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Abstract: In this work, we propose a novel priors-based attention neural network (PANN) for image
captioning, which aims at incorporating two kinds of priors, i.e., the probabilities being mentioned
for local region proposals (PBM priors) and part-of-speech clues for caption words (POS priors),
into a visual information extraction process at each word prediction. This work was inspired by the
intuitions that region proposals have different inherent probabilities for image captioning, and that
the POS clues bridge the word class (part-of-speech tag) with the categories of visual features.
We propose new methods to extract these two priors, in which the PBM priors are obtained by
computing the similarities between the caption feature vector and local feature vectors, while the
POS priors are predicated at each step of word generation by taking the hidden state of the decoder
as input. After that, these two kinds of priors are further incorporated into the PANN module
of the decoder to help the decoder extract more accurate visual information for the current word
generation. In our experiments, we qualitatively analyzed the proposed approach and quantitatively
evaluated several captioning schemes with our PANN on the MS-COCO dataset. Experimental results
demonstrate that our proposed method could achieve better performance as well as the effectiveness
of the proposed network for image captioning.

Keywords: image captioning; image understanding; probability-being-mentioned prior;
part-of-speech prior

1. Introduction

The task of image caption aims at automatically giving a natural language description for
an input image by using pre-designed algorithms operated on a computer [1,2], and this research
lies at the intersection of two currently prevalent research fields, i.e., Computer Vision (CV) and
Natural Language Process (NLP). These technologies have wide applications in our daily life,
such as giving descriptive captions for retrieval and image indexing, giving robots stronger
man–machine communication abilities, automatic video security monitoring, and helping people
with visual impairments by translating visual signals into information that could be communicated
through text-to-speech technology. Usually, caption models consist of two main parts, i.e., a encoder
and a decoder, in which the encoder employs convolutional neural networks (CNNs) to extract
visual features as image representation, and the decoder usually adopts a recurrent neural network
(RNN) [1,3–6] or an attention-based neural network (such as transformer networks) [7–11] to decode
visual features into flexible length sequences.
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Recently, caption models tend to choose structural representation, i.e., Scene Graph, for input
image features because of its advantage of being able to carry more detailed information. This is also
inspired by the achievements [12–14] made in the field of CV. In this way, it is possible to give
a caption with more image details that could be utilized for some specific design, for example,
for caption diversity. The Scene Graph consists of three kinds of heterogeneous image visual feature
sets (the object feature set, attribute feature set, and relation feature set), which are included as
nodes, with the connections of each node pair considered edges. However, it is a challenge to extract
corresponding visual information at each time step of word generation from various region proposals
and heterogeneous features. This is partly caused by the difference between the tasks of object detection
and image captioning. The authors of [15] proposed a method to incorporate three kinds of features
into a single feature vector for each region proposal according to the existing connections in the graph
so as to reduce the complexity, but some details may be lost in this method. In various studies [9,16–18],
each kind of visual feature type and region proposal was treated equally, and an attention mechanism
was applied to extract visual information. However, all of the above-mentioned works tried to compose
their query vector in their attention module based on the hidden state of the decoder or the previous
words while ignoring the PBM and POS priors’ impact for captioning, which could be used as a guide
for visual information extraction.

In order to leverage the above-mentioned issue, the goal of this work is to utilize the probabilities
being mentioned for region proposals (PBM priors) and part-of-speech of caption words (POS priors)
in the attention module, to help the decoder more correctly focus on relevant region proposals and
corresponding visual feature sets. The reasons that these two types of priors are helpful could be
summarized as follows: (1) the intrinsic PBM priors could provide external guidance for the language
module so that the decoder could better attend to these critical proposals with a lower chance of being
misled. This inherent characteristic hints that areas with a high PBM would have a higher chance of
being attended and mentioned, while the chance of the rest is relatively much lower. (2) The POS priors
are investigated to explore the relationship between the word class and the feature class, i.e., a word
with different POS tags could be directly derived from a corresponding feature set. For example,
the object words referring to the objects mentioned in the caption, such as “cat” or “car”, could be
obtained from the object visual feature set; the attribute words, such as “red” or “colorful”, could be
obtained from the attribute visual feature set; and the relation words, such as “standing” or “walking”,
could be obtained from the relation visual set. We take Figure 1 as an example to illustrate our intuition.
There are several bounding boxes on the image, which indicate the local region of corresponding
local visual features and are presented in different colors. When the decoder tries to generate the
caption word “soccer”, our proposed POS module would first compute its part-of-speech distribution;
this prior could pass the message that the next word is with high probability a noun to the decoder,
and thus the attention module should put more attention on the object regions (features) rather than
attribute and relation regions.

