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Featured Application: Our studies provide an approach to apply meshfree methods in consistently
evaluating stress concentration of welded components.

Abstract: The study of characterizing the stress concentration effects at welds is one of the most
important research directions for predicting the fatigue life of welded components. Stress solutions at
the weld toe obtained from conventional meshfree methods are strongly influenced by parameters
used in the methods as a result of stress singularity. In this study, an improved 2D meshfree
radial point interpolation method (RPIM) is proposed for stress concentration evaluation of a
welded component. The stress solutions are insensitive to parameters used in the improved RPIM.
The improved RPIM-based scheme for consistently calculating stress concentration factor (SCF) and
stress intensity factor at weld toe are presented. Our studies provide a novel approach to apply global
weak-form meshfree methods in consistently computing SCFs and stress intensity factors at welds.
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1. Introduction

Welded structures are widely used in engineering. The fatigue life of welded joints is of great
concern for a number of years. Stress distributions at welds and fatigue behavior of welded joints
are continually investigated [1–5]. Various codes and standards as well as recommended practices
(e.g., [6,7]) are widely adopted for fatigue evaluation of welded joints. The fatigue life of a welded
joint is significantly influenced by the stress concentration effect at welded joints [8–11]. The study of
characterizing the stress concentration effects and achieving effective notch stress calculation at welds
are important research directions in the field of predicting the fatigue life of welded components.

In recent years, meshfree methods are attracting more and more interests in computational
mechanics for its advantages such as good self-adaptability. With the rapid development of meshfree
techniques, various problems in science and engineering have been solved by meshfree methods [12–15].
Meshfree methods have been great potential topics and trends in computational mechanics. However,
the stress solutions obtained by meshfree methods are often influenced by parameters used in these
methods such as shape parameters, dimension of the influence domain and number of field nodes.
Especially, the sensitivity of the stress solutions at notch location of weld toe increases significantly due
to the presence of stress singularity at geometric discontinuity. As a result, the conventional meshfree
methods are not realistic for effectively determining the notch stresses or stress concentration at the
weld toe.
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Fortunately, in order to solve the problem that the conventional finite element method (FEM)-based
stress solutions at the weld toe were strongly influenced by the type and size of elements, Dong proposed
a mesh-insensitive structural stress method (or named Battelle structural stress method) [16]. Based on
the mesh-insensitive structural stress method, the stress concentration factor was consistently
characterized and notch stress intensity factor at weld toe was effectively calculated [17]. The equivalent
structural stress-based master S-N curve method was then developed to evaluate the fatigue life of weld
components [8]. Taking advantage of the mesh-insensitive structural stress method, the mesh-insensitive
structural strain method was then proposed extending the mesh-insensitive structural stress method
to a low-cycle fatigue regime [18]. Since 2007, the mesh-insensitive structural stress method has been
adopted as an alternative fatigue evaluation method for welded components by ASME Section VIII
Division 2 Code [19]. In recent years, the theory and engineering application of the mesh-insensitive
structural stress method has been carried out continuously [20–24].

The aim of this study is to propose an improved 2D meshfree radial point interpolation method
(RPIM) whose stress solutions are insensitive to parameters such as shape parameters, dimension of
the influence domain and number of field nodes by introducing the idea of above mesh-insensitive
structural stress method. The essential idea of improved RPIM is that the stress solutions were obtained
directly from field nodes forces to avoid using derivatives of shape functions. The novelty of our
studies is to provide an approach to apply global weak-form meshfree method in consistently and
effectively calculating SCFs and notch stress intensity factors at weld toe.

Early meshfree methods originated from the collocation methods in 1930s [25,26]. The well-known
smooth particle hydrodynamics (SPH) method was proposed for solving problems in astrophysics [27,28].
In recent decades, various meshfree methods have been proposed, such as the element free Galerkin
(EFG) method [29], meshfree radial point interpolation method (RPIM) [30,31], reproducing kernel
particle method (RKPM) [32,33], material point method (MPM) [34,35], etc. According to the types of
deriving equations, meshfree methods can be classified into three types: meshfree strong-form method,
meshfree weak-form method and meshfree weak-strong (MWS) form method [36]. Compared with the
strong-form methods, the mesh weak-form methods have some advantages in stability and calculation
accuracy. In terms of weighted residual method, different meshfree weak form methods can be obtained
by using different trial functions and weight functions. RPIM is a typical global weak-form meshfree
method proposed by Liu and co-workers in 2001 [30,31]. Using radial basis functions (RBF) as trial
functions, RPIM is robust for irregular nodal distributions. The RPIM has been successfully used to
solve many problems [37–41]. In addition, some improved RPIMs and coupling technologies based
on RPIM have emerged [42–45]. Unfortunately, the stress solutions at weld toe obtained by RPIM are
strongly influenced by the parameters used in RPIM as a result of singularity at notch, which makes the
conventional RPIM unable to effectively and consistently determine the stress concentration factor and
stress intensity factors at the weld toe.

