recognizes a target mRNA, and downregulates gene expression by repression of translation
or by mRNA cleavage [98–104]. However, in recent years it became clear that the passenger strand may
not be degraded and could act as miRNA. Thus, according to a more recent nomenclature proposed
by the miRBase registry, the two miRNA strands produced after the second cleavage are referred to
as predominant product (indicated without *) and the strand from the opposite arm of the precursor
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(indicated with *). When the data are not sufficient to determine which sequence is predominant,
the strands are indicated as 5p, i.e., present in the forward (5′–3′) position, and 3p, i.e., located in the
reverse (3′–5′) position [105].

Since their discovery over 30 years ago in the nematode Caenorhabditis elegans [106,107], a myriad
of new miRNAs have been identified and annotated in the miRbase registry, and their number
continuously increases thanks to the development of new high-throughput sequencing technologies
and computational and bioinformatics prediction methods, which facilitate identification of miRNAs
targets and their biological functions [108–114].

Currently, in humans over 2000 miRNAs have been annotated and validated, which regulate the vast
majority of protein encoding genes, and thus most if not all biological events [115–121]. For this reason,
any alteration of a miRNA normal expression profile was often related to pathology, including cancer as
firstly suggested by the depletion or downregulation of miR-15a and miR-16a genes in the majority of
B-cell chronic lymphocytic leukemia [122]. Typically, when miRNAs expression is amplified in cancer cells,
they function as oncogenes and promote cancer development by negatively regulating tumor suppressor
genes and/or genes that control cell differentiation or apoptosis. Conversely, when downregulated,
miRNAs act as tumor suppressors and may inhibit tumorigenesis by regulating oncogenes and/or genes
that control cell differentiation or apoptosis [123,124]. There are several mechanisms inducing miRNAs
dysregulation in cancer, such as (i) miRNAs genes amplification or deletion [122,125]; (ii) abnormal
transcriptional regulation of miRNA genes [126,127]; (iii) epigenetic alterations, such as aberrant DNA
methylation and histone acetylation of miRNAs genes, which, in turn, affect miRNAs levels [128,129]; and
(iv) defects in miRNAs biogenesis and maturation pathways, which can alter their expression [130,131].

MicroRNAs with expression levels different in the tumoral tissues as compared with the normal
tissue counterparts were identified for several tumor types, for instance glioblastoma [132–134].

More than 70 percent of all brain tumors are gliomas that are classified according to the type of the glial cell
involved, and include astrocytoma (astrocytoma, anaplastic astrocytoma, and glioblastoma), ependymomas
(anaplastic ependymoma, myxopapillary ependymoma, and subependymoma), and oligodendrogliomas
(oligodendroglioma, anaplastic oligodendroglioma, and anaplastic oligoastrocytoma) (Table 2). Microarray
studies on miRNAs have shown significant changes of their expression profile in gliomas, both in children
and in adults [135,136] (Table 2).

Compared to normal brain tissues, miRNA-155 (miR-155) was found overexpressed in glioma
tissues, and its overexpression was associated with poor overall survival rates, suggesting that
monitoring its expression levels could be a way to assess prognosis [137]. The positive correlation
between miR-155 expression level and glioma malignancy was further established by in vitro and
in vivo studies [138]. In vitro, miR-155 promoted tumor cells proliferation, invasion, and migration by
downregulating two components of the mitogen-activated protein kinase (MAPK) signaling pathway
and, in turn, enhancing secretion of matrix metalloproteinases 2 (MMP2) and MMP9 [138]. Moreover,
it competed with miR-185 to induce ANXA2 (annexin A2), which exhibited oncogenic functions in
glioblastoma multiforme (GBM) [139]. In vivo studies showed that miR-155 facilitated the progression
of glioblastoma and confers drug resistance by modulating Six1 expression [140]. These results confirm
the role of miR-155 as oncomiR and suggest its potential use as biomarker and as an anticancer
drug target. In fact, its knockdown sensitized glioma cells to temozolomide, a common anticancer
drug, through the induction of MAPK13, MAPK14, and Six1, and mediated oxidative stress and
apoptosis [138,140] (Table 2).