In our work, we propose a novel priors-based attention neural network (PANN) to incorporate
the PBM priors and POS priors in the decoder. The whole work could be divided into two stages,
i.e., the encoding stage and the decoding stage. In the encoding stage, the PBM priors for each region
proposal are obtained according to the similarities between the local feature vectors and caption vector,
in which the latter is extracted through the auxiliary multi-class multi-label task, while in the decoding
stage, the POS priors of caption words are first predicated by taking the hidden state of the decoder as
an input, and after that the PBM and POS priors are used in the weight calculation process in PANN.
Finally, the assembled feature vector is output for the next work generation.

The study’s contributions lie in the following three aspects:

• We propose a novel prior-based attention neural network, in which two kinds of priors,
i.e., the probability of being mentioned for region proposals (PBM priors) and part-of-speech
of caption words (POS priors), are incorporated to help the decoder extract more accurate visual
information at each step of word generation;
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• We propose new methods to obtain the PBM and POS priors, in which we obtain PBM priors
by computing the similarities between local feature vectors and the caption vector, while the
POS priors are obtained by predicting the reduced POS tags so as to connect to the categories of
visual features.

• We performed comprehensive evaluations on the image captioning benchmarks dataset
MS-COCO, demonstrating that the proposed method outperforms several current state-of-the-art
approaches in most metrics, and that the proposed priors-based attention neural network (PANN)
could improve previous approaches.

Figure 1. The above figure illustrates the impacts of the PBM and POS priors on the visual feature
extraction process. Specifically, PBM priors represent the latent probability being mentioned for each
local region in the same type of region set; for example, the blue region in the right sub-figure is
more likely to be mentioned than the other two blue regions shown in the left sub-figure. The POS
priors build the relationship between the word class and visual feature category, i.e., the object words,
adjective words, and relation words in the caption could be directly derived from object features,
attribute features (sharing the same region proposals with the object visual features), and relation
features (the union of two region proposals), respectively. For example, when the decoder tries to give
“soccer” the POS tag “object” and the PBM priors, the decoder would like to give more attention to the
object feature set, i.e., the blue bounding box area in the right sub-figure.

The paper is structured as follows: we introduce related works in Section 2. After that,
the extraction of the PBM priors, the POS priors, and the proposed PANN is discussed in Section 3.
Then, implementation details and experiments are discussed in Section 4. Finally, conclusions are
presented in Section 5.

2. Related Works

In this section, we will introduce related works that deal with three different aspects: attention
mechanism, part-of-speech predication, and semantic clues.

Attention Mechanism. When the RCNN (regional convolutional neural network) features or
scene graph are chosen as the input image representation, the attention mechanism is often adopted
in the decoder to attend the related regions and further extract currently needed visual information
for each word generation. These works could be sorted based on the attention network structure
and the attention weight calculation method. (1) Single layer vs. multi-layer (see, for example,
studies [3,3,4,19–21]) employs a single layer implement of an attention mechanism by taking the
hidden state as the query vector to extract visual features at each step, while the studies [8,16,17,22,23]
chose a multi-layer attention implementation in their decoder. (2) Involving extra clues in attention
weights or not—for example, studies [11,24,25] obtained their attention weights only from previous
attention calculations, while the authors of [18] combined geometry clues with previously calculated
weights into final attention weights. However, all of these works only tried to make full use of intrinsic
existing clues to calculate the attention weights but ignored the impact of the PBM and POS priors.
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Part-of-Speech Prediction. The part-of-speech prediction task has been studied in recent decade,
for example in the works [26–30]. In the text generation tasks, the word POS tag is predicted by the
previous generated words and state of the decoder recursively. These works can be divided into two
categories: (1) treated as a multi-task learning problem: for example, the authors of [26] treated POS
tagging as an auxiliary task, i.e., predicting the POS tag for each word to be generated alongside the
word generation, and the authors of [27] predicted the POS tag and name entity (NE) tag at the same
time as word generation; (2) gate for external features: for example, the authors of [31,32] predicated
the POS information for the word as a condition to determine whether the visual (external) feature is
essential for current word generation. However, all of the above approaches did not utilize the POS
priors to guide the heterogeneous visual feature assembly based on the intrinsic relationship between
word class and feature categories.