The rest of this paper is composed of the following items. A brief description of conventional
RPIM for two-dimensional linear elasticity problem was presented. Then, the improved RPIM which
modified the stress calculation process of conventional RPIM was developed for achieving stress
calculation consistency at weld toe where existing singularity. Cantilever beam, a typical plate lap
fillet welded joint and a T-butt welded joint were employed for numerical examples. The numerical
example of cantilever beam was carried out to validate the consistency and accuracy of the improved
RPIM based stress solutions at the general location of cantilever beam without concentration effect. The
numerical example of plate lap fillet welded joint was to validate insensitivity and effectiveness of SCF
at weld toe based on improved RPIM. The numerical example of T-butt welded joint was to validate
the consistency and effectiveness of the stress intensity solution at weld toe based on improved RPIM.
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2. An Improved RPIM for Stress Concentration Evaluation of Welded Component

In this section, the basic principle of RPIM for two-dimensional linear elasticity problem is
presented before the improved RPIM for stress concentration evaluation of a welded component
is exhibited.

2.1. Formulation of RPIM Shape Functions

In terms of RPIM, the approximation function u(x) at a point of interest x can be written as

u(x) =
n∑

i=1

Ri(x)ai +
m∑

j=1

p j(x)b j = RT(x)a+pT(x)b (1)

where Ri(x) is a radial basis function, p j(x) is monomial in the space coordinates xT = [x, y], n represents
the number of radial basis function, m represents the number of polynomial basis function. ai and b j
are unknown constants. There exists variable r in radial basis function Ri(x):

r =
√
(x− xi)

2 + (y− yi)
2 (2)

The geometric significance of r is the distance between the point at x and node at xi. With the
variable r, the multi-quadrics (MQ) function can be used as the radial basis function (RBF):

Ri(x, y) = (r2
i + (acdc)

2)
q

(3)

where ac and q are shape parameters, dc is the characteristic length relating to the nodal spacing.
Applying Equation (1) to all the n nodes in the support domain of point x, we can obtain n linear
equations which can be express in the matrix form:

Us=R0a+Pmb (4)

where
Us is the vector of nodal function values:

Us =
{

u1 u2 · · · un} (5)

a is the vector of unknown coefficients:

a =
[

a1 a2 · · · an
]T

(6)

b is the vector of unknown coefficients:

b =
[

b1 b2 · · · bm
]T

(7)

R0 is the moment matrix of RBFs:

R0 =


R1(r1) R2(r1) · · · Rn(r1)

R1(r2) R2(r2) · · · Rn(r2)
...

... · · ·
...

R1(rn) R2(rn) · · · Rn(rn)


(n×n)

(8)
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Pm is the polynomial moment matrix:

Pm =


1 x1 y1 · · · pm(x1)

1 x2 y2 · · · pm(x2)
...

...
...

. . .
...

1 xn yn · · · pm(xn)


(n×m)

(9)

Additional m equations are employed as constraint conditions:

n∑
i=1

p j(xi)ai = PT
ma = 0, j = 1, 2 · · · , m (10)

Combing Equations (4) and (10) we get:

Ũs =

[
Us

0

]
=

[
R0 Pm

PT
m 0

]{
a
b

}
= Ga0 (11)

where

G =

[
R0 Pm

PT
m 0

]
(12)

a0 =

{
a
b

}
(13)

A unique solution can be obtained by solving Equation (11):

a0 =

{
a
b

}
= G−1Ũs (14)

Substituting Equation (14) back into Equation (1), we obtain:

u(x) =
{

RT(x) pT(x)
}{ a

b

}
=

{
RT(x) pT(x)

}
G−1Ũs = Φ̃

T
(x)Ũs (15)

