
applied  
sciences

Article

Towards Semi-Automatic Generation of a Steady
State Digital Twin of a Brownfield Process Plant

Seppo Sierla 1 , Lotta Sorsamäki 2, Mohammad Azangoo 1,* , Antti Villberg 3,
Eemeli Hytönen 2 and Valeriy Vyatkin 1,4

1 Department of Electrical Engineering and Automation, Aalto University, 00076 Aalto, Finland;
Seppo.Sierla@aalto.fi (S.S.); Valeriy.Vyatkin@aalto.fi (V.V.)

2 VTT Technical Research Centre of Finland Ltd., 02044 Espoo, Finland; Lotta.Sorsamaki@vtt.fi (L.S.);
Eemeli.Hytonen@vtt.fi (E.H.)

3 Semantum Oy, 02150 Espoo, Finland; Antti.villberg@semantum.fi
4 Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology,

97187 Luleå, Sweden; valeriy.vyatkin@ltu.se
* Correspondence: Mohammad.azangoo@aalto.fi

Received: 26 August 2020; Accepted: 1 October 2020; Published: 5 October 2020
����������
�������

Featured Application: A laboratory water heating and pressurizing process is used as a case study
to demonstrate the proposed methodology for digital twin generation.

Abstract: Researchers have proposed various models for assessing design alternatives for process
plant retrofits. Due to the considerable engineering effort involved, no such models exist for the
great majority of brownfield process plants, which have been in operation for years or decades.
This article proposes a semi-automatic methodology for generating a digital twin of a brownfield plant.
The methodology consists of: (1) extracting information from piping and instrumentation diagrams,
(2) converting the information to a graph format, (3) applying graph algorithms to preprocess the
graph, (4) generating a simulation model from the graph, (5) performing manual expert editing
of the generated model, (6) configuring the calculations done by simulation model elements and
(7) parameterizing the simulation model according to recent process measurements in order to
obtain a digital twin. Since previous work exists for steps (1–2), this article focuses on defining
the methodology for (3–5) and demonstrating it on a laboratory process. A discussion is provided
for (6–7). The result of the case study was that only few manual edits needed to be made to the
automatically generated simulation model. The paper is concluded with an assessment of open issues
and topics of further research for this 7-step methodology.

Keywords: digital twin; industrial process; steady state simulation; directed graph; piping and
instrumentation diagram; Balas®

1. Introduction

Industrial process plants in sectors such as oil & gas, chemical, pulp & paper, power & heat,
mineral processing, and water supply management have lifecycles of several decades. Retrofits offer
a large potential for reductions in operating costs [1], energy consumption [2], CO2 emissions [3],
freshwater consumption [4], and environmental pollution [5]. The said authors proposed various
kinds of models for assessing these reductions at design phase. However, no such models exist for the
great majority of brownfield process plants, due to the considerable engineering effort involved [6].
In this article a brownfield is defined as an operating plant, which has existing physical structures and
legacy software systems. The plant design information at a brownfield plant is generally not in digital
format [7].

Appl. Sci. 2020, 10, 6959; doi:10.3390/app10196959 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-0402-315X
https://orcid.org/0000-0001-9789-1126
http://dx.doi.org/10.3390/app10196959
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/19/6959?type=check_update&version=2


Appl. Sci. 2020, 10, 6959 2 of 21

A digital twin is a special kind of plant model that has been synchronized with the physical process
using recent sensor information. Thus, a digital twin would be especially suited for designing retrofits
for brownfield plants that have been in operation for a long time. The following requirements are
identified for the digital twin:

1. It accurately captures aspects of the plant relevant to the retrofit
2. It can be generated from source information commonly available at brownfield plants
3. Minimal manual engineering effort should be involved

Despite much recent research on digital twins, there is a lack of research addressing these
requirements. Numerous definitions for digital twins have been proposed. An experimentable digital
twin, based on a simulation model of the plant, is suited for assessing impacts of a retrofit [8].
Simulation approaches for industrial process plants can be categorized into steady state and dynamic.
Dynamic simulation has the special capability of determining how the process state changes over
time in response to an event such as the closing of a valve or a setpoint change. Such capabilities
are essential for investigating modernization of automation systems. A dynamic simulation model
can be extended to an experimentable digital twin through tracking approaches that synchronize the
simulation model with the process state measured by sensors [9]. Essential source information for
generating a high-fidelity dynamic simulation model includes pipeline routing details, which are used
to determine pressure head losses [10]. If such information is available, for example from 3D CAD
models, a dynamic simulation model can be automatically generated [10], and it can be extended to an
experimentable digital twin with tracking simulation [11].

However, such source information is generally not available for brownfield plants [7,12]. Point
clouds from 3D scanning of industrial plants support use cases such as detection of whether a factory
layout is collision free [13], but this does not capture essential information for creating a dynamic
simulation model, namely individual components and their connections. Thus, the focus of this
article is experimentable digital twins based on steady state simulation models. Such twins could
be used for supporting the operators in their daily decision-making or the management in strategic
decision-making [14]. These twins may also be used for “what if”-studies, i.e., for the assessment
of retrofits involving physical process configuration changes (e.g., process stream re-arrangements;
removing, replacing or installing a new process equipment such as a purification step or heat recovery
system) or changes in the key process parameters (e.g., temperature, consistency). As an outcome,
the digital twin would evaluate the impact of design alternatives for the retrofit in terms of the process’s
fresh water, energy, chemical or utility consumption. It could also be used to determine the chemical
state of the process by modelling the pH, COD levels (Chemical Oxygen Demand), TSS levels (Total
Suspended Solids) or trace component amounts in the process streams. A steady state digital twin
would be a powerful tool to improve understanding of the process, investigate abnormal situations in
the plant or train process operators [14].

This article is structured as follows. Section 2 reviews related research in the fields of steady
state simulation, digital twin research in the context of brownfield plants, and automatic generation
of digital twins. Section 3 presents an overview of a methodology for generating steady state digital
twins, and positions prior research and the contribution of this article in the context of the overview
methodology. Further, Section 3 details the contribution in general terms as an object-oriented design.
Section 4 applies the proposed methodology to a case study, a laboratory process. Section 5 summarizes
the results as the key findings from the case study. Section 6 discusses the generalizability of the
findings for other case studies, other steady state simulation tools, and to plants with varying degrees
of digitally available engineering design information. Section 7 concludes the paper and identifies
topics for further research.



Appl. Sci. 2020, 10, 6959 3 of 21

2. Literature Review

2.1. Steady State Simulation

Steady state simulation is based on first principles such as conservation laws, phase equilibria,
heat and mass transfer, and reaction kinetics. Steady state simulation focuses on stable operating
conditions. Unlike dynamic simulation, it does not consider the time dependency of the process [14,15],
so it assumes that variables are constant with respect to time. In steady state, there is no accumulation of
mass or energy within the system, so the overall mass and energy input equals its output. Steady state
simulation is typically conducted in the early-state design of plant wide systems or process departments.
Steady state modeling and simulation has been widely used in the industry for establishing mass and
energy balances, evaluating and improving the process performance, process design, plant equipment
sizing, and process optimization [14–18]. Inputs to steady state models are pressures, temperatures,
flows, and compositions; outputs are equipment sizing and process optimizations [14].

The computational complexity increases considerably from steady state to dynamic simulation.
Thus, dynamic simulation model building requires significant additional engineering effort to determine
the model parameters [18,19]. However, since the steady state simulation model is a basis for the
development of a dynamic model [18], dynamic modelling can be considered only later when more
understanding of the intended commercial implementation of the technology is available.

The level of detail in steady state simulation studies varies from small-scale chemical reactions
to mill-wide process calculations in many fields of industry. In the pulp and paper industry, steady
state simulation has been applied to optimize water consumption [20,21], minimize energy and utility
consumption [22–24], and evaluate the chemical state of the process [25,26]. Kangas et al. [27] defined a
steady state simulation model of a kraft pulp mill and evaluated the economic feasibility of the process.
In the field of biorefineries, steady state simulation has been used for process modelling and evaluating
the economic performance of biomethane [28], bioethanol [29], biodiesel [30], and renewable diesel
production [31]. Barbosa et al. [32] used steady state simulation to study carbon capture and utilization
opportunities in a sugarcane biorefinery. Hytönen and Stuart [33] used plant-wide steady state process
simulation models as part of a methodology for early stage screening of forest biorefinery retrofit
scenarios. Steady state simulation has also been used in numerous other process and/or economic
performance studies in the field of wastewater purification [34], chemical production [18,35,36], mineral
processing [37] and food industry [38,39].

2.2. Digital Twins for Brownfield Process Plants

A digital twin is an online replica of a physical system. Twins generally have a capability for
synchronization with current sensor values of the system and in some cases the twin may impact the
physical system through actuation [40]. Most of the research on digital plants considers greenfield
sites with extensive information available in a digital format (e.g., [41–44]). However, the advantages
of the digital twins are not limited to the greenfield plant. They can also improve brownfield plants
economically, politically and environmentally [45]. The research on digital twins for brownfield process
plants is limited and scattered, focusing on diverse topics such as evolving a manufacturing system
with changing product requirements [46], determining whether a layout is collision free [13], upgrading
control and data acquisition systems to Industrial Internet [47] and extracting knowledge from legacy
documentation of industrial plants [12,48].

Sorensen et al. [46] present a digital platform of a brownfield manufacturing system which can
handle changing product requirements. Shellshear et al. [13] use point cloud information obtained
from 3D scanning of the factory floor to update information about collision free spaces. The results
obtained in [49] show the benefits of using data driven approaches to generate a self-aware digital
twin for process plants. It presents a method based on data-driven modelling that performs Big
data analytics on process history data to improve process control efficiency. Makarov et al. [50]
introduce a three step modelling process for a manufacturing system digital twin: the development of



Appl. Sci. 2020, 10, 6959 4 of 21

SysML (Systems Modeling Language) diagrams, using AnyLogic as a tool for simulation modeling,
and communicating with actual systems through the MES (Manufacturing Execution System). In a
recent paper by Kychkin et al. [51], a method for digital twin implementation based on estimation of
simulation model parameters and calculation of control signals for a dynamic ventilation system of
underground mines was discussed. By considering the dynamics of air distribution and changes in
environmental parameters, the proposed algorithms can improve safety and energy saving in mines,
in which the ventilation process consumes from 30 to 50 percent of all company electricity.

2.3. Automatic Generation of Digital Twins

The research on automatic generation of digital twins has been motivated by several use cases.
The closest state-of-the-art works and their differences are analyzed as follows. A dynamic digital
twin, as defined in Section 1, has been generated from 3D CAD information for the purpose of using
process state values from the twin as soft sensors [11]; the approach is not applicable to brownfield
plants for which 3D CAD models are generally not available. A qualitative digital twin of the plant has
been generated for co-simulating control software against the plant in order to detect logic errors in the
virtual commissioning phase [12,48]. A digital twin has been generated for hardware- in- the- loop
testing of control software [52], another activity that is not applicable in the context of steady state
models that does not capture time-related behavior. A digital twin has been generated for the analysis
of bottlenecks [53]; out of all the works reviewed in this section, this is the only one that is relevant
to the specific purpose of the research presented in this paper, which is the design and validation
of retrofits. However, the bottleneck analysis was performed specifically in the context of discrete
manufacturing systems, so the approach is not applicable to the continuous processes addressed in this
paper. Our main contribution over the state-of-the-art is to address the lack of research on automatic
generation of digital twins, or even simulation models, that are applicable for the design and validation
of retrofits to process plants.