The other two miRNAs proposed as oncomiRs, and potential prognostic biomarkers, are miR-221
and miR-222, whose high levels of expression are positively correlated with glioma aggressiveness and
poor prognosis [141,142]. Among miR-221 and miR-222 targets that are involved in these protumorigenic
effects are the tissue inhibitor of metalloproteinase (TIMP3), which is downregulated concomitantly
with miR-221 and miR-222 overexpression, promoting glioma cell invasion [141], and the Akt pathway,
which is activated, promoting cancer cell proliferation [143]. Conversely, cosuppression of miR-221
and miR-222 suppresses human glioma-cell growth and proliferation by a mechanism involving the
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upregulation of the cell cycle inhibitor p27Kip1 both in vitro and in vivo [144]. Moreover, as reported
for the oncomiR-155, downregulation of miR-221 and miR222 sensitizes glioma cells to temozolomide
by increasing the expression of proapoptotic factors [145] (Table 2).

There are also several examples of miRNAs considered tumor suppressors of malignant gliomas.
Low plasma level of miR-185 is a signature of a glioma that correlates with poor survival [146]. Its
inhibition after miR-155 overexpression in GBM promoted ANXA2 expression and tumor growth and
progression [139]. Similarly, serum miR-205 expression was significantly lower in patients with glioma
than in healthy controls, as well as in other brain tumor cohorts, and its serum level appeared inversely
correlated with pathological grades and overall survival, since patients with glioma at an advanced
pathological grade (grade III or IV) and a higher miR-205 serum level had a longer overall survival than
those with a lower miR-205 serum concentration [147]. Thus, miR-185 and miR-205 were identified
as tumor suppressors and were proposed as biomarkers with predictive prognostic potential to be
used with noninvasive tools for monitoring cancer progression and response to treatment [146–149]
(Table 2).

Glioblastoma multiforme (WHO grade IV astrocytoma) is characterized by poorly differentiated
glial cells with polymorphism, nuclear atypia, and high mitotic activity, and is the most common
malignant primary brain tumor, with an incidence of 3.19 cases per 100,000 person/year and a remarkably
poor prognosis due to the still limited therapeutic options [150]. Therefore, the identification of new
diagnostic and prognostic biomarkers is necessary to develop novel and personalized therapeutic
treatments. Also, in this case, great interest was elicited by miRNAs, which often show an altered
expression level in GMB patients compared to healthy controls, as already discussed for miR-155 and
miR-185. It was observed that the serum level of miR-203 is decreased in GBM patients compared
with low grade glioma (LGG) patients and healthy controls, and it positively correlates with poor
overall survival [151]. These results confirm the tumor-suppressor activity of miR-203 in GMB,
whose low expression level in two human GBM cell lines was previously shown to induce their
epithelial–mesenchymal transition and confer them chemoresistance [152] (Table 2).

Similarly, miR-605 has a reduced expression level in GMB tissues and cell lines, and this was
correlated with patients’ poor survival [153]. Conversely, increased levels of miR-605 inhibited cancer cell
proliferation and growth in vitro and in vivo, by directly targeting SOX9 (SRY-box 9) and by inhibiting
the activation of the PI3K (phosphatidylinositol 3-kinase)/Akt (protein kinase B) pathway [153] (Table 2).

Compared to GBM, much less is known about circulating miRNAs as useful indicators for diagnosis
and prognosis of meningiomas. In addition, for these tumors, miRNAs have been identified that act as
oncogenes or tumor suppressors. For instance, miR-200a has been implicated in the pathogenesis of
meningiomas and was found downregulated in sporadic benign human meningioma tumors (WHO
grade I), compared to the arachnoid tissues from which these tumors arise [154]. This miRNA functions
as a potential tumor suppressor since its upregulation inhibits Wnt/β-catenin signaling, involved in cell
proliferation, through two complementary mechanisms: a) direct targeting of the β-catenin mRNA,
which reduces the levels of β-catenin, acting as the main activator of the Wnt signaling; and b) targeting
the mRNAs for ZEB1 (Zinc Finger E-Box Binding Homeobox 1) and SIP1 (Smad Interacting Protein
1), which negatively regulate the expression of the E-cadherin gene, with a consequent upregulation
of E-cadherin levels and sequestration of β-catenin [154]. Another mir-200a target is the nonmuscle
myosin heavy chain IIb (NMHCIIb), involved in regulation of cells motility. NMHCIIb downregulation
concomitantly with miR-200a overexpression in malignant meningioma cells significantly reduced the
rate of cancer cells migration, and thus tumor invasiveness [155].