Then, the approximation function u(x) can be expressed as:

u(x) = Φ̃
T
(x)Ũs =

{
φ1(x) φ2(x) · · · φn(x) φn+1(x) · · · φn+m(x)

}{ Us

0

}
(16)

where the RPIM shape function corresponding to nodal displacements can be expressed as

ΦT(x) =
{
φ1(x) φ2(x) · · · φn(x)

}
(17)

Finally, the approximation function u(x) can be expressed as

u(x) = ΦT(x)Us =
n∑

i=1

φiui (18)

2.2. Discretization of Two-Dimensional Linear Elasticity Equations

Consider the two-dimensional linear elasticity problem which is defined in the domain Ω with
boundary Γ. The governing equations and boundary conditions are written as:

LTσ+ b = 0 in Ω (19)
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σ = Dε in Ω (20)

ε = Lu in Ω (21)

σn =
¯
t on Γt (22)

u =
¯
u on Γu (23)

where t and u are prescribed values of traction and displacement on boundary, n is vector of unit
outward normal on boundary.

L denotes the differential operator expressed as:

L =


∂/∂x 0

0 ∂/∂y
∂/∂y ∂/∂x

 (24)

σT denotes the stress vector expressed as:

σT =
{
σxx σyy τxy

}
(25)

uT denotes the displacement vector expressed as:

uT =
{

u v
}

(26)

bT denotes the body force vector expressed as:

bT =
{

bx by
}

(27)

The weak form of equilibrium Equation (19) can be written in the form of:∫
Ω

(Lδu)T(DLu)dΩ −
∫
Ω

δuTbdΩ −
∫
Γt

δuT ¯
tdΓ = 0 (28)

Discretization of Equation (28) with Equation (18) yields

KU = F (29)

where

KIJ =

∫
Ω

BT
I DBJdΩ (30)

F = F(b) + F(t) =

∫
Ω

ΦT
I bdΩ +

∫
Γ

ΦT
I tdΓ (31)

Bi =


φi,x 0
0 φi,y
φi,y φi,x

 (32)

D = E
1−ν2


1 ν 0
ν 1 0
0 0 (1− ν)/2

, f or plane stress problem

D =
E(1−ν)

(1+ν)(1−2ν)


1 ν/(1− ν) 0

ν/(1− ν) 1 0
0 0 (1− 2ν)/2(1− ν)

, f or plane strain problem

(33)
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E is Young’s modulus. ν is Poisson’s ratio.

2.3. Numerical Integration

The Gauss numerical quadrature was used to calculate the global stiffness matrix K in Equation (29)
after the problem domain was discretized into background cells:

K =

nc∑
k

ng∑
i=1

_
wiBT(xQi)DB(xQi)

∣∣∣JD
ik

∣∣∣︸                       ︷︷                       ︸
Kik

(34)

where nc is the number of background cells, ng is the number of Gauss points used in each background

cell,
_
wi is the Gauss weighting factor for the ith Gauss point at xQi, JD

ik is the Jacobian matrix for the
area integration of the background cell k at which the Gauss point xQi is located.

2.4. Improved RPIM Based Stress Solutions for Stress Concentration Evaluation at Weld Toe

As shown in Figure 1, the through-thickness stress distribution at the weld toe can be
decomposed into the equilibrium-equivalent stress part and a self-equilibrating notch stress part [8,19].
The equilibrium-equivalent stress part can be then decomposed into a membrane component
(characterized by σm) and a bending component (characterized by σb). In present discussions,
the transverse shear stress component is not considered. In fact, if the remote loading produces a
significant shear force at section, the shear stress will have a greater effect on crack growth at the weld
toe, a situation not considered in this paper. An improved RPIM is presented below that realizes the
consistent stress solutions at and near weld toe.
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As shown in Figure 2, the section A-A at the location of interest and the reference section B-B with
an arbitrary distance ζ from section A-A were introduced. Taking the continuum between A-A and B-B
as the research object, the following equation must be satisfied according to the equilibrium conditions:

σm · t =

t/2∫
−t/2

σx(y) · dy (35)

σb ·
t2

6
=

t/2∫
−t/2

σx(y) · y · dy + ξ ·

t/2∫
−t/2

τxy(y) · dy (36)

where Equation (35) is the force balances equation in x direction, and Equation (36) is the moment

balances equation with respect to section A-A at y = 0. The physical significance of
t/2∫
−t/2

σx(y) · dy is

the internal force in the x direction on section B-B and the physical significance of
t/2∫
−t/2

σx(y) · y · dy is

the internal moment on section B-B.