Semantic Clues. Our extracted PBM priors are very similar to external semantic clues, which are
usually obtained through an additional learning task or a pre-train model, such as in the the
studies [3,33–35]. The main difference between our extracted PBM priors and the semantic clues
lies in two aspects: (1) the PBM priors contain the probabilities of being mentioned for region proposals
but no content information, while the semantic clues are usually considered as carrying intrinsic
content information; (2) for the usage of semantic clues, the authors of [36] used a semantic embedding
network layer to accept semantic clues as input and feed its output to the decoder, and the authors
of [33] utilized tag vectors as semantic clues to guide the ensemble of parameters in the language
model. However, in our work, the PBM priors are involved in the attention weight calculation
process, indirectly helping the encoder to better focus on the correct areas in the visual information
extraction process.

3. Priors-Based Attention Neural Network

3.1. Conventional Approach Revisited

The purpose of a captioning model is to give a natural language description,
i.e., S = {w1, w2, . . . , wT}, for the input image I . Recently, many models tend to adopt various kinds
of visual features to enhance the performance of captioning, and these kinds of features are linked
tightly and form a graph G =< N , E >, where N and E represent the nodes and edges, respectively.
The nodes consist of the object nodes O, attribute nodes A, and relation nodesR; this is formulated by
N = {O,A,R}.

Usually, additional graph convolutional networks (GCNs) are applied on the obtained graph G
to get more informative visual features sets G ′ = {O′,A′,R′}, and these networks are trained along
with a captioning model, which is regarded as a message passing [37] process among nodes and edges.
We present the implementation of three kinds of context-aware embeddings as follows:

Relaitonship Embedding. Given one relationship triple < oi, rij, oj > in G, we have:

r̂ij = gr(eoi , erij , eoj) (1)

where the content of each relationship triplet is incorporated together, as shown in Figure 2a.
Attribute Embedding. Given an object node oi with its attribute ai in G,

âi = ga((eoi , eai ) (2)

where the context of this object and its attribute are incorporated, as shown in Figure 2b.
Object Embedding. An object oi could act as a “subject” or “object”, which means that the edge

has different directions depending on its role; therefore, the ôi can be calculated as:
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ôi =
1

Nri

[ ∑
oj∈sbj(oi)

gs(eoi , eoj , erij)+

∑
ok∈obj(oi)

go(eok , eoi , erki )]
(3)

where each node oj ∈ sbj(oi) acts as an “object” and oi acts as “subjects”, e.g., sub(o2) = o1 in Figure 2c,
and Nri = |sbj(i)|+ |obj(i)| is the number of relationship triplets where oi appears.

(a) (b) (c)

Figure 2. Spatial graph convolutional network, where the colored neighborhood is “convolved” for the
resultant embedding. (a) Relation embedding; (b) attribute embedding; (c) object embedding.

In the decoding process, the attention mechanism is adopted to extract related information from
the heterogeneous feature sets, which could be formulated as:

v̂t = Attention(V̂ , ht−1) (4)

where ht−1 is the hidden state of the decoder at time step t, and V̂ = [Ô, Â, R̂] are a stacked set by
outputs of new object, attribute, and relation embeddings, respectively, obtained from the previously
mentioned graph convolutional networks (GCNs).

Finally, the decoder takes the extracted feature vector v̂t along with the current hidden state to
generate the word in the caption, which formulated as:

wt = argmax(FFN(Decoder(v̂t, ht−1, xt−1))) (5)

where xt−1 is the embedding of the previous word as an external input, and FFN is the two layers of
a fully-connected feed-forward network.