Nowadays, a limited number of the most modern plants have digital, machine-readable design
information available. The information for other plants is mostly accessible in printed papers, static
PDFs, and other human-readable formats [7]. To limit the engineering cost of digital twin development
for brownfield plants, it is important to have a fully or at least partially automatic solution for simulation
model creation from the available plant information.

There are different available sources of information at process plants for the automatic generation
of a digital display [11], such as datasheets, Process Flow Diagram (PFD) and Piping & Instrumentation
Diagram (P&ID) diagrams, IO lists, 3D plant models and logic diagrams. The required information for
simulation model creation can be extracted from these documents. The source information for the
digital twin creation is not limited to design and engineering documents; for example, in [53] it was
shown that a low fidelity digital twin has been generated automatically from high level requirements
of the initial design phase of the project. Ref. [11] presents an automatic generation of simulation based
digital twins for industrial process plants from 3D models. Sierla et al. [6] present an automatic solution
to create the abstract graph model of the process system from a digital P&ID and a 3D CAD model of
the system. This work was continued towards integrating the P&ID and CAD information by first
converting the extracted information to the same level of abstraction [54]. Similarly, [55] introduces
an automatic approach for matching 2D design documents and 3D scanned models of the process
system by creating attribute graphs, calculating the level of similarity between graphs and merging the
extracted results. Rantala et al. [56] use graph matching techniques to empower plant design engineers
to reuse design information from existing process plants.

The digital twin is not the only use case for automatic model generation. For example, Son et al. [57]
present a general automatic solution reconstruction of an as-built 3D model of a brownfield process
plant from 3D laser-scan data, a 3D CAD database, and P&ID documents. An automatic solution for
extracting information from laser-scan data to detect straight pipes, elbows, and tee pipes is presented
in [58] for generating an as-built 3D pipeline model. However, there is a lack of work on using



Appl. Sci. 2020, 10, 6959 5 of 21

laser-scans as source information for experimentable digital twins. Further, it cannot be assumed that
3D CAD information is available for brownfield plants. Our use of steady state simulation models as
the basis for experimentable digital twins simplifies the problem of obtaining source information: as is
discussed in Section 3, a P&ID and access to recent process history can be sufficient source information
for digital twins that are useful for the needs of retrofit projects.

3. Proposed Methodology

3.1. Methodology Overview

Figure 1 shows a vision for a methodology for the semi-automatic generation of a steady state
digital twin for a brownfield process plant. The methodology consists of the following seven steps. Since
several research works exist for steps 1 and 2, this article proposes solutions for the remaining steps.

1. The main process design document that is generally available at a brownfield process plant is a
P&ID. Some leading P&ID CAD vendor’s tools are able to export P&IDs in a machine readable
format according to the standardized Proteus XML schema, but this capability is present only in
the most recent tool versions and is thus not applicable to brownfield plants [6,59]. In general, the
P&IDs at a brownfield plant are paper documents that have been scanned to pdf-format, so various
image recognition techniques are needed to extract information from them [12,48,60,61].

2. Graphs have emerged as an intermediate format for abstracting key information from a process
plant design [6,54–56]. The information that is relevant for building a steady state simulation
model is extracted from the digitalized P&ID into a directed graph, as described in [6]. If Proteus
XML is used as the digitalized P&ID format, the methodology will be able to support also
modern plants for which the P&ID could be exported directly into this format. However, if the
compatibility is not required, any proprietary format for a digitalized P&ID can be used as long
as the graph is generated according to the following guidelines. Process equipment such as tanks,
pumps, and valves are represented with nodes, and node labels capture the type of the component
as well as the tag. Flows are represented with directed edges between the components, and the
type of flow (e.g., water or broke) is captured by the edge label.

3. The graph should be transformed until it is at a level of abstraction in which the steady state
model can be generated by performing a one-to-one mapping from the graph nodes and edges to
the equipment and flows of a steady state model.

4. Simulation tool specific rules should be defined and implemented for generating a flowsheet of
the steady state model automatically from the graph generated in step 3. The rules should be
implemented by a custom software tool that writes its output into a format that can be imported
to the selected simulation tool.

5. A steady state modelling expert should manually finalize the flowsheet of the generated steady
state model, using his or her expert modelling knowledge that could not be formalized as rules in
step 4.

6. A steady state modelling expert should manually initialize the steady state simulation model by
defining the chemical components (i.e., water, pulp, air, steam, etc.) and selecting the calculation
modules for each process equipment using his or her expert modelling knowledge that could not
be formalized as rules in step 4. Further research could try to automate this step.

7. The selected calculation module defines the needed input values for parameterizing the process
equipment. The steady state modelling expert performs the parameterization manually. Further
research could try to automate this step. If the parameterization is performed according to recent
sensor data from the process, the steady state model may be considered as a digital twin.

This article is scoped as follows. Previous research exists for steps 1 and 2 as has been cited above.
This article will provide solutions for steps 3, 4, and 5 and apply them to a case study. Steps 6 and 7
will be addressed as further work in the final section of the article.



Appl. Sci. 2020, 10, 6959 6 of 21
Appl. Sci. 2020, 10, x 6 of 23 

Systems and documents
at a brownfield site

Machine readable (XML) P&ID 1. Digitize
brownfield

P&ID2. Extract information to graph

4. Generate flowsheet of steady state simulation model

Steady
state digital

twin

7. Parameterization
according to recent

process history

6. Model initialization

5. Manual
finalization

TK100 Preheater
Tank

V102

P100

V203
TK200

Feedwater Tank

F100

V301 V303

V201

P200

V106 V104 TK400 Makeup
Water Tank

V101

V-105

LI200
LS200_L

LS300_L

PI300

LS300_H

TI300

S-6

LI400

LI100

TI100

LS100_HH

TK300
Boiler

History 
database

3. Graph
processing

 

Figure 1. Proposed methodology for the semi-automatic generation of a steady state digital twin for 

a brownfield plant. 

3.2. Graph processing 

This section presents algorithms for step 3 of the methodology in Section 3.1. Figure 2 shows a 

Unified Modeling Language (UML) class diagram of the graph representation of the information 

extracted from the digitalized P&ID. This methodology assumes that such a graph has been 

previously generated, e.g. according to the approach presented in [6]. 

Graph

Node

String id
String tag
String type

1*
nodes

1 source 1 target

Edge

String id
String type

1

*
edges

Nodes are generated for 
pieces of process equipment 

and instrumentation relevant 
for the steady state model

Directed edges represent 
flow between the nodes

 

Figure 2. UML class diagram of the graph representation of the information extracted from the 

digitalized P&ID. 

 

Figure 1. Proposed methodology for the semi-automatic generation of a steady state digital twin for a
brownfield plant.

3.2. Graph processing

This section presents algorithms for step 3 of the methodology in Section 3.1. Figure 2 shows
a Unified Modeling Language (UML) class diagram of the graph representation of the information
extracted from the digitalized P&ID. This methodology assumes that such a graph has been previously
generated, e.g., according to the approach presented in [6].

Appl. Sci. 2020, 10, x 6 of 23 

Systems and documents
at a brownfield site

Machine readable (XML) P&ID 1. Digitize
brownfield

P&ID2. Extract information to graph

4. Generate flowsheet of steady state simulation model

Steady
state digital

twin

7. Parameterization
according to recent

process history

6. Model initialization

5. Manual
finalization

TK100 Preheater
Tank

V102

P100

V203
TK200

Feedwater Tank

F100

V301 V303

V201

P200

V106 V104 TK400 Makeup
Water Tank

V101

V-105

LI200
LS200_L

LS300_L

PI300

LS300_H

TI300

S-6

LI400

LI100

TI100

LS100_HH

TK300
Boiler

History 
database

3. Graph
processing

 

Figure 1. Proposed methodology for the semi-automatic generation of a steady state digital twin for 

a brownfield plant. 

3.2. Graph processing 

This section presents algorithms for step 3 of the methodology in Section 3.1. Figure 2 shows a 

Unified Modeling Language (UML) class diagram of the graph representation of the information 

extracted from the digitalized P&ID. This methodology assumes that such a graph has been 

previously generated, e.g. according to the approach presented in [6]. 

Graph

Node

String id
String tag
String type

1*
nodes

1 source 1 target

Edge

String id
String type

1

*
edges

Nodes are generated for 
pieces of process equipment 

and instrumentation relevant 
for the steady state model

Directed edges represent 
flow between the nodes

 

Figure 2. UML class diagram of the graph representation of the information extracted from the 

digitalized P&ID. 

 

Figure 2. UML class diagram of the graph representation of the information extracted from the
digitalized P&ID.

Dynamic modelling captures the time dependency of the process; it predicts all the transient states
when the process moves from state A to state B [14]. Thus, the flowsheet of the dynamic simulation



Appl. Sci. 2020, 10, 6959 7 of 21

model is almost one-to-one with the P&ID including all the control loops with their control and binary
valves. Steady state modelling, on the other hand, assumes that all variables are constant in spite of
the ongoing process that tends to change them. Thus, the modelling of the binary valves of the control
loops is irrelevant and it should not be included in the steady state simulation model. Control valves,
on the other hand, are captured in the steady state simulation model to adjust the flows, temperatures,
pressures, consistencies, etc. of the steady state. Figure 3, UML activity diagram represenation of
an algorithm that removes binary valves from the intermediate graph representation of a process,
shows an algorithm for removing the binary valves present in the P&ID from the intermediate graph
presentation of the process. The algorithm iterates through all the nodes in the graph and uses node
types to identify the binary valves. For each binary valve, the algorithm iterates through all of the
edges in the graph to find the edges representing the outgoing and incoming flows of the valve,
‘eDownstream’ and ‘eUpstream’, respectively, in Figure 3. UML activity diagram represenation of
an algorithm that removes binary valves from the intermediate graph representation of a process.
The node and ‘eDownstream’ are removed. The target of ‘eUpstream’ is changed to the target of
‘eDownstream’.

Appl. Sci. 2020, 10, x 7 of 23 

Dynamic modelling captures the time dependency of the process; it predicts all the transient 

states when the process moves from state A to state B [14]. Thus, the flowsheet of the dynamic 

simulation model is almost one-to-one with the P&ID including all the control loops with their control 

and binary valves. Steady state modelling, on the other hand, assumes that all variables are constant 

in spite of the ongoing process that tends to change them. Thus, the modelling of the binary valves 

of the control loops is irrelevant and it should not be included in the steady state simulation model. 

