
applied
sciences

Article

Deep Learning Models Compression for Agricultural Plants

Arnauld Nzegha Fountsop 1 , Jean Louis Ebongue Kedieng Fendji 2,*
and Marcellin Atemkeng 3,*

1 Department of Mathematics and Computer Science, Faculty of Science, University of Dschang,
Dschang P.O. Box 96, Cameroon; arnauldnzegha@gmail.com

2 Department of Computer Engineering, University Institute of Technology, University of Ngaoundere,
Ngaoundere P.O. Box 454, Cameroon

3 Department of Mathematics, Rhodes University, Grahamstown 6140, South Africa
* Correspondence: lfendji@gmail.com (J.L.E.K.F.); m.atemkeng@ru.ac.za (M.A.)

Received: 24 August 2020; Accepted: 23 September 2020; Published: 30 September 2020
����������
�������

Abstract: Deep learning has been successfully showing promising results in plant disease detection,
fruit counting, yield estimation, and gaining an increasing interest in agriculture. Deep learning
models are generally based on several millions of parameters that generate exceptionally large
weight matrices. The latter requires large memory and computational power for training, testing,
and deploying. Unfortunately, these requirements make it difficult to deploy on low-cost devices
with limited resources that are present at the fieldwork. In addition, the lack or the bad quality
of connectivity in farms does not allow remote computation. An approach that has been used to
save memory and speed up the processing is to compress the models. In this work, we tackle the
challenges related to the resource limitation by compressing some state-of-the-art models very often
used in image classification. For this we apply model pruning and quantization to LeNet5, VGG16,
and AlexNet. Original and compressed models were applied to the benchmark of plant seedling
classification (V2 Plant Seedlings Dataset) and Flavia database. Results reveal that it is possible to
compress the size of these models by a factor of 38 and to reduce the FLOPs of VGG16 by a factor of
99 without considerable loss of accuracy.

Keywords: deep learning models; compression; agriculture; models pruning; models quantization

1. Introduction

Deep learning (DL) is playing a crucial role in precision agriculture to improve the yield of the
farm [1–3]. However, applying deep learning in agriculture involves the acquisition and processing of
a large amount of data related to crop. These data are essentially collected, based on wireless sensors
(aboveground or underground), drones, satellites, robots, etc. Due to the huge amount of parameters,
DL models are usually inefficient on low-cost devices with limited resources [4]. As a result, they
are usually deployed on remote servers. Remote processing raises two issues: the latency of the
network, and the bandwidth saving. Farm automation solutions such as automatic harvesting [5], fruit
counting [6], etc., require a very short response time that is not easily provided by remote computation.
The closer the processing unit is in the farm, the smaller is the latency. Apart from latency, most weakly
industrialized economies experience low Internet penetration rates, especially in rural areas where
agricultural activities are mainly performed. Many rural areas that do have connectivity have low
bandwidths that only allow limited data traffic [7,8]. This can also increase the response time since DL
models process a huge amount of data. A recent approach to overcome those limitations is infield
deployment that can provide more efficient real-time reaction, critical for crop monitoring. Infield
deployment generally relies on edge computing [9] that allows incoming data to be analyzed close to
the source with a minimal footprint.

Appl. Sci. 2020, 10, 6866; doi:10.3390/app10196866 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-3549-0516
https://orcid.org/0000-0001-9803-6981
https://orcid.org/0000-0002-9020-3885
http://www.mdpi.com/2076-3417/10/19/6866?type=check_update&version=1
http://dx.doi.org/10.3390/app10196866
http://www.mdpi.com/journal/applsci

Appl. Sci. 2020, 10, 6866 2 of 19

Edge computing adapts well to limited computing performance and it is suitable for infield
inference, which enables real-time reaction and facilitates the sending of refined data or results over
narrowband networks. Since devices used in agricultural field are resource-limited, using infield DL
models is considered to be a significant challenge.

Few works [10,11] on DL in agriculture take into account the limitation of resources. Authors
designed a model compression technique based on separable convolution and singular value
decomposition. They applied their technique on very deep convolutional neural networks (CNNs) for
plant image segmentation, with the aim of deploying the new model infield.

In contrast to the works of [10,11], which focus on segmentation (background/flower), this paper
focuses on classification, which is a more common task in the application of DL in agriculture. This work
proposes a combination of two methods namely pruning and quantization, which are applicable to
any type of neural network and allows to obtain higher compression ratio. Three DL models (LeNet5,
VGG16, and AlexNet) are compressed and applied on two datasets used in agriculture: V2 Plant
Seedlings Dataset [12] and Flavia database [13].

The rest of the paper is organized as follows: Section 2 briefly presents common DL models as
well as the constraints of deploying such models on low-cost and limited-resource devices. Section 3
describes of up-to-date techniques in model compression. The proposed model approach and
experimental setup are discussed, respectively, in Sections 4 and 5. The evaluation on plant disease
datasets is done in Section 6, and Section 7 concludes the present work.

2. Deep Learning Models

Several DL models have been proposed in the literature. This section presents common models
that usually serve as a basis to other models, and the constraints of deploying DL models on low
resource devices.