Appl. Sci. 2020, 10, 6873 7 of 17

Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 17 

2.4. Improved RPIM Based Stress Solutions for Stress Concentration Evaluation at Weld Toe 

As shown in Figure 1, the through-thickness stress distribution at the weld toe can be 
decomposed into the equilibrium-equivalent stress part and a self-equilibrating notch stress part 
[8,19]. The equilibrium-equivalent stress part can be then decomposed into a membrane component 
(characterized by mσ ) and a bending component (characterized by bσ ). In present discussions, the 
transverse shear stress component is not considered. In fact, if the remote loading produces a 
significant shear force at section, the shear stress will have a greater effect on crack growth at the 
weld toe, a situation not considered in this paper. An improved RPIM is presented below that realizes 
the consistent stress solutions at and near weld toe. 

 
Figure 1. Decomposition of through-thickness stress. 

As shown in Figure 2, the section A-A  at the location of interest and the reference section B-B  
with an arbitrary distance ζ  from section A-A  were introduced. Taking the continuum between 
A-A and B-B as the research object, the following equation must be satisfied according to the 
equilibrium conditions: 

/ 2

/ 2

( )
t

m x
t

t y dyσ σ
−

⋅ = ⋅  (35) 

/ 2 / 22

/ 2 / 2

( ) ( )
6

t t

b x xy
t t

t y y dy y dyσ σ ξ τ
− −

⋅ = ⋅ ⋅ + ⋅ ⋅   (36) 

where Equation (35) is the force balances equation in x  direction, and Equation (36) is the moment 

balances equation with respect to section A-A  at 0y = . The physical significance of 
/ 2

/ 2

( )
t

x
t

y dyσ
−

⋅  

is the internal force in the x direction on section B-B  and the physical significance of 
/ 2

/ 2

( )
t

x
t

y y dyσ
−

⋅ ⋅ is the internal moment on section B-B . 

 
Figure 2. Through-thickness stress distributions in section B-B . Figure 2. Through-thickness stress distributions in section B-B.

As the above integral terms can be interpreted as the internal force and internal moment between
the right part and left part of continuum separated by section B-B, these integral terms can be obtained
directly from the force of field nodes of the background cells through the following steps.

Step (1): Find all the field nodes within ±dix (dix is the size of influence domain in the x direction)
from the section B-B. These field nodes were marked green as shown in Figure 3. The number of these
field nodes is written as n′.
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Step (2): In the right part of the continuum separated by section B-B, find all the background
cells in which the support domain of Gauss points involves the field nodes mentioned in step (1).
The number of these background cells is written as nk′ .

Step (3): The resultant force of the field nodes described in step (1) given by the background cells
described in step (2) can be calculated by the following formula:

Finternal =



Finternal
1x

Finternal
1y

...
Finternal

ix
Finternal

iy
...

Finternal
nx

Finternal
ny



=

nk′∑
k′

ng∑
i′=1

_
wi′BT(xQi′)DB(xQi′)

∣∣∣JD
i′k′

∣∣∣ ·U (37)
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where xQi′ represents the Gauss points described in step (2). Finternal is the 2n rows column vector
representing the field node force in domain Ω given by the background cells described in step (2).
Note that if field node i is in the support domain of Gauss point of the background cell describe in
step (2), the field node force Finternal

ix , Finternal
iy denotes the field node force given by the background cells

described in step (2). If field node i is not in the support domain of the Gauss point of the background
cell described in step (2), then:

Finternal
ix = 0 (38)

Finternal
iy = 0 (39)

which indicates that the background cells described in step (2) have no force effect on the field node i.
Step (4): The internal force in the x direction on section B-B can be expressed in the following form:

t/2∫
−t/2

σx(y) · dy =
∑
n′

Finternal
ix (40)

The internal moment on section B-B can be expressed in the following form:

t/2∫
−t/2

σx(y) · y · dy =
∑
n′

(Finternal
ix · yi) (41)

Substituting Equations (40) and (41) back into Equations (35) and (36), we obtain

σm · t =
∑
n′

Finternal
ix (42)

σb ·
t2

6
=

∑
n′

(Finternal
ix · yi) + ξ ·

t/2∫
−t/2

τxy(y) · dy (43)

Then, if ξ→ 0 , we can obtain:
σm · t =

∑
n′

Finternal
ix (44)