3.2. Priors Extraction Process

PBM Priors Extraction. We adopted Faster-RCNN [13] to get local proposals and extract local
visual feature vectors as well as their position in the image. As shown in Figure 3, we extract the
caption vector to carry the caption information by predicting caption words in a multi-class multi-label
classification task, and the PBM priors are further obtained by computing the cosine similarities
between the encoded local feature vectors (o1, o2, ..., oon ) and caption feature vector c. Before the
training (independently from the caption model training), we chose 220 unique caption object words
from the caption vocabulary after removing singular and plural words. Let l be the ground truth
caption feature vector, in which 1 or 0 in each dimension represent if the label appears or not in any
of the ground truth captions. We also aligned the labels from the objection task with these 220 object
labels, and trained the PBM module on the MS-COCO dataset. In this way, we define our objection
function as:

l̂0 = Sigmoid(FFN0(c)) (6)

l̂i = So f tmax(FFN(oi)), i ∈ 1, 2, ..., oon (7)
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LPBM =
n

∑
i
(l̂ilog(l̂i) + (1− l̂i)log(1− l̂i)), i ∈ 0, 1, 2, ..., oon (8)

where c is the output of the inserted empty vector, i.e., the caption feature vector, and oi, i ∈ 1, 2, ..., on

is the encoded local feature, which would be used as an object feature in this work; FFN0 and FFN are
two isolated fully-connected feed-forward networks. The LPBM is the objective loss used to train the
PBM module. The PBM priors for object regions are calculated as:

pPBMo

i =
c · oi

||c|| ∗ ||oi||
(9)

where pPBMo

i is the PBM prior for the object region i.

Figure 3. The network structure of the PBM module, which is used to extract caption features and
encode the object features in the feature extraction phrase.

After that, the attribute feature and relation feature were obtained by another independent training
on the GNOME dataset using the method used in [12]. Note that the attribute region shares the same
area as the object region, as shown in the left subfigure of Figure 1, and the relation (composed of
the triplet <subject–predicate–object>) region is the union of the subject region and the object region.
We define the PBM priors for the attribute region and relation region as:

pPBMa

i = pPBMo

i (10)

pPBMr

<i,j> =
pPBMo

i · pPBMo

j

∑(k,v)∈R pPBMo

k ∗ pPBMo
v

(11)

where pPBMa

i is the attribute region i, pPBMr

<i,j> is the PBM prior for the relation r, R is the entire extracted

relation triplet. For convenience, we denote pPBM∗i as the PBM region i, if iinA, pPBM∗i = pPBMa
i ,

and the same rule is applied to the attribute region and the relation region.
POS Priors Predication. As shown in Figure 4, we try to predict the part-of-speech at each step

of the word prediction. In pre-processing, there are 25 POS tags in the tools of the NLTK, and we
re-categorize these tags into four categories, i.e., the “object” class, “attribute” class, “relation” class,
and “other” class, in order to build a connection with three kinds of visual features and the hidden
state of the decoder. The object class corresponds to the objects in the caption; for instance, “car” and
“bike” correspond to “blue” and “colorful” in the attribute class and “standing” and “in” in the relation
class, whereas the “other” class contains most of virtual words, such as “the” and “of”. The POS label
ground truth was prepared on the MS COCO training set, and the object function of this part is:

pPOS
t = So f tmax(FFN(h2

1)) (12)

LPOS = − 1
K

K

∑
t=1

M

∑
j=1

p̄POS(j)

t logpPOS(j)

t + (1− p̄POS(j)

t )log(1− pPOS(j)

t ) (13)
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where K is the length of the image caption, M is the dimension of the POS vector, and FFN is the
fully-connected feed-forward network. For convenience, we denote pPOS∗

t as the part-of-speech
probability of tag ∗; for example, pPOSo

t is the probability of the POS tag “object”.

Figure 4. The above figure illustrates the network structure of our proposed approach for image
captioning. In the feature extracting phrase, three kinds of visual feature sets are obtained from the
scene graph through the following graph convolutional networks (GCNs), and the probabilities being
mentioned (PBM priors, pPBM) for region proposals are obtained according to the similarities between
local feature vectors with the caption vector, in which the latter is obtained through an auxiliary caption
object prediction task. In the caption generation phrase, at each time step t, the part-of-speech (POS)
prior pPOS

t is obtained by taking h2
t (the hidden state of POS-attention LSTM) as input in the POS

module first; after that, the priors-based attention module first computes the content weights by taking
h2

t to compose the query vector, and then combines the previously obtained pPBM and pPOS
t into the

final attention weights and outputs the extracted feature vector vt as the external input for language
LSTM for current word generation.