2.1. State-of-the-Art Models

The first major success of CNNs in the task of pattern recognition dates back to LeNet (LeNet5) [14].
It was designed for handwritten and machine-printed character recognition. According to current
trends, LeNet5 is a very simple model. The network architecture encompasses two sets of convolutional
and average pooling layers. Those layers are followed by a flattening layer, then two fully connected
layers and finally a softmax classifier.

AlexNet [15] follows the ideas of LeNet5, incorporating several new concepts and more depth.
It consists of eight layers: five convolutional layers and three fully connected (FC) layers. The great
success of AlexNet is due to several advantages such as the ReLU activation function, the dropout,
the data augmentation, as well as the use of GPUs to speed up computation.

Later VGGNet [16] based on AlexNet has been developed as an enhancement that replaces large
convolutional filters of size 11 × 11 and 5 × 5, respectively, in the first and second convolutional layer
in AlexNet with multiple small filters of size 3 × 3. With a given receptive field (the effective area size
of input image on which output depends), several smaller filters stacked together are better than one
larger filter because several nonlinear layers increase the depth of the network, allowing it to learn
more complex features at a lower cost.

Another important model is ResNet [17]. The fundamental breakthrough of ResNet was to enable
the training of extremely deep neural networks with more than 150 layers with no loss in gradient.
Before training with residual layers, very deep neural networks were difficult to train because of
vanishing gradients problem. ResNet introduced the concept of jump connection (residual connection)
which allows the model to learn an identity function that ensures that upper layers will work at least
as well as lower layers.

In the trend of developing DL models, Google has proposed Inception GoogleNet or Inception [18].
It is essentially a CNN that has 27 layers depth. In CNNs, much of the work consists of choosing the
right layer to apply with the most common options (filters sizes, types of pooling, etc.). It is sufficient

Appl. Sci. 2020, 10, 6866 3 of 19

to find the optimal local construction and repeat it spatially. GoogleNet uses all these layers in parallel
and then combines their results.

These models are very often reused for different tasks in agriculture. Table 1 shows some important
works that use state-of-the-art models in agriculture.

2.2. Deep Learning Models Constraints

Typically, these deep learning models are trained and deployed on GPUs because of their computing
power requirements. Infield training and/or deployment of such models in low-cost equipment are
therefore subject to some main constraints: the memory, the computing power, and the energy.

Memory: The most obvious bottleneck for DL is the working memory, but also the storage space,
especially when working with low resource devices. Models commonly require storage space in the
order of hundreds of MB due to their complex representation, far above 32 MB offered by IMote
2.0 or 64 MB proposed by Arduino Yun [19]. From a practical point of view, this inflates sensor
apps dramatically and usually dwarfs application logic [20]. Concerning the runtime requirements,
the required working memory at peak time will often preclude a particular platform from using a
model even if this platform has the necessary storage space to hold the model representation. It is not
uncommon for a single model layer to require tens or hundreds of MBs and this might be 90% more
than the average layer consumption within the model. In such cases, manual customization of the
model is necessary before it runs completely up to the final layer.

Table 1. Some work using state-of-the-art models in agriculture.

Tasks Models Used Reference

Plant recognition AlexNet [21,22]

Plant disease detection AlexNet and Inception [23]

Tomato fruit counting Inception-ResNet [6]

Plant species classification VGG16 [24]

Mixed crops semantic segmentation VGG16 [25]

Obstacles detection in the farm VGG16 and AlexNet [26]

Fruit detection Faster R-CNN and VGG16 [27,28]

Mango fruit detection and yield estimation Faster R-CNN [29]

Plant disease recognition CaffeNet [30]

Computing power: Models such as VGGNet, even when carefully implemented on embedded
platforms, have proven to take a couple of minutes for a single image due to the paging required to
overcome a large memory footprint [20]. Likewise, despite their high computing power, devices such
as smartphones present challenges in running deep models with latency tailored to user interaction.
This typically leads to the use of models that offload their computation to the cloud, or at least to a GPU.
Computational requirements are also strongly dependent on the architecture of the model, with some
layers such as convolutional layers being much more related to computation than feed-forward layers
(which are more related to memory). As a result, simple architecture changes can have a significant
impact on the running time.

Energy: Related to computation, the power consumption of deep models due to the excessive
running time for a single inference can be very expensive for equipment used in continuous monitoring.
In addition, the access to a power source in remote areas such as farms is not always guaranteed.
That is why equipment are usually battery powered. The limited energy of battery therefore requires
the minimization of the power consumption of deep learning models.

To overcome present challenges and to allow the deployment of DL models on resource limited
equipment require the compression of models.

Appl. Sci. 2020, 10, 6866 4 of 19

3. Related Works on Models Compression

The idea of compressing models has originated from the observation that many of the parameters
used in deep neural networks (DNNs) are redundant [31] and thus may be removed without loss
of performance. In addition, using a very deep model (in terms of number of layers) is not always
necessary, and it may be possible to eliminate some of the hidden layers without considerably
decreasing the accuracy [32]. As a consequence of the compression, the complexity will be reduced [9],
which makes the application suitable for low resources.

3.1. Parameter Pruning

In many neural networks, a large number of parameters do not contribute significantly to the
network’s predictions [33]. Pruning is a simple but efficient method to introduce sparsity in deep neural
networks. The idea of parameters pruning consists of reducing the size of the model by removing the
unnecessary connection from the neural network. Pruning contributes to decrease the computation
cost along with the storage and memory, while keeping an acceptable performance. Several heuristics
have been studied to select and delete irrelevant connections.