The expression level of miR-145 appears significantly reduced in atypical and anaplastic tumors as
compared with benign meningiomas [156]. In vitro, the overexpression of miR-145 reduced meningioma
cells proliferation and motility, thanks to the associated downregulation of collagen type V alpha
(COL5A1) and induced apoptotic cell death [156]. These effects translated into a decreased growth of an
orthotopic tumor in a nude mice model, with reduction in tumor cell infiltration upon overexpression
of miR-145 [156] (Table 2).
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The microRNA miR-335 is overexpressed in meningiomas and acts as an oncomiR. It has been
shown that elevated levels of miR-335 in vitro increased tumor cell growth by directly targeting the
signaling pathway of the tumor suppressor Rb1, whereas reduction of the miR-335 levels had the
opposite effect on tumor growth and progression, leading to cell cycle arrest in the G0/G1 phase [157].

The oncogenic role of miR-335 was observed also in astrocytoma, a type of glioma deriving from
astrocytes or astroglial precursors; it was overexpressed in astrocytoma cells, promoting their growth
and invasiveness by targeting the tumor suppressor disheveled-associated activator of morphogenesis
1 (Daam1), a member of the formin protein family acting downstream of Wnt signaling, and responsible
for the regulation of cell polarization, migration, proliferation, and tissue morphogenesis during
embryonic development [158]. On the contrary, miR-335 inhibition suppressed growth and induced
apoptosis of astrocytoma cells in vitro and in vivo, suggesting its potential use as therapeutic target [158]
(Table 2).

The microRNA miR-224 level was found higher in meningioma tissues compared to normal brain
and was positively correlated with advanced pathological grade [159]. miR-224 could be a promising
therapeutic target for treating malignant meningiomas, since its downregulation in vitro suppressed cell
growth and increased apoptosis through the activation of the ERG2-BAK-induced apoptosis pathway [159]
(Table 2). Six miRNAs (miR-106a-5p, miR-219-5p, miR-375, miR-409-3p miR-197, and miR-224) were
identified in serum from patients with meningioma [160]. The serum levels of miR-106a-5p, miR-219-5p,
miR-375, and miR-409-3p were increased in meningioma patients compared to healthy controls and
decrease after tumor removal. On the contrary, the serum levels of miR-197 and miR-224 were markedly
decreased in meningioma patients but significantly increased in the postoperative samples of the same
patients. Therefore, the use of this panel of miRNAs was suggested as potentially useful for the diagnosis
and the evaluation of clinical outcomes during management of meningioma patients [160] (Table 2).

Similarly, very recently the use of miRNAs profiling was proposed as novel tool to predict meningiomas
recurrence, and improve patients’ clinical management [161].

MicroRNA profiling in brain tumor biology has been conducted considering not only the miRNAs
expressed in malignant tissues and in blood from patients, but also the miRNAs released in the
cerebrospinal fluid (CSF). CSF is considered the ideal source of nervous tissue-specific miRNAs to
use as diagnostic biomarkers for brain tumors, since it is in direct contact with the entire central
nervous system, and has the advantage of containing fewer miRNAs than blood plasma or serum,
which, flowing throughout the body, collect miRNAs generated by all tissues [162–167]. Recently,
a screening was conducted, using CSF samples from patients with glioblastoma, low-grade glioma,
meningioma, and brain metastasis, and from nontumor patients as controls, with the aim of identifying
specific CSF miRNA patterns that could differentiate brain tumors from one another [166]. CSF miRNA
signatures were identified for all the cancer types studied, which revealed the potential of CSF miRNAs
for diagnosis of brain tumors, especially in cases with borderline or uncertain imaging results [166]
(Figure 1).

Table 2. MicroRNAs in brain tumors.