3.3. Priors-Based Attention Neural Network

In this subsection, we will introduce our proposed priors-based attention neural network, in which
two kinds of prior are involved in the visual feature extraction process at each time step of the decoding
process. We will first describe the process of the computation process of the content weights Wc,
in which the query vector is composed using the hidden state vector h2

t from POS-LSTM, shown
at the bottom right of Figure 4. After that, we will incorporate the two types of priors obtained,
i.e., pPBM, and pPOS

t , into the final weights’ computation process.
Content Weight Computation. Suppose the input image I as presented using scene graph G;

we denote V = [O,A,R] as a visual feature set, i.e., the concatenation of three kinds of visual features.
We chose the attention mechanism used in the work [7] as our bias. At the attention calculation
process in each head, the query Q, key K, and value V will be calculated first using the following
linear projections:

Q = h2
t WQ, K = VWK, V = VWV (14)

where WQ, WK, WV are learned matrices for getting the query, key, and value, respectively. The content
weights in each head are computed using dot products as follows:

wc = Softmax(
QKT
√

dk
) (15)
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where dk is a constant scaling factor; we set 64 as is the dimension of the key, query, and value matrix,
as in the study [7].

Priors Fusion. As discussed before, the PBM priors contain the probabilities being mentioned for
each region (including object region, attribute region, and relation region), and POS prior pPOS

t could
help the decoder focus on the visual features that have the most relevant feature category. We further
fuse the extracted PBM priors and the POS priors with content weights according to their feature
category and region position. We compute the element wi in final weights w as follows:

wi = λwc
i + (1− λ)pPOS∗

t pPBM∗
i (16)

where ∗ ∈ o, a, r, for example, ∗ equals a, if the region i belongs to object region class, and same scheme
applied to attribute regions, and relation regions. We choose addition operation here rather than the
multiple operations, because the latter could extremely be affected by some minimal value and cause
instability and performance drops.

After that, we will compute the output of each head as follows:

Head(h2
t−1, PPBM, pPOS

t , V) = so f tmax(w)V (17)

In the priors-based attention module, each head is calculated independently, and the final output
is obtained by concatenating the output of all heads to one single vector and then multiplying it with a
learned projection matrix WO, i.e.,

v̂t = Concat(Head1, ..., Headh)WO (18)

in which h is the number of heads in the attention module. Figure 5 illustrates the difference among
priors based attention Figure 5a with standard transformer attention Figure 5b.

(a) (b)

Figure 5. The network structure of our proposed priors-based attention module and a standard
transformer attention module. (a) prior based attention module; (b) transformer attention module.

The v̂t would be fed into the language model to generate a caption word. We adopted the
Up_Down [4] network structure as our decoder bias and replaced the original attention module with
our proposed POS module and priors-based module, and the corresponding network structure is
shown in Figure 4.
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3.4. Training Objectives

First, we define the loss function for caption generation, given a target ground truth caption
sequence y∗1:T and a captioning model with parameters θ. We try to minimize the following
cross-entropy loss:

LXE(θ) = −
T

∑
t=1

log(pθ(y∗t |y∗1:t−1)) (19)

For fair comparisons with the works trained using self-critical sequence training (SCST) [38],
we also report the results optimized for CIDEr [39]. Initializing from the cross-entropy trained model,
we seek to minimize the negative expected score:

LR(θ) = −Ey1:T pθ
[r(y1:T)] (20)

where r is the score function, i.e., CIDEr. The gradient of this loss can be approximated:

∇θLR(θ) ≈ −(r(ys
1:T)− r(ŷ1:T))∇θlogpθ(ys

1:T) (21)

where the ys
1:T is a sampled caption and r(ŷ1:T) defines the baseline score obtained by greedily decoding

the current model. SCST explores the space of captions by sampling from the policy during training.
This gradient tends to increase the probability of sampled captions that score higher than the score
from the current model.

4. Experiments

4.1. Dataset and Metrics

All of our experiments were conducted on the Microsoft COCO (MS-COCO) 2015 Captions
dataset [40], and all of the corresponding results were obtained on the Karpathy validation and test
splits [41], which are widely adopted in other image captioning approaches, and which contain 5 K
images in each set. The final caption results were evaluated using the CIDEr-D [39], SPICE [42],
BLEU [43], METEOR [44], and ROUGE-L [45] metrics.