3.1.1. Pruning Schedule

Pruning schedule is divided into two categories: one shot pruning and iterative pruning. One shot
pruning aims to achieve the desired compression ratio in a single step. More aggressive than iterative
pruning, redundant connections are pruned once with respect to the saliency criterion and the sparse
pruned network is retrained. The main advantage is that it does not require additional hyper-parameters
or pruning schedule. The authors of [34] propose a data-dependent selective pruning of redundant
connections prior to training. For this purpose, the importance of the connections is evaluated by
measuring its effect on the loss function.

In contrast to one shoot pruning, iterative pruning consists of gradually removing connections
until obtaining the targeted compression ratio. As the configuration of the model changed, it has to be
retrained to readapt the parameters after pruning iterations to recover the accuracy drop [35].

3.1.2. Salience Criteria

Brain Damage [36] and Optimal Brain Surgeon [37] used the second-order Taylor expansion to
calculate the parameters’ importance. It consists of removing parameters with the least increase of
error approximated by second order derivatives. However, in very deep networks, computing the
Hessian or Hessian inverse over all the parameters can be too expensive. A simpler method consists of
using the magnitude of weight value.

Let us consider W the set of weight tensors and wi j εW, the magnitude-based connections pruning
supposes removing all connections whose weight absolute value is lower than a certain threshold T,
as given in Equation (1).

wi j =

{
0 i f wi j < T
wi j otherwise

(1)

An intuitive constraint for non-zero connections selection consists of weights regulation. Using
the L1 and L2 norms, Song Han [33] reduced the number of parameters of AlexNet and VGG-16 by
factors of 9 and 13, respectively. Some other methods learn pruning criteria using reinforcement
learning (RL) [38,39]. RL based pruning focuses on learning the proper pruning criteria for different
layers via the differential sampler.

3.1.3. Granulation

Depending on the structure, pruning can be classified in two main categories: unstructured
pruning and structured pruning. The unstructured pruning approach, also called fine-grained,
removes individual weights unconstrained from the local structure. However, pruning can remove

Appl. Sci. 2020, 10, 6866 5 of 19

entire structures (kernel, filter, etc.). Figure 1 illustrates the different level of granularity neural
network pruning.FOR PEER REVIEW 5 of 20

Figure 1. Neural network pruning granularity.

Fine-grained pruning methods remove network parameters independently to the data structure.
Any unimportant parameters in the convolutional kernels can be pruned. This consists of using
salience criteria to rank individual weights then remove the less important. Recently the authors of
[33] proposed a deep compression framework to compress deep neural networks in three steps:
pruning, quantization, and Huffman encoding. By using this method, AlexNet could be compressed
by a factor of 35 without drops in accuracy. The work uses a polynomial decay function to control
the step sparsity level. High sparsity levels can be achieved, so the model can be compressed to
require less memory space and bandwidth. However, a poor pruning can lead to a drop in accuracy.
In addition, these approaches result in unstructured parsimony of the model. Without specialized
parallelization techniques and hardware that can perform computations on sparse tensors, this does
not accelerate the computation. Another strategy is to remove entire data structures, such as kernels
or filters.

Vector-level pruning methods prune 1D vectors in the convolutional kernels, and kernel-level
pruning methods prune 2D kernels in the filters. Like fine-grained pruning, vector-level pruning and
kernel-level convert dense connectivity into sparse connectivity, but in a structured way [40].

Group-level pruning tries to eliminate network parameters according to the same sparse pattern
on the filters [41]. In this way, convolutional computation can be efficiently implemented with
reduced matrix multiplication. In [42], the authors propose a group-wise convolutional kernel
pruning approach inspired by optimal brain damage [36]. The authors of [35] used group Lasso to
learn a sparse structure of neural networks.

Filter-level pruning reduces convolutional layers size by removing unimportant filters. This
leads to a simplification of the network architecture. Layer filters are removed, and also the size of
the output features-map is reduced and directly impacts on the convolutional layers’ speedup.
Pruning filters with low absolute weights sum is similar to pruning low magnitude weights. Filter-
level pruning maintains dense tensors which leads to a lower compression ratio but is more efficient
for accelerating the model with less convolution operation. The authors of [43] proposed ThiNet, a
filter-level pruning framework to simultaneously accelerate and compress convolutional neural
networks. They used the next layer’s feature map to guide the filter pruning in the current layer.

Unstructured sparsity produces very high compression rates but allows very low accuracy.
Structured sparsity is more beneficial for direct savings of computational resources on embedded
systems, in parallel computing environments and efficient inference acceleration. As proposed by
[33], pruning can be combined with quantization to achieve maximal compression ratio.

Figure 1. Neural network pruning granularity.

Fine-grained pruning methods remove network parameters independently to the data structure.
Any unimportant parameters in the convolutional kernels can be pruned. This consists of using
salience criteria to rank individual weights then remove the less important. Recently the authors
of [33] proposed a deep compression framework to compress deep neural networks in three steps:
pruning, quantization, and Huffman encoding. By using this method, AlexNet could be compressed by
a factor of 35 without drops in accuracy. The work uses a polynomial decay function to control the step
sparsity level. High sparsity levels can be achieved, so the model can be compressed to require less
memory space and bandwidth. However, a poor pruning can lead to a drop in accuracy. In addition,
these approaches result in unstructured parsimony of the model. Without specialized parallelization
techniques and hardware that can perform computations on sparse tensors, this does not accelerate the
computation. Another strategy is to remove entire data structures, such as kernels or filters.