σb ·
t2

6
=

∑
n′

(Finternal
ix · yi) (45)

The above flowchart for obtaining stress solutions in the form of membrane stress σm and bending
stress σb was demonstrated Figure 4. Actually, the process demonstrated is also suitable for other global
weak meshfree methods. The improved EFG, which modified the conventional EFG algorithm with
the same process presented, and was also realized in our study. The results based on improved EFG
were presented in Section 3. Limited by the length of the article, the basic principles of conventional
EFG were not demonstrated in the paper. The detail of conventional EFG is given in [36].
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2.5. Notch Stress Intensity Factors Using Improved RPIM Based Stress Solutions

From the previous study [8], the notch stress effect at welds can be calculated by introducing
characteristic depth t1 (t1 is taken as 0.1) in FEM model. The discussion on that the selection of t1 should
be selected as 0.1 was given in [8,17]. In this paper, the same value of t1 (t1 = 0.1) was introduced in
meshfree model as shown in Figure 5a. The following Equation (46) must be satisfied by applying
Equations (42) and (43) within region 1 and region 2, respectively (enforcing the equilibrium conditions
and continuity condition within region 1 and region 2).∑

region1+region2
Finternal

ix = σ1t1 +
1
2 (σ2 − σ1)t1 + σ2(t− t1) +

1
2 (σ3 − σ2)(t− t1)∑

region1
(Finternal

ix · yi) = (σ1t1) ·
t1
2 +

[
1
2 (σ1 − σ2)t1

]
·

2
3 t1∑

region2
(Finternal

ix · yi) = [σ3(t− t1)] ·
t−t1

2 +
[

1
2 (σ3 − σ2)(t− t1)

]
·

2
3 (t− t1)

(46)
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The membrane and bending components within region 1 and region 2 are as follows:

σm(1) =
σ1+σ2

2 , σb(1) =
σ1−σ2

2
σm(1) =

σ2+σ3
2 , σb(2) =

σ2−σ3
2

(47)

With σm(2), σb(2) defined in Equation (47) and σm, σb defined in Equations (44) and (45),
the distributions of notch stresses can then be obtained in terms of pm and pb expressed as Equation
(48) as shown in Figure 5b. The detailed discussion on deriving the relationship between pm, pm and
σm(2), σb(2), σm, σb were given in [2].

pm = ( t2
−3lt+2l2

2lt )σm(2) + ( t2
−3lt+2l2

2lt )σb(2) − (
t2
−5lt+2l2

2lt )σm + ( t−l
2l )σb

pb = ( t2+lt−2l2
2lt )σm(2) + ( t2+lt−2l2

2lt )σb(2) − (
t2+lt−2l2

2lt )σm + ( t+l
2l )σb

(48)

Then, the stress intensity factor can be obtained based on pm, pb. For example, with applying
superposition principles, the mode I stress intensity factor for edge cracks with notch effect is as follows:

K = ps
√

t
[

fm − r
t
a
( fm − fb)

]
(49)

where ps = pm + pb, r = pb/ps,a = l. fm(a/t) and fb(a/t) denotes the dimensionless functions
documented in [17].



Appl. Sci. 2020, 10, 6873 11 of 17

3. Numerical Examples

3.1. Cantilever Beam

Since the analytic solution for the cantilever problem is known, it is often employed as a benchmark
for numerical methods. The sensitivity and accuracy of the improved RPIM based stress solutions for
general cantilever beam problem (without stress concentration effect) were presented here. Consider a
cantilever beam problem shown in Figure 6. Actually, because there is no stress concentration effect,
the stress (σm + σb) here can be viewed as generalized nominal stresses.
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The thickness of the beam is 1 m. Young’s modulus is 3E7. Poisson’s ratio is 0.3. The model is
considered as a plane stress problem. The parabolic distributed traction P = 1000KN was enforced
at the right free end as natural boundary condition. The analytic solution of this model was listed
in [36]. A total of 175 (25 × 7) field nodes were distributed in the domain of the model. The domain
was discretized into 40 (10 m × 4 m) rectangular background cells for Gauss numerical integrations.
Penalty method was carried out to exert essential boundary conditions on the left end. The analytical
solution, stress results of RPIM, EFG, improved RPIM and improved EFG at coordinate position (24 m,
6 m) were listed in Table 1. It can be seen that there are good agreements among the stress solutions of
improved RPIM, improved EFG and the analytical results.