Control valves, on the other hand, are captured in the steady state simulation model to adjust the 

flows, temperatures, pressures, consistencies, etc. of the steady state. Figure 3, UML activity diagram 

represenation of an algorithm that removes binary valves from the intermediate graph representation 

of a process, shows an algorithm for removing the binary valves present in the P&ID from the 

intermediate graph presentation of the process. The algorithm iterates through all the nodes in the 

graph and uses node types to identify the binary valves. For each binary valve, the algorithm iterates 

through all of the edges in the graph to find the edges representing the outgoing and incoming flows 

of the valve, ‘eDownstream’ and ‘eUpstream’, respectively, in Figure 3. UML activity diagram 

represenation of an algorithm that removes binary valves from the intermediate graph representation 

of a process. The node and ‘eDownstream’ are removed. The target of ‘eUpstream’ is changed to the 

target of ‘eDownstream’. 

Removal of binary valves and disconnected valves

iter:Iterator<Node> iter2:Iterator<Edge>

Node n = next()

hasNext()

n is a

valve

T

F

F

Edge e = next()

if(e.source.equals(n)) {

    eDownstream = e

}

if(e.target.equals(n)) {

    eUpstream = e

}

if(eUpstream == null OR

eDownstream == null) {

    disconnected = true

}

hasNext()

T

T

Edge eUpstream = null

Edge eDownstream = null

disconnected

iter.remove(n)

T
n is a

control

valve F
T

 eUpstream.target = eDownstream.target

iter2.remove(eDownstream)

F

This check causes the 

algorithm to ignore all 

control valves

This loop examines each 

node in the system

This check causes the 

algorithm to ignore any 

nodes that are not valves

If we reach this point, we know 

that we are looking at a valve. 

This loop examines all the flows in 

the system to identify the incoming 

and outgoing flows to the valve 

that we are currently looking at

If after going through all the valves we 

failed to find both an incoming and 

outgoing flow, we reasons that the valve is 

disconnected

 

Figure 3. UML activity diagram represenation of an algorithm that removes binary valves from the 

intermediate graph representation of a process. 

The binary valve removal algorithm in Figure 3 is relevant for all steady state simulation tools. 

In contrast, there are differences between how tools model tanks with internal heaters. In some tools, 

such as the tool used in our case study, the library of equipment symbols does not have a tank with 

an internal heater. In such cases, the tank with an internal heater can be modelled by adding the 

heater to the outgoing flow of the tank. Figure 4 shows an activity diagram for this purpose. The 

source information for this algorithm is the graph outputted by the algorithm in Figure 3, UML 

activity diagram represenation of an algorithm that removes binary valves from the intermediate 

graph representation of a process. The algorithm iterates through all nodes in the graph and looks 

for tanks with heaters (‘heater’ in Figure 4). For all such nodes, the algorithm iterates through all of 

the edges to find the outgoing edge. A node representing a heating element is added to the outgoing 

flow. 

Figure 3. UML activity diagram represenation of an algorithm that removes binary valves from the
intermediate graph representation of a process.

The binary valve removal algorithm in Figure 3 is relevant for all steady state simulation tools.
In contrast, there are differences between how tools model tanks with internal heaters. In some tools,
such as the tool used in our case study, the library of equipment symbols does not have a tank with an
internal heater. In such cases, the tank with an internal heater can be modelled by adding the heater
to the outgoing flow of the tank. Figure 4 shows an activity diagram for this purpose. The source
information for this algorithm is the graph outputted by the algorithm in Figure 3, UML activity
diagram represenation of an algorithm that removes binary valves from the intermediate graph
representation of a process. The algorithm iterates through all nodes in the graph and looks for tanks
with heaters (‘heater’ in Figure 4). For all such nodes, the algorithm iterates through all of the edges to
find the outgoing edge. A node representing a heating element is added to the outgoing flow.



Appl. Sci. 2020, 10, 6959 8 of 21

Appl. Sci. 2020, 10, x 8 of 23 

 

Figure 4. A UML activity diagram representation of an algorithm for manipulating heating elements 

in the intermediate graph. 

3.3. Generating a Flowsheet of the Steady State Model 

This section presents rules for step 4 of the methodology in Section 3.1. The rules are applied to 

the intermediate graph outputted by the algorithm in Figure 4. The rules (Table 1) are valid for the 

selected steady state simulation tool, Balas®  (https://info.vttresearch.com/balas). Balas®  is a steady 

state simulation package for chemical processes with emphasis on pulp and paper, food processing 

and biochemical processes. If another simulation tool was selected, a new set of rules should be 

created to correspond with the symbols of that simulation tool. Figure 5 presents some symbols in 

Balas®  that are used to simulate different process equipment. Each symbol has one to several ports 

that are connected to either inlet or outlet streams. The implementation of the rules must ensure that 

each port of the symbol in the simulation tool is used at most once. 

 

Adding a heater to the outgoing stream of all tanks with heaters

iter:Iterator<Node> iter2:Iterator<Edge>

Node n = next()

hasNext()

n is a

heater

T

F

F

Edge outgoing = iter2.next()

bool found = (outgoing.source = n)

hasNext()

T

T

Edge eHeater = null

found

T
F

Node nHeater = new Node()

Add nHeater to graph

outgoing.source = nHeater

eHeater = new Edge()

Add eHeater to graph

eHeater.source = n

eHeater.target = nHeater

Figure 4. A UML activity diagram representation of an algorithm for manipulating heating elements in
the intermediate graph.

3.3. Generating a Flowsheet of the Steady State Model

This section presents rules for step 4 of the methodology in Section 3.1. The rules are applied to
the intermediate graph outputted by the algorithm in Figure 4. The rules (Table 1) are valid for the
selected steady state simulation tool, Balas® (https://info.vttresearch.com/balas). Balas® is a steady
state simulation package for chemical processes with emphasis on pulp and paper, food processing
and biochemical processes. If another simulation tool was selected, a new set of rules should be created
to correspond with the symbols of that simulation tool. Figure 5 presents some symbols in Balas®

that are used to simulate different process equipment. Each symbol has one to several ports that are
connected to either inlet or outlet streams. The implementation of the rules must ensure that each port
of the symbol in the simulation tool is used at most once.

The rules are realized according to the object-oriented paradigm. Figure 6 shows a UML class
diagram to capture these structures. Italics in the class diagram denote abstract classes and methods
(i.e., the ‘Component’ class and its methods), so all inheriting classes (i.e., ‘Pump’, ‘Heater’, ‘Splitter’,
‘Tank’ and ‘Valve’) must implement these methods. The implementation of these methods should
ensure that the ports are assigned according to the rules in Table 1 and that each port is used at
most once.

https://info.vttresearch.com/balas


Appl. Sci. 2020, 10, 6959 9 of 21

Table 1. Rules for a one-to-one mapping from an intermediate graph to a steady state model.

Graph Structure Mapping to Balas®

A node of type tank, with one outgoing edge and one
or more incoming edges

Replace all tank nodes with a symbol “MDTank#1” (See Figure 5a). Add
a stream from port#1 of symbol “Terminal in” (See Figure 5b) to port #2
of symbol “MDTank#1”. From port #1 of symbol “MDTank#1”, add a

stream to nowhere. Ports #3-#12 of the symbol “MDTank#1” can be used
either for feed or outlet.

A node of type valve, pump or heater with one
incoming and one outgoing edge

The relevant symbols are “Valve” (See Figure 5c), “Pump” (See
Figure 5d), “Heater/cooler#1” (See Figure 5e). For each of these symbols,

port #1 is for inlet and port #2 is for outlet.

A node of type tee with one incoming and two
outgoing edges

Replace tees with symbol “Splitter” (See Figure 5f) with port #3 for inlet
and ports #1 and #2 for outlet.Appl. Sci. 2020, 10, x 9 of 23 

 

Figure 5. Different symbols in the Balas®  simulation software for simulating process equipment. 

Table 1. Rules for a one-to-one mapping from an intermediate graph to a steady state model. 

Graph structure Mapping to Balas® 

A node of type tank, 

with one outgoing edge 

and one or more 

incoming edges 

Replace all tank nodes with a symbol “MDTank#1” (See Figure 5a). Add 

a stream from port#1 of symbol “Terminal in” (See Figure 5b) to port #2 

of symbol “MDTank#1”. From port #1 of symbol “MDTank#1”, add a 

stream to nowhere. Ports #3-#12 of the symbol “MDTank#1” can be used 

either for feed or outlet. 

A node of type valve, 

pump or heater with 

one incoming and one 

outgoing edge 

The relevant symbols are “Valve” (See Figure 5c), “Pump” (See Figure 

5d), “Heater/cooler#1” (See Figure 5e). For each of these symbols, port #1 

is for inlet and port #2 is for outlet. 

A node of type tee with 

one incoming and two 

outgoing edges 

Replace tees with symbol “Splitter” (See Figure 5f) with port #3 for inlet 

and ports #1 and #2 for outlet. 

 
The rules are realized according to the object-oriented paradigm. Figure 6 shows a UML class 

diagram to capture these structures. Italics in the class diagram denote abstract classes and methods 

(i.e. the ‘Component’ class and its methods), so all inheriting classes (i.e. ‘Pump’, ‘Heater’, ‘Splitter’, 

‘Tank’ and ‘Valve’) must implement these methods. The implementation of these methods should 

ensure that the ports are assigned according to the rules in Table 1 and that each port is used at most 

once. 

 

Figure 5. Different symbols in the Balas® simulation software for simulating process equipment.
Appl. Sci. 2020, 10, x 10 of 23 

Flow

Component

Port assignInflowPort()
Port assignOutflowPort()

Tank

Port assignInflowPort()
Port assignOutflowPort()

Port

int number
boolean connected
boolean directionIn

1*

1 sourcePort

1

1 targetPort

1

Valve

Port assignInflowPort()
Port assignOutflowPort()

Pump

Port assignInflowPort()
Port assignOutflowPort()

Heater

Port assignInflowPort()
Port assignOutflowPort()

Splitter

Port assignInflowPort()
Port assignOutflowPort()

1

targetComp

*

1

sourceComp

*

 

Figure 6. UML class diagram of the steady state model structure. 

The rules in Table 1 are implemented by algorithms that map the intermediate graph outputted 

by the algorithm in Figure 4 to the object model in Figure 6. The creation of the various types of 

components is trivial as the type label of the node is used to determine whether to create an object of 

type ‘Pump’, ‘Heater’, ‘Splitter’, ‘Tank’ or ‘Valve’. However, the connection of valves to the 

appropriate ports is not as straightforward. Figure 7 shows an algorithm for this purpose. The 

algorithm is general in the sense that changes are not required if more component types are added 

or if the port mapping rules are changed to meet the requirements of a specific steady state simulator. 

This generality was achieved by using abstraction and inheritance in Figure 6. Any changes are 

limited to the implementation of the methods ‘assignInflowPort()’ and ‘assignOutflowPort()’. 

 

Figure 6. UML class diagram of the steady state model structure.