Vector-level pruning methods prune 1D vectors in the convolutional kernels, and kernel-level
pruning methods prune 2D kernels in the filters. Like fine-grained pruning, vector-level pruning and
kernel-level convert dense connectivity into sparse connectivity, but in a structured way [40].

Group-level pruning tries to eliminate network parameters according to the same sparse pattern
on the filters [41]. In this way, convolutional computation can be efficiently implemented with reduced
matrix multiplication. In [42], the authors propose a group-wise convolutional kernel pruning approach
inspired by optimal brain damage [36]. The authors of [35] used group Lasso to learn a sparse structure
of neural networks.

Filter-level pruning reduces convolutional layers size by removing unimportant filters. This leads
to a simplification of the network architecture. Layer filters are removed, and also the size of the output
features-map is reduced and directly impacts on the convolutional layers’ speedup. Pruning filters
with low absolute weights sum is similar to pruning low magnitude weights. Filter-level pruning
maintains dense tensors which leads to a lower compression ratio but is more efficient for accelerating
the model with less convolution operation. The authors of [43] proposed ThiNet, a filter-level pruning
framework to simultaneously accelerate and compress convolutional neural networks. They used the
next layer’s feature map to guide the filter pruning in the current layer.

Unstructured sparsity produces very high compression rates but allows very low accuracy.
Structured sparsity is more beneficial for direct savings of computational resources on embedded
systems, in parallel computing environments and efficient inference acceleration. As proposed by [33],
pruning can be combined with quantization to achieve maximal compression ratio.

Appl. Sci. 2020, 10, 6866 6 of 19

3.2. Quantization

Quantization reduces the model to lower representation allowing the reduction of computational
time and low memory footprint. The quantization techniques can be grouped into two main categories:
Scalar and Vector Quantization, and Fixed-Point Quantization.

Scalar and vector quantization techniques are mainly used in data compression. This technique
makes use of a codebook and a set of quantization codes to represent the original data. Since the size of
the codebook is much smaller than the original data, the original data could be effectively compressed
by quantization. Inspired by this, scalar or vector quantization approaches consist of representing the
parameters or weights applied to a deep lattice for compression. In [44] the authors applied k-means
clustering to weights or perform product quantization and obtained a very good balance between
model size and recognition accuracy. They achieved a factor of 16–24 network compression with only
1% loss of accuracy on the ImageNet classification task.

The Fixed-Point Quantization decreases computational complexity by decreasing the number
of bits used in float representation. The precision of the result is also decreased, but in a controlled
fashion. Quantization may be done during training (prequantization) or after (postquantization).
In prequantization, a floating-point model is trained directly using fixed-point representation training
techniques. An alternative approach to prequantization consists of training the floating-point model,
and then using quantization training techniques at the fine-tuning step. Postquantization consists of
converting a pretrained floating-point model to a fixed-point representation, and inferences are drawn
using a fixed-point computation. The model is used without any retraining or fine-tuning step.

Quantization techniques achieve high compression ratios and accuracies but also require
appropriate software approach or sophisticated hardware to support inference.

3.3. Low-Rank Factorization

Convolution operations comprise the bulk of calculations in CNNs. It follows that any reduction
or simplification of convolutional layers would improve the speed of inference because convolution
operations are heavy. The inputs to convolutional layers in a typical CNN are four-dimensional
tensors. The key observation is that there could be a significant amount of redundancy in these
tensors. Ideas based on tensor decomposition seem to be a particularly promising way to remove
redundancy. As for the fully connected layer, it can be seen as a 2D matrix and the low rank can also
help. In convolutional layers, reducing the convolution operations by decomposing the weight tensor
into low-rank tensors approximation improves the model speedup.

3.4. Separable Convolution

MobileNet [45] and Xception [46] use separable convolutions to reduce model parameters.
Separable convolution lowers the number of multiplications and additions in the convolution operation,
with a direct consequence of reducing the model weight matrix and speeding up the training and
testing of large CNNs. The spatial separable convolution decomposes the filter into two smaller filters
and the depth wise separable convolutions separate the filters into filters of depth 1 followed by a
1 × 1 convolution.

3.5. Knowledge Distillation

The basic idea of knowledge distillation is to form a smaller “student” model to reproduce the
results of a larger “teacher” model. The cross-entropy loss of the “teacher” model is added to the loss
value of the “student” model. In this method, the student also learns the “obscure knowledge” [23] of
the associated close categories of the teacher model in addition to learning labels from the input data.

Appl. Sci. 2020, 10, 6866 7 of 19

3.6. Model Compression Metric

Two metrics are generally used to evaluate the compression of a model: the compression ratio
and the speed up. The compression ratio is the ratio of memory required to inference before and after
compression. It can be evaluated by the compression factor (CF) given in Equation (2) or the gain (R)
in memory footprint given in Equation (3).