Tumor miRNA Function
Quantity

Ref.
Level Tissue/Cell

Glioma

miR-21 OncomiR
Increased GBM cells and derived EVs 1 [168–174]

Increased Blood; GBM cells
derived EVs [175]

miR-148a OncomiR Increased
Glioma tissues; glioma cell

line; GBM specimens
and cell line

[137–140]

miR-155 OncomiR Increased Blood; Glioma cell line [141–145]
miR-221/222 OncomiR Increased Blood [176]

miR-301a OncomiR Increased GBM patient’s serum [177]
miR-222, miR-124-3p,

miR-221, miR-320,
miR-574-3p,

and miR-301a

Positive diagnostic
biomarkers Increased Astrocytoma cells [158]
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Table 2. Cont.

Tumor miRNA Function
Quantity

Ref.
Level Tissue/Cell

Glioma

miR-335 OncomiR Increased GBM cells and derived EVs [168]

miR-451 OncomiR Increased in cells
and released in EVs GBM cells and derived EVs [178]

miR-1238 OncomiR Low levels in cells GBM cells and derived EVs [179]
miR-1 Tumor suppressor Released in EVs GBM cells derived EVs [180]

miR-151a Tumor suppressor Low levels Blood; GBM specimens
and cell line [139,146,149]

miR-185 Tumor suppressor Decreased GBM cell lines and blood [151,152]
miR-203 Tumor suppressor Low levels Blood [147,148]
miR-205 Tumor suppressor Low levels GBM tissues and cell lines [181,182]
miR-454 Tumor suppressor Low levels GMB tissues and cell lines [153]
miR-605 Tumor suppressor Increased Meningioma tissues [159]

Meningioma

miR-224 OncomiR Increased Meningioma tissues;
meningioma cell [157]

miR-335 OncomiR Low levels
Atypical and anaplastic

meningiomas;
meningioma cell

[156]

miR-145 Tumor suppressor Low levels Benign meningioma tissue [154,155]

miR-200a Tumor suppressor
Increased Malignant meningioma cells [154,155]

High levels Blood [160]
miR-106a-5p, miR-219-5p,
miR-375, and miR-409-3p

Diagnostic and prognostic
biomarkers Low levels Blood [160]

miR-197 and miR-224 Diagnostic and prognostic
biomarkers

Increased
following
recurrence

Tumor samples [161]

miR-15a-5p, miR-146a-5p,
and miR-331-3p Prognostic biomarkers [161]

1 GBM, glioblastoma multiforme.
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3.2. Molecular Chaperones in Brain Tumors

Molecular chaperones are the main components of the chaperoning (chaperone) system (CS) of an
organism, which is also constituted of co-chaperones, chaperone cofactors and chaperone receptors
and interactors, forming different functional networks [183,184]. Some chaperones are called Hsp
(from heat shock protein), since they increase in response to heat shock and other stressors [185–188].
Although not all chaperones are Hsps and vice versa not all Hsps are chaperones, both terms have been
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used indistinctly for years, as if they were true synonyms. This unfortunate confusion is practically
impossible to eradicate from the literature and continues to thrive. Therefore, we use the terms chaperone
and Hsp interchangeably in this work.

The canonical functions of chaperones pertain to protein homeostasis and quality control [189–198].
However, chaperones have also noncanonical functions unrelated to the maintenance of protein
homeostasis, including participation in immune and inflammatory reactions [12,199–201].

The CS interacts with the immune system and when malfunctional, it becomes a pathogenic
factor in autoimmune and inflammatory diseases. The diseases in which components of the chaperone
system play an etiological–pathogenic role are the chaperonopathies [202].

As for most diseases, chaperonopathies can be genetic or acquired, with the former being the result
of a gene variant, e.g., mutation, while the acquired chaperonopathies are characterized by structural and
functional abnormalities in the chaperone protein, but its gene is normal. In addition, chaperonopathies
can be classified according to its main feature as by defect, by excess, and by mistake [203]. Typically,
chaperonopathies associated with cancer are by mistake, namely the pathogenic chaperone helps the
tumor cell rather than defend the human host against it. Since chaperones are classically considered
cytoprotective and guardians of protein homeostasis, their helping malignant cells to grow, proliferate,
and disseminate appear as mistaken activities, so to speak. This concept has played a key role in alerting
physicians and pathologists to the fact that chaperones may be determinant pathogenic factors and
should be looked upon as tumor biomarkers and targets for treatment, with negative chaperonotherapy
being the modality of choice most often, which consists of inhibiting, blocking, or eliminating the
“mistaken” chaperone.