The rules in Table 1 are implemented by algorithms that map the intermediate graph outputted by
the algorithm in Figure 4 to the object model in Figure 6. The creation of the various types of components
is trivial as the type label of the node is used to determine whether to create an object of type ‘Pump’,
‘Heater’, ‘Splitter’, ‘Tank’ or ‘Valve’. However, the connection of valves to the appropriate ports is
not as straightforward. Figure 7 shows an algorithm for this purpose. The algorithm is general in the



Appl. Sci. 2020, 10, 6959 10 of 21

sense that changes are not required if more component types are added or if the port mapping rules
are changed to meet the requirements of a specific steady state simulator. This generality was achieved
by using abstraction and inheritance in Figure 6. Any changes are limited to the implementation of the
methods ‘assignInflowPort()’ and ‘assignOutflowPort()’.

Appl. Sci. 2020, 10, x 11 of 23 

Create flows for steady state simulation model

iter:Iterator<Edge> :HashMap<String, Component> :Flow

Edge e = next()

hasNext()

T

F

source = get(e.source.id)

sourceComp = source

sourcePort = source.assignOutflowPort()

target = get(e.target.id)

targetComp = target

targetPort = target.assignInflowPort()

Figure 7. UML activity diagram representation of an algorithm that creates the flows and connects 

them to the correct ports according to the mapping rules in Table 1. 

3.4 Implementation of the Design 

The UML designs were implemented as follows in the Java programming language. The 

composition relation (line with a solid diamond ending) in the class diagrams was implemented with 

the Java Vector class. For example, the compositions in Figure 2 are implemented with a vector 

containing elements of type Node and Edge, i.e. Vector<Node> and Vector<Edge>. The iterator() method 

of these vectors are used to obtain the iterators Iterator<Node> and Iterator<Edge> in Figure 3. The 

triangular arrows in Figure 6 are generalization relationships. The algorithm in Figure 7 exploits the 

generalization, so that new component types, such as refiners, columns and reactors, can be added 

without changes to the algorithm. 

4. Case Study 

Aalto’s water process plant, which is depicted in Figure 8, consists of different process, electrical, 

instrumentation and automation components. It can be used for demonstrating various process 

scenarios and related automation solutions for research and educational purposes. The main task of 

the plant is to supply heated and pressurized water for a variable load. The return water is reused in 

a closed-circuit stream. Five main closed control loops are defined to adjust the level of water in the 

tanks and the temperature and pressure of the supplied load. 

Figure 7. UML activity diagram representation of an algorithm that creates the flows and connects
them to the correct ports according to the mapping rules in Table 1.

3.4. Implementation of the Design

The UML designs were implemented as follows in the Java programming language.
The composition relation (line with a solid diamond ending) in the class diagrams was implemented
with the Java Vector class. For example, the compositions in Figure 2 are implemented with a vector
containing elements of type Node and Edge, i.e., Vector<Node> and Vector<Edge>. The iterator()
method of these vectors are used to obtain the iterators Iterator<Node> and Iterator<Edge> in Figure 3.
The triangular arrows in Figure 6 are generalization relationships. The algorithm in Figure 7 exploits
the generalization, so that new component types, such as refiners, columns and reactors, can be added
without changes to the algorithm.

4. Case Study

Aalto’s water process plant, which is depicted in Figure 8, consists of different process, electrical,
instrumentation and automation components. It can be used for demonstrating various process
scenarios and related automation solutions for research and educational purposes. The main task of
the plant is to supply heated and pressurized water for a variable load. The return water is reused in a
closed-circuit stream. Five main closed control loops are defined to adjust the level of water in the
tanks and the temperature and pressure of the supplied load.

The first process component of the closed loop primary stream of the process plant is a Preheater
Tank (B-100), which receives the water that is returned from the Supplied Process. In the Preheater
Tank, the temperature can be adjusted to the desired temperature by using a heater (E-100), a copper
colored component in the bottom right tank in Figure 8. The Preheater Pump (P-100) transfers heated
water from the Preheater Tank to the Feedwater Tank (B-200). From there, the Feedwater Pump (P-200)



Appl. Sci. 2020, 10, 6959 11 of 21

pressurizes the water in the Boiler (B-300) according to a setpoint value, despite disturbances caused
by the Supplied Process. A makeup Stream compensates for the loss of water in the primary stream,
which occurs gradually over time due to evaporation from the open tanks.Appl. Sci. 2020, 10, x 12 of 23 

 

Figure 8. Aalto’s water process plant. 

The first process component of the closed loop primary stream of the process plant is a Preheater 

Tank (B-100), which receives the water that is returned from the Supplied Process. In the Preheater 

Tank, the temperature can be adjusted to the desired temperature by using a heater (E-100), a copper 

colored component in the bottom right tank in Figure 8. The Preheater Pump (P-100) transfers heated 

water from the Preheater Tank to the Feedwater Tank (B-200). From there, the Feedwater Pump 

(P- 200) pressurizes the water in the Boiler (B-300) according to a setpoint value, despite disturbances 

caused by the Supplied Process. A makeup Stream compensates for the loss of water in the primary 

stream, which occurs gradually over time due to evaporation from the open tanks. 

The operator can run the plant in manual or automatic mode; to provide an automatic operation 

interface, all the sensors and actuators are connected to a remote I/O system, which transfers data 

between the plant and a soft PLC implemented on a PC. By using OPC UA, the field and automation 

data can be sent to simulation software like Balas® , Simulink, and Apros. 

Figure 9 shows a P&ID of the case process. The P&ID was originally drawn in the SmartPlant 

P&ID tool but has been redrawn to reduce clutter. The P&ID was exported to Proteus XML using 

SmartPlant P&ID. The graph in Figure 10 was generated using the methodology in [6]. The graph 

was processed by the algorithms in Figure 3 and Figure 4. The results are shown in Figure 11 and 

Figure 12, respectively. 

 

Figure 8. Aalto’s water process plant.

The operator can run the plant in manual or automatic mode; to provide an automatic operation
interface, all the sensors and actuators are connected to a remote I/O system, which transfers data
between the plant and a soft PLC implemented on a PC. By using OPC UA, the field and automation
data can be sent to simulation software like Balas®, Simulink, and Apros.

Figure 9 shows a P&ID of the case process. The P&ID was originally drawn in the SmartPlant
P&ID tool but has been redrawn to reduce clutter. The P&ID was exported to Proteus XML using
SmartPlant P&ID. The graph in Figure 10 was generated using the methodology in [6]. The graph was
processed by the algorithms in Figures 3 and 4. The results are shown in Figures 11 and 12, respectively.

A flowsheet of the steady state model was generated from the graph in Figure 12 using the rules
defined in Table 1 and the algorithm in Figure 7. The resulting object model confirming to the class
diagram in Figure 6 was serialized to .csv format (Tables 2 and 3). It is visualized in Figure 13 to help
the reader verify that the port numbers and connection conform to the rules in Table 1.

The .csv output was imported to the Balas® steady state simulation tool, resulting in the model in
Figure 14. A custom importer plugin was created for a demonstration version of Balas® that is based on
Simantics Open operating system for modelling and simulation (https://www.simantics.org/). It uses a
graph database for storing simulation models and related data. Simantics provides a general-purpose
functional scripting language SCL that is capable of manipulating the models within the database.
SCL is also suitable for programming utility functionality on top of released simulation tool products.
This version of Balas® includes an IDE for developing and testing SCL-based plugins within the

https://www.simantics.org/


Appl. Sci. 2020, 10, 6959 12 of 21

simulator environment. Using SCL APIs for Balas®, a translator function was created that takes as input
.csv files and creates corresponding Balas® model structures defined with flowsheet graphics. The
importer plugin can in the future be extended to implement automation of steps 6–7 of the methodology.Appl. Sci. 2020, 10, x 13 of 23 

P-100

P-200

B-400

B-300

B-200

B-100

 

Figure 9. P&ID of the case process. 

 

 

Figure 10. Graph representation of the information extracted from the digitalized P&ID. 

 

N26

N15

I4

E2
B-300

E4
P-200

E3
B-200

E6
P-100

E0
B-400

Tee Tank

N27

Ctrl
valvePump

Open 
tank

Tank 
with 

heater

E1
B-100

I1

N3
N41

I12 N30 N29

I0

N0
I20

N47

N49

N18

I5N14N12

Binary
valve

Figure 9. P&ID of the case process.

Appl. Sci. 2020, 10, x 13 of 23 

P-100

P-200

B-400

B-300

B-200

B-100

 

Figure 9. P&ID of the case process. 

 

 

Figure 10. Graph representation of the information extracted from the digitalized P&ID. 

 

N26

N15

I4

E2
B-300

E4
P-200

E3
B-200

E6
P-100

E0
B-400

Tee Tank

N27

Ctrl
valvePump

Open 
tank

Tank 
with 

heater

E1
B-100

I1

N3
N41

I12 N30 N29

I0

N0
I20

N47

N49

N18

I5N14N12

Binary
valve

Figure 10. Graph representation of the information extracted from the digitalized P&ID.

Step 5 of the methodology in Section 3.1 involves a modeler making manual finalizations to the
model in Figure 14 according to expert modelling knowledge that could not be captured as generally
valid rules, such as the ones in Table 1. In the selected simulation tool, i.e., Balas®, there are two
different kind of calculation modules available for simulating a normal tank.

The more complicated calculation module can be used to simulate a storage tank with several
inflows and outflows, an overflow, and a makeup stream. This calculation module is used for simulating
buffer tanks. During the simulated steady state, this buffer tank constantly provides a fixed outflow
requested by the receiving module located after the buffer tank. If the required amount of flow is not
available, the buffer tank provides the missing part through the makeup stream (port #2). The makeup
stream may be connected to another tank or e.g., to the freshwater system. If the inflows of the buffer



Appl. Sci. 2020, 10, 6959 13 of 21

tank exceed the required outflow, the surplus is led to the overflow stream (port #1) which may be
connected to another tank or alternatively to the drain. In the case example, the buffer tanks “B400”
and “B100” are simulated using this calculation module. The case process is initially filled up with
fresh tap water through the makeup stream (“Makeup1”) of the makeup tank “B400”. Also, if there are
any leaks in the system, the makeup flow to cover the leaks is taken from the tap water line (“Water
in”). The valve “FCV102” is the receiving module that requests a specific flow from the tank “B100”.
If the inflow to the tank “B100” from the tank “B300” through the valve “PCV501” is not sufficient,
the tank “B100” requests makeup from the makeup tank “B400”, and not from the fresh water system
(“Makeup source 2”), as simulated in Figure 12. This change of the makeup stream source was done
manually based on the expertise of the modeler.Appl. Sci. 2020, 10, x 14 of 23 

 

Figure 11. The result of processing the graph in Figure 10 with the algorithm in Figure 3. All binary 

valves are removed. 

 

 

Figure 12. The result of processing the graph in Figure 11 with the algorithm in Figure 4. The tank 

with an internal heater is presented by adding the heater to the outgoing flow of the tank. 

A flowsheet of the steady state model was generated from the graph in Figure 12 using the rules 

defined in Table 1 and the algorithm in Figure 7. The resulting object model confirming to the class 

diagram in Figure 6 was serialized to .csv format (Table 2 and Table 3). It is visualized in Figure 13 to 

help the reader verify that the port numbers and connection conform to the rules in Table 1. 