CF =
FBC
FAC

(2)

R = 1−
1

CF
(3)

where FBC is the footprint before compression and FAC is the footprint after compression.
The speed up measures the model acceleration before and after compression in terms of inference

time. It is usually expressed in terms of Floating-Point Operations (FLOPs). The FLOPs evaluate the
number of multiplication and addition used to complete a process, which is a common practice to
evaluate the computational time. Improvements in FLOPs result in decreasing inference time of the
networks because of removing unnecessary operations. However, time consumed by inference depends
on the implementation of convolution operator, parallelization algorithm, hardware, scheduling,
memory transfer rate, etc.

4. Proposed Compression Approach

The compression approach used in this paper is composed of two main steps: model pruning and
quantization. The flowchart of the compression approach is provided in Figure 2.

4.1. Initialization

As proposed in [44], we implement the removal of the weights using a mask tensor (M) initialized
at 1 at the early stage of the training, and of the same size as the weight tensor (W).

4.2. Pretraining

The first training phase performs a normal Stochastic Gradient Descent (SGD).
The L2-normalization allows to reduce the magnitude of the weights and also rank them in order
of importance.

4.3. Pruning

The connections are pruned iteratively by defining a step sparsity level at each stage. A polynomial
decay function is used to determine the step sparsity level. It is defined in Equation (4).

SSL = S + (Sr − S)
(
1−

k− r
r− n

)
(4)

where S is the targeted sparsity level; Sr the initial sparsity level, r the initial iteration, n the last
iteration, and k the current iteration. The step sparsity level is used to determine the threshold value of
important connections.

To determine the threshold, the weights of each layer are ranked according to their magnitude.
The threshold value is the value at the position step sparsity level multiplied by the number of weights.
Let us consider mi j an element of the mask tensors M, when the absolute value of the weight associated
to mi j is below the threshold T, mi j takes the value 0 as defined by Equation (5). The dot product given
in Equation (6) forces the pruned weights to be set to zero.

mi j =

{
0 i f

∣∣∣wi j
∣∣∣ < T

1 otherwise
(5)

Appl. Sci. 2020, 10, 6866 8 of 19

W = W.M (6)

Unlike the connections pruning, in filters pruning, the salience criteria is the value of the sum of
the absolute values of the filter weights. All the values in the mask corresponding to the weight of
each filter are set to 0 if the sum of the absolute values of its filter weights is less than the threshold as
defined in Equation (7). Then the dot product given in Equation (6) forces the pruned weights to be set
to zero.

M = 0 i f
∑
f ilters

|W| < T (7)

FOR PEER REVIEW 7 of 20

3.6. Model Compression Metric

Two metrics are generally used to evaluate the compression of a model: the compression ratio
and the speed up. The compression ratio is the ratio of memory required to inference before and after
compression. It can be evaluated by the compression factor (𝐶𝐹) given in Equation (2) or the gain (R)
in memory footprint given in Equation (3). 𝐶𝐹 = 𝐹𝐵𝐶𝐹𝐴𝐶 (2)

𝑅 = 1 − 1𝐶𝐹 (3)

where FBC is the footprint before compression and FAC is the footprint after compression.
The speed up measures the model acceleration before and after compression in terms of

inference time. It is usually expressed in terms of Floating-Point Operations (FLOPs). The FLOPs
evaluate the number of multiplication and addition used to complete a process, which is a common
practice to evaluate the computational time. Improvements in FLOPs result in decreasing inference
time of the networks because of removing unnecessary operations. However, time consumed by
inference depends on the implementation of convolution operator, parallelization algorithm,
hardware, scheduling, memory transfer rate, etc.

4. Proposed Compression Approach

The compression approach used in this paper is composed of two main steps: model pruning
and quantization. The flowchart of the compression approach is provided in Figure 2.

Figure 2. Flowchart of model pruning and quantization. Figure 2. Flowchart of model pruning and quantization.

4.4. Retraining

The retraining of the model allows to correct the damage caused by the removal of connections.
After each backpropagation the weights of pruned connections are reset to zero by the dot product in
Equation (6).

4.5. Compression of the Model

At this step we can either compress the size of the weights or extract the reduced architecture of
the model. Since the weights are zeroed in an unstructured fashion, they cannot be removed from the
layer weight tensor. Compressing the model file allows us to observe the variation in size. We use
Gzip for file compression.

Appl. Sci. 2020, 10, 6866 9 of 19

After retraining, connections with null masks can be directly removed from the model architecture.
Convolutional layers: each filter is removed if its mask consists of zero values. Channels

corresponding to the pruned filters are deleted in the next layers entry.
Batch-normalization layers: In the normalization layers the channels corresponding to the pruned

filters are also deleted.
Soft-Max layer: removal of filters at the last convolution layer also requires removal of the

corresponding connections in the soft-Max layer.

4.6. Quantization

We adopt quantization only at post-training. We apply fixed-point weights quantization.
The matrix of weights is compressed from 32- to 16-bit floating point values.