Molecular chaperones can confer resistance against chemo- and radiotherapies, and support glial tumor
growth and invasion, i.e., the typical role of “mistaken” chaperones that characterize the chaperonopathies
by mistake, underpinning carcinogenic mechanisms in certain types of tumors [13,204–208] (Table 3).

A positive correlation between Hsp27 expression level and the growth rate of different types of
high-grade astrocytoma, including glioblastoma, has been reported, suggesting its involvement in
promoting tumor growth [209,210]. Hsp27 is an important regulator of F-actin polymerization and it
was shown that p38MAPK activation, followed by Hsp27 phosphorylation, was required for Phorbol
12-myristate 13-acetate (PMA)-induced migration of glioblastoma cells, suggesting that this chaperone
is a potential target of negative chaperonotherapy to inhibit cancer invasion and progression [211].
This hypothesis was further supported by findings showing that Hsp27 downregulation synergizes the
anticancer effects of different drugs and treatments, reducing GBM cell proliferation and promoting
caspase 3-mediated apoptosis [212–214].

Another Hsp involved in glioblastoma tumorigenesis is Hsp47. Hsp47 was found overexpressed in
glioma tissues and cell lines and associated with glioma tumor grade [215]. Moreover, its expression level
was positively correlated with tumor vascularization, since its silencing consistently decreased VEGF
expression in glioma cells, and reduced glioma vasculature [215]. Hsp47 knockdown also inhibited glioma
cell growth, migration, and invasion in vitro and in vivo [216]. Contrarily, in vivo Hsp47 overexpression
promoted primary glioma cell tumor formation and stemlike properties maintenance, as well as tumor
invasion and angiogenesis, thanks to the upregulation of extracellular matrix related genes, such as CD44,
LAMC1m COL4A2, ITGB1, FN1, and MMP9, through the TGF-β pathway [217]. These data indicate
a key role of Hsp47 in glioma angiogenesis, suggesting its potential use as therapeutic target to treat
glioma tumors (Table 3).

In addition, the involvement of the mitochondrial chaperonin Hsp60 in glioblastoma tumorigenesis
and progression has been studied. The Hsp60 expression level was found higher in glioblastoma patients
and cell lines, with an antiapoptotic and a prosurvival role [218,219]. Hsp60 through its interaction with
cyclophilin D, Hsp90, and other cofactors, modulates tumor growth and prevents apoptosis in vivo [218].
Moreover, the chaperonin downregulation in glioblastoma cells leads to epithelial–mesenchymal
transition and increases production of reactive oxygen species (ROS), ultimately suppressing cell growth
and proliferation through the ROS/AMPK/mTOR pathway [219]. The protumorigenic role of Hsp60 was
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suggested also by immunohistochemical analysis on a subset of human brain neoplasms by comparing
the levels of Hsp60 and Hsp70, another Hsp commonly implicated in carcinogenesis [220–222].
The results showed a significant difference between Hsp60 and Hsp70 levels in neuroepithelial tumors,
while levels of both molecules did not differ among each other in meningeal neoplasms. It was
suggested that Hsp60 is not increased by a passive phenomenon, but may play an active role in tumor
progression, although other studies are needed to fully understand this issue [220,223,224].

Hsp70 is another chaperone that is thought to play a role in carcinogenesis, since it was found
abundantly expressed in malignant cells, and with different roles [225]. For instance, the cytosolic,
membrane-bound, and extracellular forms of Hsp70 are augmented in primary glioblastomas [226],
and its increase was associated with increased proliferation, migration, and invasion rates, as well
as with acquisition of radio resistance by human glioblastoma cell lines [227,228]. It has been shown
that Hsp70 promotes survival of C6 and U87 glioma cells, by protecting ATF5 from proteasome and
caspase-dependent proteolytic degradation [229]. Moreover, in a rat model of GBM (C6 cells), Hsp70
elicited cytoprotective activity and rescued glioblastoma cells from oxidative stress and death by
sequestrating the aggregation-prone GAPDH, which is usually responsible for pathogenic aggregation
of proteins after cell exposure to oxidative stress. The protective power of the chaperone could be
abolished by specific inhibitors of Hsp70 expression [230] (Table 3).