Table 2. Components (i.e. symbol in Balas® ) of the steady state model 

NodeName Symbol 

B-400 MDTank#1 

Source1 Terminal in 

B-100 MDTank#1 

Source2 Terminal in 

B-300 MDTank#1 

Source3 Terminal in 

N26

N15

I4

E2
B-300

E4
P-200

E3
B-200

E6
P-100

E0
B-400

Tee Tank

N27

Ctrl
valvePump

Open 
tank

Tank 
with 

heater

E1
B-100

N26

N15

I4

E2
B-300

E4
P-200

E3
B-200

E6
P-100

E0
B-400

Tee Tank

N27

Ctrl
valvePump

Open 
tank

E-100

Heater

E1
B-100

Figure 11. The result of processing the graph in Figure 10 with the algorithm in Figure 3. All binary
valves are removed.

Appl. Sci. 2020, 10, x 14 of 23 

 

Figure 11. The result of processing the graph in Figure 10 with the algorithm in Figure 3. All binary 

valves are removed. 

 

 

Figure 12. The result of processing the graph in Figure 11 with the algorithm in Figure 4. The tank 

with an internal heater is presented by adding the heater to the outgoing flow of the tank. 

A flowsheet of the steady state model was generated from the graph in Figure 12 using the rules 

defined in Table 1 and the algorithm in Figure 7. The resulting object model confirming to the class 

diagram in Figure 6 was serialized to .csv format (Table 2 and Table 3). It is visualized in Figure 13 to 

help the reader verify that the port numbers and connection conform to the rules in Table 1. 

Table 2. Components (i.e. symbol in Balas® ) of the steady state model 

NodeName Symbol 

B-400 MDTank#1 

Source1 Terminal in 

B-100 MDTank#1 

Source2 Terminal in 

B-300 MDTank#1 

Source3 Terminal in 

N26

N15

I4

E2
B-300

E4
P-200

E3
B-200

E6
P-100

E0
B-400

Tee Tank

N27

Ctrl
valvePump

Open 
tank

Tank 
with 

heater

E1
B-100

N26

N15

I4

E2
B-300

E4
P-200

E3
B-200

E6
P-100

E0
B-400

Tee Tank

N27

Ctrl
valvePump

Open 
tank

E-100

Heater

E1
B-100

Figure 12. The result of processing the graph in Figure 11 with the algorithm in Figure 4. The tank
with an internal heater is presented by adding the heater to the outgoing flow of the tank.



Appl. Sci. 2020, 10, 6959 14 of 21

Table 2. Components (i.e., symbol in Balas®) of the steady state model

NodeName Symbol

B-400 MDTank#1
Source1 Terminal in

B-100 MDTank#1
Source2 Terminal in

B-300 MDTank#1
Source3 Terminal in

B-200 MDTank#1
Source4 Terminal in

P-200 Pump
P-100 Pump

I4 Valve
ES-E100 Heater/cooler#1

N15 Splitter
N26 Splitter
N27 Valve

Table 3. Flows of the steady state model. The strings in ‘Source’ and ‘Target’ columns refer to symbol
names in the ‘NodeName’ column of Table 2.

Source SourcePort Target TargetPort

Source1 1 B-400 2
B-400 1 drain 0

Source2 1 B-100 2
B-100 1 drain 0

Source3 1 B-300 2
B-300 1 drain 0

Source4 1 B-200 2
B-200 1 drain 0
B-200 3 P-200 1
B-400 3 B-100 3

I4 2 B-100 4
N15 1 I4 1

B-300 3 N15 3
N15 2 B-200 4

P-100 2 N27 1
N27 2 N26 3
N26 1 B-200 5
N26 2 B-400 4

ES-E100 2 P-100 1
P-200 2 B-300 4
B-100 5 ES-E100 1

Appl. Sci. 2020, 10, x 15 of 23 

B-200 MDTank#1 

Source4 Terminal in 

P-200 Pump 

P-100 Pump 

I4 Valve 

ES-E100 Heater/cooler#1 

N15 Splitter 

N26 Splitter 

N27 Valve 

 
Table 3. Flows of the steady state model. The strings in ‘Source’ and ‘Target’ columns refer to 

symbol names in the ‘NodeName’ column of Table 2. 

Source SourcePort Target TargetPort 

Source1 1 B-400 2 

B-400 1 drain 0 

Source2 1 B-100 2 

B-100 1 drain 0 

Source3 1 B-300 2 

B-300 1 drain 0 

Source4 1 B-200 2 

B-200 1 drain 0 

B-200 3 P-200 1 

B-400 3 B-100 3 

I4 2 B-100 4 

N15 1 I4 1 

B-300 3 N15 3 

N15 2 B-200 4 

P-100 2 N27 1 

N27 2 N26 3 

N26 1 B-200 5 

N26 2 B-400 4 

ES-E100 2 P-100 1 

P-200 2 B-300 4 

B-100 5 ES-E100 1 

 

 

Figure 13. Visualization of the Balas®  model specified in Table 2 and Table 3. 

Source1
Terminal in
1

MDTANK#1
B-400

2
1

Source2
Terminal in

1

MDTANK#1
B-100

2 1

Source4
Terminal in

1

MDTANK#1
B-200

2
1

Source3
Terminal in 1

MDTANK#1
B-300

2 1

Pump
P-20013

3 3

Valve
I4

2

4

Splitter
N15

11

3

3

2

4

Pump
P-100

Valve
N27

2

1

Splitter
N26

2

3

1 52

4

Heater/cooler#1
ES-E100

2

1

2 4

5

1

Figure 13. Visualization of the Balas® model specified in Tables 2 and 3.



Appl. Sci. 2020, 10, 6959 15 of 21

Appl. Sci. 2020, 10, x 16 of 23 

The .csv output was imported to the Balas®  steady state simulation tool, resulting in the model 

in Figure 14. A custom importer plugin was created for a demonstration version of Balas®  that is 

based on Simantics Open operating system for modelling and simulation 

(https://www.simantics.org/). It uses a graph database for storing simulation models and related 

data. Simantics provides a general-purpose functional scripting language SCL that is capable of 

manipulating the models within the database. SCL is also suitable for programming utility 

functionality on top of released simulation tool products. This version of Balas®  includes an IDE for 

developing and testing SCL-based plugins within the simulator environment. Using SCL APIs for 

Balas® , a translator function was created that takes as input .csv files and creates corresponding 

Balas®  model structures defined with flowsheet graphics. The importer plugin can in the future be 

extended to implement automation of steps 6–7 of the methodology. 

 

 

Figure 14. Imported flowsheet of the steady state model. 

Step 5 of the methodology in Section 3.1 involves a modeler making manual finalizations to the 

model in Figure 14 according to expert modelling knowledge that could not be captured as generally 

valid rules, such as the ones in Table 1. In the selected simulation tool, i.e. Balas® , there are two 

different kind of calculation modules available for simulating a normal tank. 

The more complicated calculation module can be used to simulate a storage tank with several 

inflows and outflows, an overflow, and a makeup stream. This calculation module is used for 

simulating buffer tanks. During the simulated steady state, this buffer tank constantly provides a 

fixed outflow requested by the receiving module located after the buffer tank. If the required amount 

of flow is not available, the buffer tank provides the missing part through the makeup stream 

(port  #2). The makeup stream may be connected to another tank or e.g. to the freshwater system. If 

the inflows of the buffer tank exceed the required outflow, the surplus is led to the overflow stream 

(port #1) which may be connected to another tank or alternatively to the drain. In the case example, 

the buffer tanks “B400” and “B100” are simulated using this calculation module. The case process is 

initially filled up with fresh tap water through the makeup stream (“Makeup1”) of the makeup tank 

“B400”. Also, if there are any leaks in the system, the makeup flow to cover the leaks is taken from 

the tap water line (“Water in”). The valve “FCV102” is the receiving module that requests a specific 

flow from the tank “B100”. If the inflow to the tank “B100” from the tank “B300” through the valve 

“PCV501” is not sufficient, the tank “B100” requests makeup from the makeup tank “B400”, and not 

from the fresh water system (“Makeup source 2”), as simulated in Figure 12. This change of the 

makeup stream source was done manually based on the expertise of the modeler. 

The simplified calculation module can be used to simulate a storage tank with several inflows 

and one outflow. The module mixes the inflows together and provides one outflow. This calculation 

module is used for simulating tanks that during steady state do not have any makeup flow or 

overflow but rather only a flow-through. In the case process, during steady state, the tanks “B200” 

and “B300” are such flow-through tanks and can for simplicity be simulated using the more 

simplified calculation module. These changes of the tank calculation modules (as well as the visual 

symbol of the tank) for tanks “B200” and “B300” were done manually based on the expertise of the 

Figure 14. Imported flowsheet of the steady state model.

The simplified calculation module can be used to simulate a storage tank with several inflows
and one outflow. The module mixes the inflows together and provides one outflow. This calculation
module is used for simulating tanks that during steady state do not have any makeup flow or overflow
but rather only a flow-through. In the case process, during steady state, the tanks “B200” and “B300”
are such flow-through tanks and can for simplicity be simulated using the more simplified calculation
module. These changes of the tank calculation modules (as well as the visual symbol of the tank) for
tanks “B200” and “B300” were done manually based on the expertise of the modeler. Figure 15 shows
the result of the manual finalizations of the flowsheet presented in Figure 14.

Appl. Sci. 2020, 10, x 17 of 23 

modeler. Figure 15 shows the result of the manual finalizations of the flowsheet presented in Figure 

14. 

It is very common that the modeler changes the calculation modules for tanks (and the visual 

symbols presenting the tanks) during the iterative simulation work. In real processes, e.g. in paper 

machines, the water circuits are very complex connecting several tanks together. The makeup and 

overflow streams of the tanks are connected across. Some tanks may have a makeup stream from the 

freshwater system and some overflow streams directed to the sewer. To make a rule for such water 

circuits would require studying the entire circuit. This is time consuming. Instead, having a rule to 

model each tank as a complicated one and then later manually simplify the system is faster. 

 

 

Figure 15. Final flowsheet of the steady state model resulting from expert manual finalizations of the 

model in Figure 14. 

Step 6 of the methodology in Section 3.1 involves the initialization of the model by selecting the 

chemical components and the calculation modules for the symbols modelling the process equipment 

in Figure 15. 

The initialization of the model starts with selecting manually the chemical components present 

in the process. In the simulation model, the chemical compositions and the conditions (T,p) of each 

feed stream must be defined. The chemical compositions of other streams (internal and products) are 

calculated automatically when the model is run. In the case process, water was the only component 

present in the feed stream (“Water in”). 

After defining the chemical components, the initialization of the model continues with selecting 

the calculation modules. Each symbol may have one to more calculation modules, which are selected 

manually in the simulation tool from a drop-down list. For example, the symbol simulating a heater 

may have a calculation module for either defining the outlet temperature or the thermal duty of the 

heater. The symbol simulating a valve may have a module for either defining the outlet pressure or 

the flow through the valve. The splitters may have a module for either defining the true mass flow 

(kg/s) of the first outlet or the share of the flow to the first outlet. In the case process, the modeler 

selected the calculation modules manually based on his or her expertise. For example, the calculation 

module for the heater “E100” was selected to be “the defined outlet temperature”, since the 

temperature of the water circulating in the case process was known. The calculation module for the 

valve “FCV102” was selected to be “fixed flow”. This setpoint value sets the amount of the circulating 

water in the system. 