Table 1. The stress solutions obtained from different methods at coordinate position (24 m, 6 m).

Method Parameter x (m) y (m) σx (KPa) Relative Error

Analytic Solution -

24.0

±6.0 ±1000.0 -

RPIM ac = 6, q = 1.03
ai = 3

±6.0 ±927.6 7.2%
Improved RPIM ±6.0 ±1000.0 0.0

Element Free Galerkin (EFG) ai = 4 ±6.0 ±982.0 1.8%
Improved EFG ±6.0 ±1000.0 0.0

The performance of meshfree method is often affected by parameters used in the method. The stress
solution sensitivity to parameters used in these methods was investigated below. In this study, the linear
polynomial terms were used in the RPIM-MQ expressed as Equation (1). The linear basis and the cubic
spline weight function were used in the moving least squares (MLS) approximation.

3.1.1. Sensitivity of Stress Solution to Shape Parameters

In conventional RPIM, the stress solutions are affected by shape function parameters in MQ-RBF.
Wang and Liu reported that the RPIM performs the best when q = 1.03 or q = 0.98 [31]. The stress
solutions obtained from conventional RPIM and improved RPIM for different q (q = −0.6, 0.5,
1.03 and 1.25) with different ac (ac = 0.5, 1.5, 3 and 5) were computed, respectively. Stress solutions at
coordinate position (24 m, 6 m) are shown in Figure 7. Results show that the stress solutions obtained



Appl. Sci. 2020, 10, 6873 12 of 17

from improved RPIM are insensitive to the shape parameters (both q and ac). The results also show
that improved RPIM-based stress solutions are agreed with the analytical results.
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3.1.2. Sensitivity of Stress Solutions to the Dimension of the Influence Domain

The size of rectangular influence domain can be defined simplistically by the following equations:

dix = aidcx

diy = aidcy
(50)

where dcx and dcy are the nodal spacing in the x and y directions, and ai is the dimensionless size
of the influence domain. In conventional RPIM and EFG, the stress solutions are affected by the
dimension of influence domain. Dimension of influence domain need to be carefully selected in order
to get good stress result [36]. dcx = 2.4 and dcy = 1.5 were used in the numerical examples in this
section. The stress solutions obtained from conventional RPIM, conventional EFG, improved RPIM
and improved EFG with different dimension of influence domain (ai = 1.1, 1.5, 2, 2.5, 3, and 3.5) were
computed, respectively. Stress solutions at coordinate position (24 m, 6 m) are shown in Figure 8.
Results show that the stress solutions obtained from improved RPIM and improved EFG are both
insensitive to the dimension of influence domain. The results also show that there are good agreements
among the stress solutions of improved RPIM, improved EFG and the analytical results.
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3.1.3. Sensitivity of Stress Solution to Number of Field Nodes

Different numbers of regularly distributed field nodes (126, 175 and 403) were carried out,
respectively, for numerical examinations to test the sensitivity of stress solution to the number of
field nodes. Stress solutions at coordinate position (24 m, 6 m) were plotted in Figure 9. A model of
regularly distributed 175 field nodes and 175 distributed irregularly field nodes was also carried out to
test the sensitivity of stress solution to the distribution of field nodes. We found that the stress solution
of based on improved RPIM and improved EFG were both insensitive to the field node distribution
and the number of field nodes. The results also show that there are good agreements among the stress
solution of improved RPIM, improved EFG and the analytical results.Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 17 
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3.2. A Typical Plate Lap Fillet Weld

The typical plate lap fillet weld shown in Figure 10a was carried out to validate the consistency
and effectiveness of SCF result at weld toe based on improved RPIM. The thickness of the plate lap
fillet weld is 12 mm (t = 12 mm). The model is considered as plane strain model. The remote loading
F was enforced on the right end of this plate lap fillet weld. The values of structural stress (σm + σb)
based SCFs using the stress solutions of improved RPIM can be written in the form of:

SCF =
σm + σb

F/A
(51)

where F denotes remote loading, and A denotes the area of loaded member. As shown in Figure 10b,
results show that the SCF based on the stress solutions of improved RPIM and improved EFG are
both insensitive to shape parameters, dimension of the influence domain and number of field nodes.
The SCF result of the same plate lap fillet based on mesh-insensitive structural stress method listed
in [8] was also employed here as a validation for improved RPIM-based SCF. A good agreement
between the result obtained from improved RPIM and results listed in [8] can be seen.