4.2. Implementation Details

Our algorithms were developed in PyTorch, taking the implementation in [4] as the basis of our
decoder network structure. We conducted experiments on a NVIDIA Tesla V100 GPU. The ADAM
optimizer was initialized with a 0.0002 learning rate and annealed by 0.97 every three epochs.
We increase the scheduled sampling probability by 0.05 every five epochs [46]. We adopted the
same warm-up method as the work in [18] and set our batch size to 64. After that, we jointly trained
the encoder and decoder in future epochs using LXE. We also trained another version model with a
self-critical reinforcement learning method (SCST) [38] using the objective LR defined in the equation
for the CIDEr-D score when the loss score on the validation split did not improve for some training
steps. In the cross-entropy training and CIDEr-D score optimization method, an early stop mechanism
was adopted in all phrase of training.

4.3. Quantitative Analysis

In this subsection, we will present our experiment results, which demonstrate that the proposed
approach can enhance the performance for the task of image captioning. First, we selected several of
the most representative state-of-the-art methods, which include both the regular image captioning
decoder and transformer-based decoders. The comparison methods are briefly described as follows:
(1) Up_Down [4], in which a separate LSTM is used to encode the “past” word in an accumulated
manner, and an attention mechanism is utilized at each step of the word generation; (2) RFNet [47],
which tries to fuse encoded features from multiple CNN models; (3) GCN-LSTM [15], which predicates
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visual relationship clues in each entity pair and encodes this information into feature vectors through
a message-passing mechanism; (4) Att2all [7], which maximally reserves the structure from the
transformer design for machine translation; (5) AoANet [11], which proposes an “attention on attention”
module to determine the relevance between attention results and queries; (6) ObjRel [18], in which
the geometry is involved in encoding for the purpose of exploring the spatial relationships among
region proposals.

For a fair comparison, all of the above approaches as well as our approach were trained in
the same method using two types of optimization goals, i.e., XE loss and RL loss (optimized the
CIDEr-D score). Additionally, we report two kinds of results, namely from a single model and from
ensemble models. From Table 1, it can be seen that our model leads almost in all metrics except
BLEU-1 in the single model using XE loss, and outperformed its competitors in the metrics BLEU-1,
METEOR, CIDEr-D, and SPICE in the single model using SCST training (CIDEr-D score optimization);
in ensemble methods, our model also leads in all metrics (the same score was achieved on the SPICE
metric with the model objRel [18])—in particular, the model obtained a 22.9 score on the SPICE metric
in the ensemble method under the SCST training method.

Table 1. Comparative analysis of existing state-of-the-art approaches. We compared the original models
with the proposed PANN. Two types of results are presented, i.e., single model and an ensemble method.
All results were obtained on MS-COCO’s “Karpathy” test split, where B@1, B@4, M, R, C, and S stand
for BLEU-1, BLEU-4, METEOR, ROUGE-L, CIDEr-D, and SPICE scores, respectively. All values are
reported as a percentage (%).

Single Model

Model Cross-Entropy Loss SCST Training (CIDEr-D Score Optimization)

Metric B@1 B@4 M R C S B@1 B@4 M R C S

Up-Down [4] 77.3 35.2 26.1 54.6 112.3 19.4 79.8 36.3 27.7 56.9 120.1 21.4
RFNet [47] 76.4 35.8 27.4 56.8 112.5 20.5 79.1 36.5 27.7 57.3 121.9 21.2

GCN-LSTM [15] 77.3 36.8 27.9 57.0 116.3 20.9 80.5 38.2 28.5 58.3 127.6 22.0
Att2all [7] 77.5 34.6 26.1 55.3 110.5 19.3 77.3 34.2 26.7 56.9 114 19.8

AoANet [11] 77.4 37.2 28.4 57.5 119.8 21.3 80.2 38.9 29.2 58.8 129.8 22.4
objRel [18] 79.2 37.4 27.7 56.9 120.1 21.4 80.5 38.6 28.7 58.4 128.3 22.6

Ours 78.9 37.9 28.8 57.6 120.3 21.5 80.6 38.7 28.7 58.7 129.6 22.7

Ensemble Method

Up-Down [4] 77.6 35.7 26.7 54.9 112.4 19.6 80.0 36.8 27.8 57.2 122.3 21.5
RFNet [47] 77.4 37.0 27.9 57.3 116.3 20.8 80.4 37.9 28.3 58.3 125.7 21.7

GCN-LSTM [15] 77.4 37.1 28.1 57.2 117.1 21.1 80.9 38.3 28.6 58.5 128.7 22.1
Att2all [7] 77.9 35.1 26.8 55.6 112.7 20.6 78.1 35.3 27.1 57.1 116.4 20.5
objRel [18] 80.1 37.8 28.1 57.0 122.3 21.6 80.7 38.8 28.9 58.7 128.4 22.6