5. Datasets and Experimentation Setup

5.1. Datasets

We conducted a set of experiments using two datasets of plant, namely plant seedlings dataset
(V2) and Flavia database. The plant seedlings database [12] is a public image database for benchmark
of plant seedling classification. The dataset contains 5537 images of 5184 × 3456 pixels of crop plants
and weeds all in the seedling stage. The database includes 12 species of Danish agricultural plants and
weeds with 253–762 images per species. Images of the different plants were collected with a DSLR
camera at different stages separated by 2–3 days. Here we randomly selected 80% of images for training
and 20% of images for evaluation. The second dataset (Flavia dataset) consists of 1907 leaf images of
1600*1200 pixels of 32 different plant species with 50–77 images per species [13]. Each image contains a
single trimmed and isolated leaf. The images were collected on the campus of the Nanjing University
and the Sun Yat-Sen arboretum using scanners or digital cameras on a plain background. The provided
database contains RGB color images with a white background. We also randomly selected 80% of
images for training and 20% of images for evaluation.

5.2. Experimentation Setup

We performed both parameters pruning and quantization on the LeNet5, AlexNet, and VGG-16.
For each model, we modified only the last layer with respect to the number of classes in the dataset.
For training we used the Stochastic Gradient Descent with a learning rate of 10−2. For these three
experiments, we used softmax output layer with categorical cross-entropy loss. We trained both simple
models and compressed models over 100 epochs using the training-set plant seedlings dataset and
500 epochs for Flavia database because of its small number of images. The input images were all
resized to (50 × 50) without any data augmentation process.

5.3. Pruning

In the experiments we used iterative pruning and L2 normalization. The pruning was performed
after each 100 iterations of 50 images per batch. Then less relevant connections were set to zero
according to the magnitude and the step sparsity level. The first iteration of pruning removes 50%
of parameters, then continues gradually to achieve the desired sparsity level. The first iteration of
pruning was performed after 1/5 of the total number of epochs. In addition, 1/10 of total epochs was
used to allow the model to recover from the accuracy drop.

5.3.1. Experimentation Setting 1

The first experiment consists of performing the pruning on each layer of the model in order
to obtain a completely sparse model. Each layer has the same sparsity level with L2 regularization.
For the same model we observed the accuracies in four cases. We removed 80%, 85%, 90%, and 95%
of parameters.

Appl. Sci. 2020, 10, 6866 10 of 19

5.3.2. Experimentation Setting 2

Convolutional layers use less weight than fully connected layers due to parsimony and weight
sharing. Therefore, if the model is not too deep, these layers do not represent much of the overall
volume of the model weights. For this experiment, the pruning is mainly focused on the fully connected
module of our models. We first undertook a study of the proportions of dense layers in the total
number of model parameters.

5.3.3. Experimentation Setting 3

The third experiment consists of filter-level pruning. Here to simplify the architecture, we replaced
the fully connected module with a Global Average Pooling layer and a softmax layer. The new model
(Model + GAP) was pruned with the total weights sum. The filter magnitude was determined by the
absolute value of the weights sum.

6. Evaluation

To evaluate the performances of model pruning and quantization as model compression for
agricultural applications, we focused on the reduction of the memory footprint and the speed-up.
The core algorithms for fine-grained pruning and filter-level pruning are provided in
mboxcrefapp:app1-applsci-926211,app:app2-applsci-926211 respectively.

6.1. Pruning with Same Pruning Ratio per Layer

Tables 2–4 present the application of pruning followed by a postquantization on the plant seedlings
dataset for models VGGNet16, AlexNet, LeNet5, respectively. The comparison was made in terms of
size and accuracy at different pruning levels. Results show that by using pruning techniques during
compression and postquantization we can reduce the size of the models by an average factor of 38.
In other words, we can achieve a reduction of factor 3.5, 4.2, 5.3, and 7.5 by removing, respectively, 80%,
85%, 90%, and 95% of trainable weights without considerable variation. We can then apply the
postquantization and obtain a reduction of factor 12, factor 16, factor 22, and factor 38 with the same
precision. In all the following tables, bold numbers indicate the best accuracy.

Table 2. Comparison in terms of size before and after compression on VGGNet16 and the plant
seedlings dataset.

VGGNet16 Original 80% Pruning 85% Pruning 90% Pruning 95% Pruning

Pruning

Size 152.61 Mb 43.47 Mb 36.12 Mb 28.45 Mb 20.17 Mb

Accuracy 88.67 88.40 89.48 86.88 88.85

Pruning + postquantization

Size 36.76 Mb 11.84 Mb 9.41 Mb 6.87 Mb 3.98 Mb

Accuracy 88.67 88.23 89.03 89.84 89.03

We obtained similar results by applying the same process on the Flavia database. Since only the
last layer is changed in the architecture of the models applied to these two datasets, the variation in
terms of size is exceedingly small. Table 5 presents the different accuracy values obtained by applying
the pruning on LeNet5, AlexNet, and VGG16 with a sparsity level of 80%, 85%, 90%, and 95% for all
the architectures.

Appl. Sci. 2020, 10, 6866 11 of 19

Table 3. Comparison in terms of size before and after compression on AlexNet and the plant
seedlings dataset.

AlexNet Original 80% Pruning 85% Pruning 90% Pruning 95% Pruning

Pruning

Size 131.25 Mb 37.27 Mb 30.95 Mb 24.40 Mb 17.40 Mb

Accuracy 86.70 87.24 87.87 86.88 87.96

Pruning + postquantization

Size 32.37 Mb 10.18 Mb 8.09 Mb 5.89 Mb 3.42 Mb

Accuracy 86.97 86.70 88.31 86.61 87.78

Table 4. Comparison in terms of size before and after compression on LeNet5 and the plant
seedlings dataset.