3.3. T-Butt Welded Joint

The consistency and effectiveness of the improved RPIM-based notch stress solution for T-butt
welded joint are presented here. The T-butt welded joint is shown in Figure 11a. The thickness of the
T-butt welded joint is 12 mm (t = 12 mm). The model is considered as plane strain model. The remote
loading F = 1200 N was enforced on the right end of this T-butt welded joint. The detailed geometry
conditions are shown in Figure 11a. The stress solution σx at notch location of the T-butt welded joint
obtained from conventional RPIM are presented in Figure 11b. As can be seen, stress solutions at
weld toe obtained from conventional RPIM are sensitive to the parameters in RPIM, which makes it
difficult to apply stress solution of the conventional RPIM in calculation SCFs or stress intensity factors.
The SCFs based on the stress solutions of improved methods are plotted in Figure 11c. The mode I stress
intensity factor for edge cracks obtained by Equation (49) was plotted in Figure 11d. The notch stress
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intensities results of the same T-butt welded joint using mesh-insensitive structural stress method by
Dong [17] and weight functions by Glinka citeB46-applsci-934788 were employed here as validations.
It is noted that a small radius existed at notch root of weld in [46], and the radius was used for
reducing singularity at welds. The corresponding notch stress intensities factor results are also shown
in Figure 11d. The results show that there are good agreements among results based on solution of
improved RPIM and results from [17,46].
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Figure 11. SCFs and notch stress intensities results of T-butt welded joint: (a) model definition; (b) stress
solutions obtained from conventional RPIM; (c) results of SCFs based on solutions from improved
RPIM and improved EFG; (d) validations of notch stress intensities results based on improved RPIM
and improved EFG (the improved RPIM-based K was obtained from Equation (49)).
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It can be seen from the first example that the stress solution of the conventional RPIM and EFG
method are affected by the parameters used even if there is no stress concentration effect. The sensitivity
of the stress solution increases obviously when there is existing singularity at the notch. The second
and third examples demonstrated that the SCFs and stress intensity factors at the weld toe can be
computed consistently and effectively based on stress solution of improved RPIM. Actually, the basic
principle of the improved RPIM is that the discrete equations in the form of Equation (28) must satisfy
mechanical equilibrium conditions regardless of shape parameters, dimension of the influence domain
or number of field nodes. Since the equilibrium conditions are directly enforced on each field node,
the most accurate solution variables in conventional RPIM are filed nodes forces. In improved RPIM,
the stress solutions in the form of membrane stress and bending stress are obtained directly from field
nodes forces in order to avoid using derivatives of shape functions. It is this reason that guarantees the
insensitivity of the stress solutions of the improved RPIM.

4. Conclusions

Prior work has documented various meshfree methods used in science and engineering problems.
However, when applying these meshfree methods in computing the SCF and stress intensity factor at
notch of welds, the results are sensitive to the parameters used in these methods such as the existence
of notch stress singularity. It is not realistic to calculate the stress concentration factor or stress intensity
factor at welds by stress solution of the conventional RPIM.

In this study, an improved RPIM which modified the stress calculation process was presented
to realize a process of obtaining consistent stress solutions at welds. The process of computing SCF
and notch stress intensity factor at the weld toe based on the improved RPIM stress solution was
presented. In the improved RPIM, the stress solutions in the form of membrane stress and bending
stress were obtained directly from field nodes forces in order to avoid using derivatives of shape
functions. Conclusions were summarized as follows.

(1) The generalized nominal stress of beam at general location without concentration effect can be
computed consistently and effectively based on the stress solution of the improved RPIM

(2) The SCFs and stress intensity factors results at the weld toe can be computed consistently and
effectively based on stress solution of the improved RPIM.

(3) Both the SCF and stress intensity factor results are insensitive to parameters such as shape
parameters, dimension of the influence domain and number of field nodes.

(4) In addition, we also found that EFG with the same improved technique was also able to realize
the process of obtaining consistent stress solutions at welds.

The main novelty of our studies is to provide an effective approach to apply meshfree methods in
computing SCF and notch stress intensities at welds consistently. However, there are some limitations
worth noting. Both RPIM and EFG are global weak-form meshfree methods. Further work should
include how to apply local weak-form meshfree methods in consistently and effectively computing
SCF and stress intensity factor at welds.
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