Ours 80.6 38.2 28.8 57.8 122.8 21.6 80.9 38.7 28.9 58.8 129.8 22.9

4.4. Qualitative Analysis

Figure 6 shows a few examples with images and captions generated by the comparison models
compared to results generated with our proposed PANN. We derived the captions using the same
setting and training method, i.e., SCST optimization [38]. From these examples, we found that these
“base” models are less accurate for the image content, while our method can result in relatively better
captions. More specifically, our proposed global attention method is superior in the following two
aspects: (1) Our proposed PANN could help the language model correctly focus on the caption objects.
For example, our proposed method helped the model focus on the “flight” in the first example and “tv”
on the second example in Figure 6, while the other models chose to ignore them. (2) Our proposed
PANN could help the language model count objects of the same kind more accurately. For example,
there are two benches and two motorcycles in the third and fourth images in Figure 6, but the
comparison models only gave one in their captions. However, our proposed model only tends to
recognize concrete objects while ignoring relatively abstract concepts. For instance, in the fourth image,
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our model could not give the season words “autumn” or “fall”; this limitation of understanding higher
concepts will be our next research target in future work.

Up_Down: A group of people flying kites
on a beach.

Up_Down: a bedroom with a bed and desk
in a room.

Att2all: people sitting on the beach. Att2all: a bag on the floor in a room.

objRel: people playing game on the beach. objRel: a table and bag in a bedroom.

Ours: a flight in the air and people sitting
on the beach.

Ours: a red bag and a tv laying on the floor.

GT 1: an airplane flying through a cloudy
sky flying over the ocean.

GT 1: a living area with a small tv and small
couch on the floor.

GT 2: an airplane flying over beach
crowded with people.

GT 2: a small room with a television screen
monitor.

Up_Down: a motorcycle parked on the side
of a road.

Up_Down: bench and tree on the ground.

Att2all: car and motorcycle parked on the
ground.

Att2all: a tree and two bench in the park.

objRel: a man riding a motorcycle on the
road.

objRel: a tree and people standing on the
ground.

Ours: a man sitting a motorcycle with
motorcycle in the parking.

Ours: two benches and people walking in
the park.

GT 1: a man bending to fix motorcycle in a
parking lot.

GT 1: a central park area with two benches
and trees in the middle of a city.

GT 2: a man tinkers with his motorcycle in
a parking lot.

GT 2: a park is full of patrons on a fall day.

Figure 6. Examples of captions generated by the comparison approaches and our proposed approach
along with their ground truth captions.

In the Figure 7, we visualize the region proposal with the highest attention weight at each time
step of the caption generation process. We selected the [4] as the “base” model and “base” + PANN as
the comparison, and training processes were exactly the same using XE-loss, which has been discussed
above. Observing the attended image region in Figure 7a,b, we found that our approach could give
a caption with more details than the “base” model; this is caused by the fact that the PBM priors
could still remind the decoder of areas, such as “helmet”, though the decoder planned to ignore
them, and POS priors could help the decoder select more relevant visual features, and thus our result
could give more adjective words compared to the “base” model. Similar situations can bee found in
Figure 7c–f, in which we can see that the LSTM [6] with PANN could give the glove details, and the
Att2all [7] with PANN could give glasses details in their captions.

We also show the POS priors obtained before word generation, which was designed to build
the connection between the word class and feature category, in Figure 8. This map illustrates that
the generated words are highly bundled with the previously obtained POS priors; for example,
when generating the words “motorcycle” and “riding”, the highest possibility of POS tags are the
object class and the relation class. Based on this fact, we involve the POS priors into the attention
weights in the proposed PANN to better assemble the various kinds of features for word generation at
each time step.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 7. Visualization of attention regions in the 6th head of the decoder for the “base” model and
“base” with PANN. Form the result, we can see that the “base” with PANN could give more details than
the “baseline” model. (a) Up_Down: a man on a motor on a road; (b) Up_Down + PANN: a man with a
red helmet on a motor bike on a dirt road; (c) LSTM: people play baseball on top of the field; (d) LSTM
+ PANN: a baseball player wearing a glove on the file; (e) Att2all: a man and an airplane on the ground;
(f) Att2all + PANN: a man with glasses standing in the front of an airplane.
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Figure 8. POS distribution over four POS tags when generating the above caption, which illustrates
that the word generation is highly affected by the previously obtained POS priors.