It is typical that during the iterative simulation work, the modeler changes the calculation 

modules of the symbols depending on what kind of input data (e.g. temperature, thermal duty, flow, 

etc.) is available. 

Step 7 of the methodology in Section 3.1 involves parameterization of the calculation modules 

for the symbols in Figure 15. The selected calculation module determines the set of input values that 

are needed to parametrize the module. Possible parameters are, for example, exit pressure (kPa), exit 

temperature (°C), flow (kg/s), pump efficiency (%) or share of flow to specified stream in a junction. 

Figure 15. Final flowsheet of the steady state model resulting from expert manual finalizations of the
model in Figure 14.

It is very common that the modeler changes the calculation modules for tanks (and the visual
symbols presenting the tanks) during the iterative simulation work. In real processes, e.g., in paper
machines, the water circuits are very complex connecting several tanks together. The makeup and
overflow streams of the tanks are connected across. Some tanks may have a makeup stream from the
freshwater system and some overflow streams directed to the sewer. To make a rule for such water
circuits would require studying the entire circuit. This is time consuming. Instead, having a rule to
model each tank as a complicated one and then later manually simplify the system is faster.

Step 6 of the methodology in Section 3.1 involves the initialization of the model by selecting the
chemical components and the calculation modules for the symbols modelling the process equipment
in Figure 15.

The initialization of the model starts with selecting manually the chemical components present
in the process. In the simulation model, the chemical compositions and the conditions (T,p) of each
feed stream must be defined. The chemical compositions of other streams (internal and products) are
calculated automatically when the model is run. In the case process, water was the only component
present in the feed stream (“Water in”).

After defining the chemical components, the initialization of the model continues with selecting
the calculation modules. Each symbol may have one to more calculation modules, which are selected
manually in the simulation tool from a drop-down list. For example, the symbol simulating a heater



Appl. Sci. 2020, 10, 6959 16 of 21

may have a calculation module for either defining the outlet temperature or the thermal duty of the
heater. The symbol simulating a valve may have a module for either defining the outlet pressure or the
flow through the valve. The splitters may have a module for either defining the true mass flow (kg/s)
of the first outlet or the share of the flow to the first outlet. In the case process, the modeler selected the
calculation modules manually based on his or her expertise. For example, the calculation module for
the heater “E100” was selected to be “the defined outlet temperature”, since the temperature of the
water circulating in the case process was known. The calculation module for the valve “FCV102” was
selected to be “fixed flow”. This setpoint value sets the amount of the circulating water in the system.

It is typical that during the iterative simulation work, the modeler changes the calculation modules
of the symbols depending on what kind of input data (e.g., temperature, thermal duty, flow, etc.)
is available.

Step 7 of the methodology in Section 3.1 involves parameterization of the calculation modules
for the symbols in Figure 15. The selected calculation module determines the set of input values that
are needed to parametrize the module. Possible parameters are, for example, exit pressure (kPa), exit
temperature (◦C), flow (kg/s), pump efficiency (%) or share of flow to specified stream in a junction.
At this point of the research work, the parametrization of the modules was done manually based on
the input data available for the case process.

After parametrization, the model can be finally run. Figure 16 shows the results of the simulation
model describing the case process. At steady state, there is water circulating through the main line of
the system, namely through tanks “B100”, “B200”, and “B300”. Since no leaks are assumed, both the
makeup streams have zero flow.

Appl. Sci. 2020, 10, x 18 of 23 

At this point of the research work, the parametrization of the modules was done manually based on 

the input data available for the case process. 

After parametrization, the model can be finally run. Figure 16 shows the results of the simulation 

model describing the case process. At steady state, there is water circulating through the main line of 

the system, namely through tanks “B100”, “B200”, and “B300”. Since no leaks are assumed, both the 

makeup streams have zero flow. 

 

 

Figure 16. Simulations results of the case process. 

5. Results 

The case study has served as a proof-of-concept (POC) to validate the proposed algorithms. The 

great majority of manual engineering work was automated with respect to generating the flowsheet 

of the steady state model. It was discovered that all of the work that could not be automated involved 

the application of expert reasoning that could not readily be captured as general-purpose rules or 

algorithms. Thus, it was found that the developed approach is not expected to replace the human 

expert, but rather has potential to increase the engineering productivity of the expert. The findings 

are insufficient for the purpose of drawing any conclusions about the correctness or extensibility of 

the proposed algorithms for industrial grade processes. However, the findings about the extent of 

engineering work that could be automated for this case study indicate that the algorithms are ready 

for further research in the context of significantly more complex processes. 

6. Discussion 

The target of the paper was to achieve a POC for the automatic generation of a steady state 

model. The case process selected for the POC is simple and contains only simple unit operations such 

as tanks, pumps, and valves that can be modelled in the selected simulation tool with one single 

symbol. As a result, the rules for a one-to-one mapping from an intermediate graph to a steady state 

model presented in Table 1 are very simple. For chemical processes with more complicated unit 

operations, such as distillation columns, evaporators or extractors, the rules are longer since a 

distillation column or a liquid–liquid extractor, for example, are modelled by combining several 

symbols in series or parallel instead of having only one symbol. Even though the rule is longer, the 

same approach is applicable as with the simpler rules presented in this paper. However, further 

research is needed to define a set of rules to cover the most common chemical unit operations. 

If the equipment is not available in the library of the simulation software, it can be modelled by 

creating a custom combination of equipment available in the library. In the case process, the rules are 

one-to-one mapping (from one piece of equipment to one symbol in the steady state model). In the 

said further research on chemical unit operations, several-to-one and/or one-to-several mapping rules 

are expected. Commercial simulation software may have an emphasis on a certain chemical process 

technology. For example, the simulation software AspenPlus is powerful for modelling unit 

operations based on phase separation whereas Balas is designed for modelling and simulating of 

paper processes. Thus, in AspenPlus there is no single symbol for a headbox of a paper machine and 

Figure 16. Simulations results of the case process.

5. Results

The case study has served as a proof-of-concept (POC) to validate the proposed algorithms.
The great majority of manual engineering work was automated with respect to generating the flowsheet
of the steady state model. It was discovered that all of the work that could not be automated involved
the application of expert reasoning that could not readily be captured as general-purpose rules or
algorithms. Thus, it was found that the developed approach is not expected to replace the human
expert, but rather has potential to increase the engineering productivity of the expert. The findings
are insufficient for the purpose of drawing any conclusions about the correctness or extensibility of
the proposed algorithms for industrial grade processes. However, the findings about the extent of
engineering work that could be automated for this case study indicate that the algorithms are ready for
further research in the context of significantly more complex processes.

6. Discussion

The target of the paper was to achieve a POC for the automatic generation of a steady state model.
The case process selected for the POC is simple and contains only simple unit operations such as tanks,
pumps, and valves that can be modelled in the selected simulation tool with one single symbol. As a
result, the rules for a one-to-one mapping from an intermediate graph to a steady state model presented



Appl. Sci. 2020, 10, 6959 17 of 21

in Table 1 are very simple. For chemical processes with more complicated unit operations, such as
distillation columns, evaporators or extractors, the rules are longer since a distillation column or a
liquid–liquid extractor, for example, are modelled by combining several symbols in series or parallel
instead of having only one symbol. Even though the rule is longer, the same approach is applicable as
with the simpler rules presented in this paper. However, further research is needed to define a set of
rules to cover the most common chemical unit operations.

If the equipment is not available in the library of the simulation software, it can be modelled by
creating a custom combination of equipment available in the library. In the case process, the rules
are one-to-one mapping (from one piece of equipment to one symbol in the steady state model).
In the said further research on chemical unit operations, several-to-one and/or one-to-several mapping
rules are expected. Commercial simulation software may have an emphasis on a certain chemical
process technology. For example, the simulation software AspenPlus is powerful for modelling unit
operations based on phase separation whereas Balas is designed for modelling and simulating of
paper processes. Thus, in AspenPlus there is no single symbol for a headbox of a paper machine and
vice versa, in Balas, there is no single symbol for a distillation column. The rule for describing any
unit operation is always simulation software specific. In the absence of standardization in the area of
steady state simulation tools, one direction for further research would be the development of rules for
simulator-to-simulator transfer.

The methodology presented in this paper assumes as its starting point that the relevant information
has been extracted from a P&ID into a graph format. For many brownfield plants, the P&ID is a raster
graphics image obtained by scanning a paper diagram. In newer plants a digital P&ID from a CAD
tool may be available. The latter scenario applies to our case study. Thus, the methodology is general
for all kinds of plants. However, it has been especially designed to work on the limited information
at a brownfield plant. In the case of raster graphics P&IDs, the quality of the results obtained by
this methodology depend additionally on the quality of the P&ID information extraction solution.
The availability of recent publications in this area by several research groups, referenced in bullet 1
of the numbered list in Section 3.1, is an indication that efforts are underway to further advance the
quality of information extraction from brownfield design documents.

7. Conclusion and Further Work

7.1. Limitations

Flowsheet generation is always a necessary step when building a model. The complexity
of generating a flowsheet does not depend on the complexity of the configuration of the process.
The flowsheet does not describe the chemical and physical phenomena occurring in the process
(i.e., model components and their reactions). The flowsheet describes the connection between the
process equipment (i.e., process configuration). The solution presented in this paper is focused on the
flowsheet generation. This article has not targeted the information needed to describe thermo-hydraulic
or chemical phenomena. To overcome these limitations, it is necessary to (i) select suitable calculation
modules, (ii) parametrize the model based on available data and information, and (iii) set the parameter
values to the model. The parameters include (i) unit operation input parameters, (ii) feed stream
composition and state, (iii) design specification, (iv) solver parameters, and (v) thermodynamic model
parametrization. With this information, the flowsheet is supplemented with adequate information of
the phenomena and it is possible to simulate the process with the model.

7.2. Summary of Results and Further Work

In this paper, a 7-step methodology was proposed for the generation of steady state digital twins
for process plants. Related works were positioned along the steps 1–2, so the focus of the paper was on
steps 3–7. The findings and topics of further work for these steps are discussed next.



Appl. Sci. 2020, 10, 6959 18 of 21

In our case study, the result of steps 3 and 4 was an automatically generated flowsheet of a steady
state model that required only minor manual changes by an expert modeler. Specifically, the following
changes were made to two of the tanks: changing the type of the tank to another type of tank from the
library of the steady state modelling tool and reconnecting the makeup flows of these tanks. It may
be concluded that the generation significantly reduced the manual modelling effort and that the
methodology is ready for further research on larger and more complicated processes.

The rationale for the manual changes done in step 5 was presented in detail. The modelling
decisions related to a makeup flow of a tank required the consideration of several parts of the process
upstream of the said tank. The general formulation of such modelling decisions as rules is a nontrivial
problem. However, one direction of further research would be the formulation and implementation of
such rules, and validating them across a wide range of case studies.