Another Hsp with a protumorigenic role in glioma is Hsp90, which through different signaling
pathways, promotes cancer cell motility and invasion [231–234]. In addition to migration, Hsp90 regulates
other protumorigenic processes in GBM cells, such as cell-survival mechanisms and apoptosis. Consequently,
a combined treatment with Hsp90 and PI-3 kinase inhibitors has been shown to increase the apoptotic death
of GBM cells, likely by disrupting AKT signaling and promoting G2/M arrest [235]. In agreement with these
results, several works demonstrated the efficacy of Hsp90 inhibitors in counteracting malignant gliomas,
proposing their use, alone or in combination with other traditional anticancer drugs, as potential therapeutic
agents in gliomas treatment—all examples of negative chaperonotherapy [208,236–238] (Table 3).

Compared to malignant gliomas, less is known about the role played by Hsps in other brain tumors.
Two different studies investigated different Hsps on paraffin-embedded sections from medulloblastoma
patients using immunohistochemistry and found substantial amounts of them [239,240]. However,
these data are still preliminary and further studies, involving a larger series of patients, are necessary
to clarify the relationship of Hsps with tumor aggressiveness and prognosis [239,240] (Figure 1).

Table 3. Reported roles of Hsp27, Hsp47, Hsp60, Hsp70, and Hsp90 in gliomas.

Chaperone/Hsp Role in Gliomas Ref.

Hsp27 Promotes tumor growth, and cancer-cell proliferation and motility [209–214]
Hsp47 Promotes tumor growth, invasiveness, and angiogenesis [215–217]

Hsp60 Promotes tumor progression by enhancing cancer-cell proliferation, preventing
apoptosis, and inhibiting the antitumor immune response [218–220]

Hsp70 Promotes cancer cell proliferation, migration, and invasion, and protects cancer
cells from apoptosis and anticancer drugs [227–230]

Hsp90 Promotes cancer-cell motility, tumor invasiveness, and drug resistance [231–235]
CCT6 Promotes GBM cell invasion and has a negative association with patient survival 1 [241]

1 GBM, glioblastoma multiforme.

4. The Release of miRNAs and Chaperones through EVs as Molecular Signaling and Source
of Biomarkers

Intercellular communication between tumor cells and their neighboring structures, including
other cells, is vital for cancer growth and progression, and EVs are key elements in this crosstalk.
However, the mechanisms involved are still poorly understood, which stands in the way of progress
in cancer treatment. The involvement of brain tumor-derived EVs in the modulation of the tumor
microenvironment has been suggested by studies that revealed in those vesicles functionally active
molecules that can play a role in cancer progression.
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The release of Hsps inside vesicles has been reported for different brain tumor cell lines [242].
Moreover, it has been found that Hsp27, Hsp70, and Hsp90 can also be present on the surface of brain
tumor-derived EVs [243,244], which indicate their potential as tumor biomarkers [245,246]. However,
although molecular chaperones have been described as key players in brain tumor biology, in the
current literature there are still very few data about the possible role of extracellular Hsps in these
tumors. On the contrary, the role of miRNAs carried by EVs released by brain tumor cells is currently
under active investigation and debate. MicroRNAs in EVs are abundant by comparison with other
cargo molecules [247] and their expression patterns reflect their source, thus providing information
about their cells of origin [248]. For instance, gliomas secrete EVs that transport receptors and signaling
molecules for oncogenes [16,249,250]. The EV-mediated transfer of miRNAs appears to be a way for the
tumor to communicate with distinct sets of surrounding nontumor cells, including neurons and glial
and vascular cells, which are thus reprogrammed to modify the tumor microenvironment to make it
suitable to tumor growth and dissemination [251]. For example, it has been shown that glioma-derived
EV saltered synaptic activity in neurons, contributing to tumor growth [251]. In addition, several
studies have pinpointed the specific role of certain vesicular miRNAs on target cells, which in essence
consisted in mediating the aggressive properties of gliomas [178–180,252]. The microRNAs miR-451 and
miR-21 are present at very high levels in the EVs produced by primary GBM cells, and are uptaken by
microglia, which is followed by a phenotype change of the recipient cell accompanied by upregulation
of cytokines, chemokines, and matrix metallopeptidases (MMP), all of which promote growth and
invasion of GBM cells while lessening of the immune response [168]. MiR-21 transferred by GBM–EVs
to microglia regulates the expression of the Btg2 gene, involved in the control of cellular proliferation
and differentiation [169]. The dysregulation of c-Myc and Btg2 attests that the GBM–EVs have a
functional activity on neighboring target cells. Several studies suggest the oncogenic effect of miR-21,
whose overexpression occurring in many tumor types favors the establishment of tumor-permissive
pathways in glioblastoma [170,171]. It has been observed that malignant brain tumor-derived EVs
support neoangiogenesis through miR-21/VEGF signaling [172].