4.5. Ablative Analysis

We conducted ablative studies to explore three kinds of impacts for our proposed method,
including (1) the effectiveness of PBM priors and POS priors on the decoder, (2) the trade-off factor
λ between the priors and content weights defined in Equation (16). All of the results were obtained
using XE-loss and trained under the same training strategy.

The effectiveness of PBM and POS priors on the decoder. We tried to explore the effectiveness
of the POS priors on various decoder network structures, i.e., LSTM [6], Up_Down [42],
and transformer [7] and to compare these approaches with our proposed PANN. From the results
shown in Table 2, we can see that the decoder with PANN achieved higher scores and better results
compared to the normal attention module. In particular, our approach outperformed its competitors’
overall metrics, which can be seen in the last line of Table 2. As we introduced previously, our proposed
PANN tries to incorporate the PBM and POS priors into the visual feature extraction process, and it
could bring more parameters for the final model and further affect the inference speed and memory
allocation in the test phrase. We performed our test on a desktop computer, which was equipped
with a 1080Ti GPU card and a 16G memory card. Wedid not perform these experiments on a server,
because there were many other tasks that were running, which could affect the accuracy of the results.
There were 5000 test samples in the test set, and the batch size was set to 100; therefore there were
50 iterations in the test phase. From Table 3, we can see that our proposed PANN resulted in an
additional 1.77 million parameters for each attention module, and the speed was relatively slower
(1.64 to 2.9 s) compared to the three “base” models.

The effect on the trade-off factor. λ We also studied the effect of λ on final performance, i.e.,
the trade-off factor between two types of priors and the content weights for caption generation, which
is defined in subsection 3.4. The result is shown in the Figure 9, in which the value of λ was chosen
from the from 0.1 to 0.5 and with a separation distance of 0.05. From the result, we can see that the λ

value actually affects the final performance of our model, and it is also hard to get such a value for λ

with which all metrics could be optimized to maximum score. We took BLEU-4 as our bias, and set the
λ to 0.2 in our experiments, in which we could obtain the BLEU-4 score 37.9; corresponding results are
shown in Table 1.
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Table 2. Experimental results of three “base” models and “base” models with PANN on the MS-COCO
“karpathy” test split. All of these experiments were trained using the same method using XE-loss.
All values are reported as a percentage (%).

Model BLEU-1 BLEU-4 M R C S

LSTM [6] 76.7 34.2 25.2 52.7 109.6 18.3
LSTM [6] + PANN (Ours) 77.2 35.2 25.7 54.3 111.6 19.1

Att2all [7] 77.4 36.2 27.1 55.8 117.6 19.2
Att2all [7] + PANN 78.7 37.8 28.6 57.7 120.3 21.6

Up_Down [4] 77.4 35.7 26.2 56.3 114.7 18.8
Up_Down [4] + PANN (Ours) 78.1 36.7 26.8 56.5 118.4 19.3

Table 3. Complexity analysis result of three “base” models and “base” models with PANN on the
MS-COCO “karpathy” test split, where M is short for million and s is short for seconds.

Model Parameters Speed

LSTM [6] 12.87M 41.31s
LSTM [6] + PANN (Ours) 14.64M 43.27s

Att2all [7] 196.97M 53.64s
Att2all [7] + PANN 198.76M 55.28s

Up_Down [4] 149.94M 67.43s
Up_Down [4] + PANN (Ours) 160.56M 70.33s

(a) (b)

(c) (d)

Figure 9. Performance affected by the trade-off factor of λ. In the above figure, we show 4 main metric
curves obtained by different values of λ sampled from 0.1 to 0.5, with a separation distance of 0.05.
The above figure (a–d) show the results under metrics BLEU-4, CIDEr-D, ROUGE-L, SPICE respectively.

5. Conclusions

In this paper, we proposed a novel priors-based attention neural network (PANN) for the
captioning task, which enhances conventional attention mechanisms. The PANN explores the
probabilities being mentioned for region proposals and the part-of-speech clues for the word to
be generated to help the attention module to extract needed information from numerous regions
and heterogeneous feature sets, which further improves the performance of the captioning model.
Extensive experiments conducted on the MS-COCO dataset demonstrated the effectiveness of our
proposed method.
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