LeNet5 Original 80% Pruning 85% Pruning 90% Pruning 85% Pruning

Pruning

Size 42.54 Mb 12.02 Mb 10.01 Mb 7.91 Mb 5.65 Mb

Accuracy 83.56 84.28 80.14 83.38 83.11

Pruning + postquantization

Size 9.91 Mb 3.17 Mb 2.49 Mb 1.86 Mb 1.10 Mb

Accuracy 83.55 84.36 82.65 83.55 84.09

Table 5. Comparison in terms accuracy before and after compression on the Flavia database.

Models Accuracy 80% Pruning 85% Pruning 90% Pruning 95% Pruning

Pruning

VGG16 91.36 87.70 90.58 90.88 91.49

AlexNet 96.07 96.86 97.9 97.9 95.81

LeNet5 95.03 94.76 92.41 94.76 95.03

Pruning + postquantization

VGG16 91.49 84.28 80.14 83.38 83.11

AlexNet 96.59 96.59 97.9 97.9 95.54

LeNet5 95.02 94.50 92.67 95.81 95.02

6.2. Only Fully Connected Layers Pruning

Figure 3 presents the distribution of the number of parameters for LeNet5 (top-panel), AlexNet
(middle-panel), and VGGNet16 (botton-panel). Between the different convolutional layers, we have
Pooling and Batch-Normalization layers that have insignificant weights, as well as the Drop-out
layer between the fully connected layers. The convolutional layers have less weight than the fully
connected layers. This is mainly due to the weight sharing and local connectivity of the neurons.
Unlike AlexNet and LeNet5, VGGNet16 still has a considerable number of weights in the convolutional
layers. Although the kernels are very small the convolutional layers have a large number of filters in
VGGNet16. Figure 4 shows a comparison of fully connected layers to the rest of the neural network.

Appl. Sci. 2020, 10, 6866 12 of 19

FOR PEER REVIEW 11 of 20

Size 9.91 Mb 3.17 Mb 2.49 Mb 1.86 Mb 1.10 Mb
Accuracy 83.55 84.36 82.65 83.55 84.09

We obtained similar results by applying the same process on the Flavia database. Since only the
last layer is changed in the architecture of the models applied to these two datasets, the variation in
terms of size is exceedingly small. Table 5 presents the different accuracy values obtained by applying
the pruning on LeNet5, AlexNet, and VGG16 with a sparsity level of 80%, 85%, 90%, and 95% for all
the architectures.

Table 5. Comparison in terms accuracy before and after compression on the Flavia database.

Models Accuracy 80% Pruning 85% Pruning 90% Pruning 95% Pruning
Pruning

VGG16 91.36 87.70 90.58 90.88 91.49
AlexNet 96.07 96.86 97.9 97.9 95.81
LeNet5 95.03 94.76 92.41 94.76 95.03

Pruning + postquantization
VGG16 91.49 84.28 80.14 83.38 83.11
AlexNet 96.59 96.59 97.9 97.9 95.54
LeNet5 95.02 94.50 92.67 95.81 95.02

6.2. Only Fully Connected Layers Pruning

Figure 3 presents the distribution of the number of parameters for LeNet5 (top-panel), AlexNet
(middle-panel), and VGGNet16 (botton-panel). Between the different convolutional layers, we have
Pooling and Batch-Normalization layers that have insignificant weights, as well as the Drop-out layer
between the fully connected layers. The convolutional layers have less weight than the fully
connected layers. This is mainly due to the weight sharing and local connectivity of the neurons.
Unlike AlexNet and LeNet5, VGGNet16 still has a considerable number of weights in the
convolutional layers. Although the kernels are very small the convolutional layers have a large
number of filters in VGGNet16. Figure 4 shows a comparison of fully connected layers to the rest of
the neural network.

(a) LeNet5

FOR PEER REVIEW 12 of 20

(b) AlexNet

(c) VGGNet16

Figure 3. Weights histogram.

Between the different convolutional layers, we have Pooling and Batch-Normalization layers
that have insignificant weights, as well as the Drop-out layer between the fully connected layers. The
convolutional layers have less weight than the fully connected layers. This is mainly due to the weight
sharing and local connectivity of the neurons. Unlike AlexNet and LeNet5, VGGNet16 still has a
considerable number of weights in the convolutional layers. Although the kernels are very small the
convolutional layers have a large number of filters in VGGNet16.

Figure 3. Weights histogram.

Appl. Sci. 2020, 10, 6866 13 of 19
FOR PEER REVIEW 13 of 20

(a) LeNet5

(b) AlexNet

FOR PEER REVIEW 14 of 20

(c) VGGNet16

Figure 4. Weights sum for fully connected layers (orange) and convolutional layers (blue).

Dense layers have an exceptionally large number of parameters, which greatly influence the size
of the model. Here, the convolutional layers are not pruned during training. Tables 6–8 present the
results obtained after 99% pruning of the weights of the fully connected (FC) layers of models
VGGNet16, AlexNet, LeNet5, respectively.

Table 6. Comparison in terms of size and accuracy before and after compression of the VGGNet FC-
layer on the plant seedlings database.