MicroRNAs can cross the blood–brain barrier (BBB) and reach far target sites through the circulation.
For instance, the vesicular miR-21 has been identified in the blood [250] and CSF [173,174], suggesting
that these EVs carrying miRNAs could have diagnostic and prognostic usefulness.

Both miR-105 [253] and miR-181c [254] have the ability to disrupt the blood–brain barrier and
function as pro-oncogenes by downregulating tumor suppressor genes, and thereby favor invasiveness
and metastasization. It has also been reported that miR-148a delivered by EVs promotes glioma-cell
proliferation and metastasis via targeting CADM1 to activate the STAT3 pathway [175].

The content in miRNAs within EVs released by a tumor can vary depending on the stage of
tumor progression, thus providing key diagnostic indicators, which is particularly convenient when
it is possible to isolate the EVs from biological fluids such as plasma [163]. For instance, miR-222,
miR-124-3p, miR-221, miR-320, miR-574-3p, and miR-301a were found to be increased in EVs derived
from serum of high-grade glioma patients [176,177] and their distinctive quantitative patterns allowed
for distinguishing between tumoral and control samples [177].

The pathogenic role of some miRNAs depends on their tissue localization. For instance, miR-454
may act as an oncogene in gastric cancer [255], but is a tumor suppressor in gliomas [181]. The microRNA
miR-454 is elevated in EVs from preoperative sera when compared with its levels after surgery, indicating
that cancer cells can differentially secrete specific miRNAs into the circulation in EVs, which support
the idea that these vesicles and their contents have potential as useful biomarkers accessible with
minimally invasive procedures [182].

Despite their fundamental role in cell homeostasis and the knowledge that molecular chaperones
are differentially expressed in cancer, little is known about the secretion of these proteins by brain
tumors via EVs. The stress response of tumor cells, included those of brain tumors, consists of the
overexpression of Hsps and their release in the extracellular environment also by EVs. However, little
is known on the role of molecular chaperones in the brain tumor microenvironment; one working
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hypothesis postulates that the release of chaperones via EVs could be a defense mechanism from
injury [242,256].

CCT6A, a subunit of the molecular chaperone CCT (Chaperonin-containing Tcp-1) is present in
EVs from glioma cells derived from surgical specimens [241]. Secretion of CCT6A via EVs could be
linked to GBM cell invasion and has a negative association with patient survival [241] (Figure 1).

After their release in the extracellular space, EVs can either perform a local autocrine/paracrine
signalling, targeting other nearby tumor cells and nervous-system cells (neurons and astrocytes),
or cross the blood–brain barrier and reach distant cells through the systemic circulation. In both cases,
EVs release their cargo into the cytoplasm of recipient cells by fusing with the target-cell membrane.
At this point, the delivered molecules can mediate many physiological and pathological processes.
EVs cargo reflects the characteristics of the cells from which they originate. Therefore, it is likely that
both miRNAs and Hsps normally produced by tumor cells may be selected for the sorting into the
released EVs and affect the tumor microenvironment and other distant tissues. As indicated in the
bracket at the top right half of Figure 1, miRNAs may act either as oncomiR, favoring tumor cells
proliferation and migration, or as tumor suppressor, by inhibiting cancer cells survival and proliferation.
In both cases, the role is mediated by the post-transcriptional regulation of factors involved in the
control of the cell life cycle and is correlated to the level of the pertinent miRNA. On the contrary,
Hsps act mainly as protumorigenic factors (i.e., chaperonopathies by mistake), since Hsps promote
cancer cell proliferation and motility (Hsp27); tumor growth, invasiveness, and angiogenesis (Hsp47);
prevent tumor cell apoptosis and inhibit antitumor immune response (Hsp60); and confer resistance to
anticancer treatment (Hsp70 and Hsp90).