In step 6, the modelling decisions related to selecting calculation modules were discussed. It was
noted that the decisions depend on the properties of incoming flows, which in turn depend on how
other parts of the process were modelled. The automation of this work was left for further research.

In step 7, concrete examples of steady state model parameterization were given, and the case
model was parameterized manually based on known typical operating parameters of the process.
In further work, the developed toolchain could be integrated to the process automation system and its
history database in order to retrieve recent sensor values and to use them to automatically parameterize
the steady state model. It is proposed that such a capability for automatic parameterization would turn
a steady state simulation model to a steady state digital twin. It is notable that there is a lack of research
specifically about digital twins based on steady state models, so there is no established definition for a
steady state digital twin. Significant further research questions arise related to the development of
the automatic parameterization capability, so it is not only an industrial information integration task.
Knowledge about the recent operating conditions of the process is required to select and preprocess a
suitable time period of recent process history, in order to parameterize a steady state model that will be
relevant for answering the specific questions related to the unique retrofit project at hand.

Author Contributions: Conceptualization, S.S., L.S., and M.A.; Data curation, S.S. and L.S.; Formal analysis, S.S.
and L.S.; Funding acquisition, S.S. and E.H.; Investigation, S.S.; Methodology, S.S. and L.S.; Project administration,
S.S. and E.H.; Resources, S.S., L.S., and V.V.; Software, S.S. and A.V.; Supervision, S.S., E.H., and V.V.; Validation, S.S.,
L.S., and A.V.; Visualization, S.S. and M.A. Writing—original draft, S.S., L.S., M.A., and A.V.; Writing—review &
editing, S.S., L.S., M.A., E.H., and V.V. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Business Finland grants 3915/31/2019 and 4153/31/2019.

Conflicts of Interest: The authors declare no conflict of interest. The funder had no role in the design of the study;
in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish
the results.

References

1. Pinto-Varela, T.; Barbosa-Póvoa, A.P.F.D.; Carvalho, A. Sustainable batch process retrofit design under
uncertainty—An integrated methodology. Comput. Chem. Eng. 2017, 102, 226–237. [CrossRef]

2. Wang, B.; Klemeš, J.J.; Varbanov, P.S.; Chin, H.H.; Wang, Q.-W.; Zeng, M. Heat exchanger network retrofit
by a shifted retrofit thermodynamic grid diagram-based model and a two-stage approach. Energy 2020,
198, 117338. [CrossRef]

3. Min, K.-J.; Binns, M.; Oh, S.-Y.; Cha, H.-Y.; Kim, J.-K.; Yeo, Y.-K. Screening of site-wide retrofit options for the
minimization of CO2 emissions in process industries. Appl. Therm. Eng. 2015, 90, 335–344. [CrossRef]

4. Faria, D.C.; Bagajewicz, M.J. Profit-based grassroots design and retrofit of water networks in process plants.
Comput. Chem. Eng. 2009, 33, 436–453. [CrossRef]

5. Wen, M.; Wu, Q.; Li, G.; Wang, S.; Li, Z.; Tang, Y.; Xu, L.; Liu, T. Impact of ultra-low emission technology
retrofit on the mercury emissions and cross-media transfer in coal-fired power plants. J. Hazard. Mater. 2020,
396, 122729. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.compchemeng.2016.11.040
http://dx.doi.org/10.1016/j.energy.2020.117338
http://dx.doi.org/10.1016/j.applthermaleng.2015.07.008
http://dx.doi.org/10.1016/j.compchemeng.2008.10.005
http://dx.doi.org/10.1016/j.jhazmat.2020.122729
http://www.ncbi.nlm.nih.gov/pubmed/32353728


Appl. Sci. 2020, 10, 6959 19 of 21

6. Sierla, S.; Azangoo, M.; Vyatkin, V.; Fay, A.; Papakonstantinou, N. Integrating 2D and 3D Digital Plant
Information towards Automatic Generation of Digital Twins. In Proceedings of the 29th IEEE International
Symposium on Industrial Electronics, Delft, The Netherlands, 17–19 June 2020.

7. Chen, B.; Wan, J.; Shu, L.; Li, P.; Mukherjee, M.; Yin, B. Smart Factory of Industry 4.0: Key Technologies,
Application Case, and Challenges. IEEE Access 2018, 6, 6505–6519. [CrossRef]

8. Schluse, M.; Priggemeyer, M.; Atorf, L.; Roßmann, J.; Romann, J. Experimentable Digital Twins—Streamlining
Simulation-Based Systems Engineering for Industry 4.0. IEEE Trans. Ind. Inform. 2018, 14, 1722–1731.
[CrossRef]

9. Martinez, G.S.; Karhela, T.A.; Ruusu, R.J.; Sierla, S.; Vyatkin, V. An Integrated Implementation Methodology
of a Lifecycle-Wide Tracking Simulation Architecture. IEEE Access 2018, 6, 15391–15407. [CrossRef]

10. Martinez, G.S.; Sierla, S.; Karhela, T.; Lappalainen, J.; Vyatkin, V. Automatic Generation of a High-Fidelity
Dynamic Thermal-Hydraulic Process Simulation Model from a 3D Plant Model. IEEE Access 2018, 6,
45217–45232. [CrossRef]

11. Martínez, G.S.; Sierla, S.; Karhela, T.; Vyatkin, V. Automatic Generation of a Simulation-Based Digital Twin of
an Industrial Process Plant. In Proceedings of the 44th Annual Conference of the IEEE Industrial Electronics
Society IECON 2018, Washington, DC, USA, 21–23 October 2018; pp. 3084–3089. [CrossRef]

12. Arroyo, E.; Hoernicke, M.; Rodríguez, P.; Fay, A. Automatic derivation of qualitative plant simulation models
from legacy piping and instrumentation diagrams. Comput. Chem. Eng. 2016, 92, 112–132. [CrossRef]

13. Shellshear, E.; Berlin, R.; Carlson, J.S. Maximizing Smart Factory Systems by Incrementally Updating Point
Clouds. IEEE Comput. Graph. Appl. 2015, 35, 62–69. [CrossRef] [PubMed]

14. Emerson. Understanding and Applying Simulation Fidelity to the Digital Twin. White Paper 2018. Available
online: emerson.com/documents/automation/understanding-applying-simulation-fidelity-to-digital-twin-
en-5079366 (accessed on 2 October 2020).

15. Matzopoulos, M. Dynamic Process Modeling: Combining Models and Experimental Data to Solve Industrial
Problems. In Process Systems Engineering: Volume 7 Dynamic Process Modeling; Georgiadis, M.C., Banga, J.R.,
Pistikopoulos, E.N., Eds.; Wiley-VCH: Weinheim, Germany, 2010; pp. 1–33. [CrossRef]

16. Leiviskä, K. Simulation in Pulp and Paper Industry; University of Oulu, Control Engineering Laboratory: Oulu,
Finland, 1996; Report A, 2; pp. 1–58.

17. Blanco, A.; Dahlquist, E.; Kappen, J.; Manninen, J.; Negro, C.; Ritala, R. Use of modelling and simulation in
the pulp and paper industry. Math. Comput. Model. Dyn. Syst. 2009, 15, 409–423. [CrossRef]

18. Bezzo, F.; Bernardi, R.; Cremonese, G.; Finco, M.; Barolo, M. Using Process Simulators for Steady-State and
Dynamic Plant Analysis. Chem. Eng. Res. Des. 2004, 82, 499–512. [CrossRef]

19. Enaasen, N.; Tobiesen, A.; Kvamsdal, H.M.; Hillestad, M. Dynamic Modeling of the Solvent Regeneration
Part of a CO2 Capture Plant. Energy Procedia 2013, 37, 2058–2065. [CrossRef]

20. Mălut,an, T.; Mǎluţan, C. Simulation of Processes in Papermaking by WinGEMS Software. Environ. Eng.
Manag. J. 2013, 12, 1645–1647. [CrossRef]

21. Turon, X.; Labidi, J.; Paris, J. Simulation and optimisation of a high grade coated paper mill. J. Clean. Prod.
2005, 13, 1424–1433. [CrossRef]

22. Cardoso, M.; De Oliveira, K.D.; Costa, G.A.A.; Passos, M.L. Chemical process simulation for minimizing
energy consumption in pulp mills. Appl. Energy 2009, 86, 45–51. [CrossRef]

23. Atkins, M.; Morrison, A.; Walmsley, M.; Riley, J. WinGEMS Modelling and Pinch Analysis of a Paper Machine
for Utility Reduction. Appita J. 2010, 63, 281–287.

24. Jönsson, J.; Ruohonen, P.; Michel, G.; Berntsson, T. The potential for steam savings and implementation of
different biorefinery concepts in Scandinavian integrated TMP and paper mills. Appl. Therm. Eng. 2011, 31,
2107–2114. [CrossRef]

25. Clement, S.; Gouiller, A.; Ottenio, P.; Nivelon, S.; Huber, P.; Nortier, P. Speciation and supersaturation model
in papermaking streams. Process. Saf. Environ. Prot. 2011, 89, 67–73. [CrossRef]

26. Huber, P.; Nivelon, S.; Ottenio, P.; Nortier, P. Coupling a Chemical Reaction Engine with a Mass Flow Balance
Process Simulation for Scaling Management in Papermaking Process Waters. Ind. Eng. Chem. Res. 2012, 52,
421–429. [CrossRef]

27. Kangas, P.; Kaijaluoto, S.; Määttänen, M. Evaluation of future pulp mill concepts—Reference model of a
modern Nordic kraft pulp mill. Nord. Pulp Pap. Res. J. 2014, 29, 620–634. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2017.2783682
http://dx.doi.org/10.1109/TII.2018.2804917
http://dx.doi.org/10.1109/ACCESS.2018.2811845
http://dx.doi.org/10.1109/ACCESS.2018.2865206
http://dx.doi.org/10.1109/IECON.2018.8591464
http://dx.doi.org/10.1016/j.compchemeng.2016.04.040
http://dx.doi.org/10.1109/MCG.2015.38
http://www.ncbi.nlm.nih.gov/pubmed/25807508
emerson.com/documents/automation/understanding-applying-simulation-fidelity-to-digital-twin-en-5079366
emerson.com/documents/automation/understanding-applying-simulation-fidelity-to-digital-twin-en-5079366
http://dx.doi.org/10.1002/9783527631339.ch1
http://dx.doi.org/10.1080/13873950903375387
http://dx.doi.org/10.1205/026387604323050218
http://dx.doi.org/10.1016/j.egypro.2013.06.084
http://dx.doi.org/10.30638/eemj.2013.199
http://dx.doi.org/10.1016/j.jclepro.2005.05.024
http://dx.doi.org/10.1016/j.apenergy.2008.03.021
http://dx.doi.org/10.1016/j.applthermaleng.2011.03.001
http://dx.doi.org/10.1016/j.psep.2010.08.005
http://dx.doi.org/10.1021/ie300984y
http://dx.doi.org/10.3183/npprj-2014-29-04-p620-634