5. Conclusions and Perspectives

Tumor-derived EVs with their miRNA and molecular chaperone contents have potential applications
in medicine for diagnostic purposes, for monitoring patients, and for designing and implementing
novel therapeutic procedures. Methods for isolating EVs and for characterizing their cargo have been
developed over the last few years and interest has increased in their possible role as intercellular
messengers. Tumor-derived EVs are considered a potential source of biomarkers, reflecting the status
and metabolism of the cells from which they originate. Because of this and of their availability via
minimally invasive sampling procedures, EVs have a promising future in brain tumor management,
including early diagnosis and patient follow up. It is hoped that as knowledge about these vesicles and
their physiological and pathogenic roles progresses, mechanistic insights will be gained that will pave
the way for developing novel treatment strategies and drugs. Here, we have discussed two components
of the EVs cargo, miRNAs and molecular chaperones, the key functions of which in carcinogenesis
and in the fight of the organism against malignancies, and vice versa, are becoming increasingly clear.
Therefore, measurement and characterization of miRNA and chaperones in EVs from brain tumors in
liquid biopsies are promising endeavors in research and medical practice, particularly in neurosurgery.
Furthermore, learning about EVs from brain tumors and their migrations within the brain and the rest
of the body will tell whether these vesicles have potential as vectors for delivering anticancer drugs to
specific cell targets.

The efficacy of EV-carried noncoding RNAs has been examined in neurodegenerative diseases [257]
and in tumors [258]. Systemically administered engineered EVs, targeting the transferrin receptor,
were found to bind glioblastoma cells and enhance the action of the antisense miRNA oligonucleotide
produced to inhibit endogenous miR-21 [259].

Natural or artificially constructed EVs carrying chaperones have been tested for their ability to
enhance the antitumoral immune response. For example, Hsp70 contained in EVs from dendritic
cells activated T lymphocytes toward becoming glioma-specialized cytotoxic T lymphocytes [260].
Chaperone-enriched EVs have been tested in glioma immunotherapy in an in vivo model and have
shown strong induction of the CD4+ and CD8+ T cell activity and enhancement of T cell infiltration in
intracranial glioma tissues, causing inhibition of tumor growth [261].
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Other advances in EVs application in tumor therapy are their use as target-specific carriers to deliver
tumor suppressor miRNAs or miRNA-mimic molecules. Some miRNA-mimic molecules have the
capability of targeting and reducing the protumoral effect mediated by Hsps. This has been demonstrated
in a triple-negative breast cancer model, in which miR-134-enriched EVs reduced the levels of Hsp90,
a chaperone that favors the survival of cancer cells by stabilizing oncogenic proteins [262]. This treatment
resulted in reduced cell migration and invasion, and enhanced sensitivity to anti-Hsp90 drugs in breast
cancer cells [262]. Delivery of specific miRNAs or anti-miRNA molecules played important roles in the
modulation of the expression of Hsps, with therapeutic effects in cancer [263]. In the vascular endothelial
cells of gliomas, miR-144 targeted directly Heat Shock Factor 2, which regulates Hsps expression,
modifying the permeability of the blood–tumor barrier, which opens a potential new way in glioma
treatment centered on the regulation of Hsp expression by Heat Shock Factors [264].

These findings point the way for future research aiming at finding and producing miRNAs and
miRNA-mimic molecules targeting Hsps in brain tumors. Thus, EVs and miRNA and chaperones in their
cargo have potential not only in diagnosis and patient monitoring but also for brain cancer treatment.
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