Appl. Sci. 2020, 10, 6959 20 of 21

28. Barbera, E.; Menegon, S.; Banzato, D.; D’Alpaos, C.; Bertucco, A. From biogas to biomethane: A process
simulation-based techno-economic comparison of different upgrading technologies in the Italian context.
Renew. Energy 2019, 135, 663–673. [CrossRef]

29. Kautto, J.; Realff, M.J.; Ragauskas, A.J. Design and simulation of an organosolv process for bioethanol
production. Biomass Convers. Biorefinery 2013, 3, 199–212. [CrossRef]

30. Søtoft, L.F.; Rong, B.-G.; Christensen, K.; Norddahl, B. Process simulation and economical evaluation of
enzymatic biodiesel production plant. Bioresour. Technol. 2010, 101, 5266–5274. [CrossRef]

31. Cheah, K.W.; Yusup, S.; Singh, H.K.G.; Uemura, Y.; Lam, H.L.; Wai, C.K. Process simulation and techno
economic analysis of renewable diesel production via catalytic decarboxylation of rubber seed oil—A case
study in Malaysia. J. Environ. Manag. 2017, 203, 950–961. [CrossRef]

32. Barbosa, L.D.S.N.S.; Hytönen, E.; Vainikka, P. Carbon mass balance in sugarcane biorefineries in Brazil for
evaluating carbon capture and utilization opportunities. Biomass Bioenergy 2017, 105, 351–363. [CrossRef]

33. Hytönen, E.; Stuart, P.R. Biofuel Production in an Integrated Forest Biorefinery—Technology Identification
under Uncertainty. J. Biobased Mater. Bioenergy 2010, 4, 58–67. [CrossRef]

34. Nabgan, B.; Abdullah, T.A.T.; Nabgan, W.; Ahmad, A.; Saeh, I.; Moghadamian, K. Process Simulation for
Removing Impurities from Wastewater Using Sour Water 2-Strippers system via Aspen Hysys. Chem. Prod.
Process. Model. 2016, 11, 315–321. [CrossRef]

35. Miltner, A.; Wukovits, W.; Pröll, T.; Friedl, A. Renewable hydrogen production: A technical evaluation based
on process simulation. J. Clean. Prod. 2010, 18, S51–S62. [CrossRef]

36. Zhang, Y.; Cruz, J.; Zhang, S.; Lou, H.H.; Benson, T.J. Process simulation and optimization of methanol
production coupled to tri-reforming process. Int. J. Hydrogen Energy 2013, 38, 13617–13630. [CrossRef]

37. Michaux, B.; Rudolph, M.; Reuter, M.A.; Reuter, M.A. Study of process water recirculation in a flotation
plant by means of process simulation. Miner. Eng. 2020, 148, 106181. [CrossRef]

38. McNulty, M.J.; Gleba, Y.; Tusé, D.; Hahn-Löbmann, S.; Giritch, A.; Nandi, S.; McDonald, K.A. Techno-economic
analysis of a plant-based platform for manufacturing antimicrobial proteins for food safety. Biotechnol. Prog.
2019, 36, e2896. [CrossRef] [PubMed]

39. Bon, J.; Clemente, G.; Váquiro, H.; Mulet, A. Simulation and optimization of milk pasteurization processes
using a general process simulator (ProSimPlus). Comput. Chem. Eng. 2010, 34, 414–420. [CrossRef]

40. Koulamas, C.; Kalogeras, A.P. Cyber-Physical Systems and Digital Twins in the Industrial Internet of Things.
Computer 2018, 51, 95–98. [CrossRef]

41. Tao, F.; Zhang, M. Digital Twin Shop-Floor: A New Shop-Floor Paradigm towards Smart Manufacturing.
IEEE Access 2017, 5, 20418–20427. [CrossRef]

42. Zhang, H.; Liu, Q.; Chen, X.; Zhang, D.; Leng, J. A Digital Twin-Based Approach for Designing and
Multi-Objective Optimization of Hollow Glass Production Line. IEEE Access 2017, 5, 26901–26911. [CrossRef]

43. Wan, J.; Tang, S.; Li, D.; Imran, M.; Zhang, C.; Liu, C.; Pang, Z. Reconfigurable Smart Factory for Drug
Packing in Healthcare Industry 4.0. IEEE Trans. Ind. Inform. 2018, 15, 507–516. [CrossRef]

44. Schmidt, N.; Lüder, A. The Flow and Reuse of Data: Capabilities of Automation ML in the Production
System Life Cycle. IEEE Ind. Electron. Mag. 2018, 12, 59–63. [CrossRef]

45. Hartmann, B.; Török, S.; Börcsök, E.; Groma, V.O. Multi-objective method for energy purpose redevelopment
of brownfield sites. J. Clean. Prod. 2014, 82, 202–212. [CrossRef]

46. Sørensen, D.; Brunoe, T.D.; Nielsen, K. Brownfield Development of Platforms for Changeable Manufacturing.
Procedia CIRP 2019, 81, 986–991. [CrossRef]

47. Illa, P.K.; Padhi, N. Practical Guide to Smart Factory Transition Using IoT, Big Data and Edge Analytics.
IEEE Access 2018, 6, 55162–55170. [CrossRef]

48. Barth, M.; Fay, A. Automated generation of simulation models for control code tests. Control. Eng. Pract.
2013, 21, 218–230. [CrossRef]

49. Stojanovic, N.; Milenovic, D. Data-driven Digital Twin approach for process optimization: An industry use
case. In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA,
10–13 December 2018; pp. 4202–4211.

50. Makarov, V.; Frolov, Y.; Parshina, I.S.; Ushakova, M. The Design Concept of Digital Twin. In Proceedings
of the 2019 Twelfth International Conference “Management of large-scale system development” (MLSD),
Moscow, Russia, 1–3 October 2019; pp. 1–4.

http://dx.doi.org/10.1016/j.renene.2018.12.052
http://dx.doi.org/10.1007/s13399-013-0074-6
http://dx.doi.org/10.1016/j.biortech.2010.01.130
http://dx.doi.org/10.1016/j.jenvman.2017.05.053
http://dx.doi.org/10.1016/j.biombioe.2017.07.015
http://dx.doi.org/10.1166/jbmb.2010.1066
http://dx.doi.org/10.1515/cppm-2016-0020
http://dx.doi.org/10.1016/j.jclepro.2010.05.024
http://dx.doi.org/10.1016/j.ijhydene.2013.08.009
http://dx.doi.org/10.1016/j.mineng.2020.106181
http://dx.doi.org/10.1002/btpr.2896
http://www.ncbi.nlm.nih.gov/pubmed/31443134
http://dx.doi.org/10.1016/j.compchemeng.2009.11.013
http://dx.doi.org/10.1109/MC.2018.2876181
http://dx.doi.org/10.1109/ACCESS.2017.2756069
http://dx.doi.org/10.1109/ACCESS.2017.2766453
http://dx.doi.org/10.1109/TII.2018.2843811
http://dx.doi.org/10.1109/MIE.2018.2818748
http://dx.doi.org/10.1016/j.jclepro.2014.07.002
http://dx.doi.org/10.1016/j.procir.2019.03.239
http://dx.doi.org/10.1109/ACCESS.2018.2872799
http://dx.doi.org/10.1016/j.conengprac.2012.09.022


Appl. Sci. 2020, 10, 6959 21 of 21

51. Kychkin, A.; Nikolaev, A. IoT-based Mine Ventilation Control System Architecture with Digital Twin.
In Proceedings of the 2020 International Conference on Industrial Engineering, Applications and
Manufacturing (ICIEAM), Sochi, Russia, 18–22 May 2020; pp. 1–5.

52. Barth, M.; Strube, M.; Fay, A.; Weber, P.; Greifeneder, J. Object-oriented engineering data exchange as a base
for automatic generation of simulation models. In Proceedings of the 2009 35th Annual Conference of IEEE
Industrial Electronics, Porto, Portugal, 3–5 November 2009; pp. 2465–2470.

53. Campos, J.G.; López, J.S.; Quiroga, J.I.A.; Seoane, A.M.E. Automatic generation of digital twin industrial
system from a high level specification. Procedia Manuf. 2019, 38, 1095–1102. [CrossRef]

54. Sierla, S.; Azangoo, M.; Vyatkin, V. Generating an Industrial Process Graph from 3D Pipe Routing Information.
In Proceedings of the 25th IEEE International Conference on Emerging Technologies and Factory Automation,
ETFA 2020, Vienna, Austria, 8–11 September 2020.

55. Wen, R.; Tang, W.; Su, Z. Topology based 2D engineering drawing and 3D model matching for process plant.
Graph. Model. 2017, 92, 1–15. [CrossRef]

56. Rantala, M.; Niemistö, H.; Karhela, T.; Sierla, S.; Vyatkin, V. Applying graph matching techniques to enhance
reuse of plant design information. Comput. Ind. 2019, 107, 81–98. [CrossRef]

57. Son, H.; Kim, C.; Kim, C. 3D reconstruction of as-built industrial instrumentation models from laser-scan
data and a 3D CAD database based on prior knowledge. Autom. Constr. 2015, 49, 193–200. [CrossRef]

58. Lee, J.; Son, H.; Kim, C.; Kim, C. Skeleton-based 3D reconstruction of as-built pipelines from laser-scan data.
Autom. Constr. 2013, 35, 199–207. [CrossRef]

59. Papakonstantinou, N.; Karttunen, J.; Sierla, S.; Vyatkin, V. Design to automation continuum for industrial
processes: ISO 15926–IEC 61131 versus an industrial case. In Proceedings of the 2019 24th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA), Zaragoza, Spain, 10–13 September
2019; pp. 1207–1212.

60. Sinha, A.; Bayer, J.; Bukhari, S.S. Table Localization and Field Value Extraction in Piping and Instrumentation
Diagram Images. In Proceedings of the 2019 International Conference on Document Analysis and Recognition
Workshops (ICDARW), Sydney, Australia, 20–25 September 2019; Volume 1, pp. 26–31.

61. Nurminen, J.K.; Rainio, K.; Numminen, J.P.; Syrjänen, T.; Paganus, N.; Honkoila, K. Object Detection in
Design Diagrams with Machine Learning. In Advances in Intelligent Systems and Computing; Springer: Cham,
Germany, 2020; Volume 977, pp. 27–36. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.promfg.2020.01.197
http://dx.doi.org/10.1016/j.gmod.2017.06.001
http://dx.doi.org/10.1016/j.compind.2019.01.005
http://dx.doi.org/10.1016/j.autcon.2014.08.007
http://dx.doi.org/10.1016/j.autcon.2013.05.009
http://dx.doi.org/10.1007/978-3-030-19738-4_4
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Literature Review 
	Steady State Simulation 
	Digital Twins for Brownfield Process Plants 
	Automatic Generation of Digital Twins 

	Proposed Methodology 
	Methodology Overview 
	Graph processing 
	Generating a Flowsheet of the Steady State Model 
	Implementation of the Design 

	Case Study 
	Results 
	Discussion 
	Conclusion and Further Work 
	Limitations 
	Summary of Results and Further Work 

	References