VGG16 Original 99% FC Pruning
Pruning

Size 152.61 Mb 59.36 Mb
Accuracy 88.67 80.68

Pruning + postquantization
Size 36.76 Mb 13.83 Mb

Accuracy 88.67 80.05

On VVGNet16, by using only 1% of weights in the fully connected layers, the model size is
reduced by factor 2.5 with a drop of 7.99 in terms of accuracy. By combining pruning and
quantization, the model is reduced by factor 11 with the same accuracy drop of 7.99.

Table 7. Comparison in terms of size and accuracy before and after compression of AlexNet FC-layer
on the plant seedlings database.

AlexNet Original 99% FC Pruning
Pruning

Size 131.25 Mb 6.21Mb
Accuracy 86.70 88.49

Pruning + postquantization
Size 32.37 Mb 1.54 Mb

Accuracy 86.97 88.85

Figure 4. Weights sum for fully connected layers (orange) and convolutional layers (blue).

Between the different convolutional layers, we have Pooling and Batch-Normalization layers
that have insignificant weights, as well as the Drop-out layer between the fully connected layers.
The convolutional layers have less weight than the fully connected layers. This is mainly due to the
weight sharing and local connectivity of the neurons. Unlike AlexNet and LeNet5, VGGNet16 still has
a considerable number of weights in the convolutional layers. Although the kernels are very small the
convolutional layers have a large number of filters in VGGNet16.

Dense layers have an exceptionally large number of parameters, which greatly influence the
size of the model. Here, the convolutional layers are not pruned during training. Tables 6–8 present
the results obtained after 99% pruning of the weights of the fully connected (FC) layers of models
VGGNet16, AlexNet, LeNet5, respectively.

On VVGNet16, by using only 1% of weights in the fully connected layers, the model size is
reduced by factor 2.5 with a drop of 7.99 in terms of accuracy. By combining pruning and quantization,
the model is reduced by factor 11 with the same accuracy drop of 7.99.

Appl. Sci. 2020, 10, 6866 14 of 19

Table 6. Comparison in terms of size and accuracy before and after compression of the VGGNet
FC-layer on the plant seedlings database.

VGG16 Original 99% FC Pruning

Pruning

Size 152.61 Mb 59.36 Mb

Accuracy 88.67 80.68

Pruning + postquantization

Size 36.76 Mb 13.83 Mb

Accuracy 88.67 80.05

Table 7. Comparison in terms of size and accuracy before and after compression of AlexNet FC-layer
on the plant seedlings database.

AlexNet Original 99% FC Pruning

Pruning

Size 131.25 Mb 6.21Mb

Accuracy 86.70 88.49

Pruning + postquantization

Size 32.37 Mb 1.54 Mb

Accuracy 86.97 88.85

Table 8. Comparison in terms of size and accuracy before and after compression of LeNt5 FC-layer on
the plant seedlings database.

LeNet5 Original 99% FC Pruning

Pruning

Size 42.54 Mb 3.54 Mb

Accuracy 83.56 82.25

Pruning + postquantization

Size 9.91 Mb 0.86 Mb

Accuracy 83.55 86.70

With AlexNet (see Table 7), using only 1% of weights in the fully connected layers, the model size
is reduced by a factor of 21.1 with a gain in accuracy of 1.79. By combining pruning and quantization,
the model is reduced by a factor of 85.2 with a gain in accuracy of 2.15.

Using LeNet5 (see Table 8), only 1% of weights in the fully connected layers is used. The model
size is reduced by factor 12.01 with a drop of 1.3 in accuracy. However, by combining pruning and
quantization, the model is reduced by factor 49.4 with a gain in accuracy of 3.14.

By observing the above results, sometime pruning only the fully connected layers can be good
enough if the goal is only the footprint reduction. Pruning only the fully connected layers with high
sparsity level results in high compression of the whole model.

6.3. Filter Pruning

Tables 9–11 present the results of filter-level pruning on VGGNet, AlexNet, and LeNet5 associated
with Global average pooling, applied on the plant seedlings dataset.

Results show that the filter-level pruning is suitable for the VGGNet model and can compress it by
a factor of 352 and accelerate it by a factor of 99 with a sparsity level of 90% while gaining in accuracy.
On the other hand, AlexNet and LeNet5 are relatively smaller. The filter-level pruning seems to be less
adapted. AlexNet can maintain a small loss of accuracy with a sparsity level of 80%, but LeNet5 with a
sparsity level of 75% loses considerably in terms of accuracy.

Appl. Sci. 2020, 10, 6866 15 of 19

Table 9. Comparison in terms of size and FLOPs of filter-level pruning on VGGNet+GAP with the
plant seedlings dataset.

VGGNet+GAP Original 75% Pruning 80% Pruning 85% Pruning 90% Pruning

Filter-level pruning

Size 56.34Mb 3.56 Mb 2.33 Mb 1.34Mb 0.64 Mb

FLOPs 29,485,986 1,820,340 1,179,450 658,006 296,298

Accuracy 88.68 90.39 88.59 87.24 89.58

Pruning + postquantization

Size 14.09 Mb 0.89 Mb 0.58 Mb 0.33 Mb 0.16 Mb

Accuracy 88.85 90.38 88.40 87.33 89.84

Table 10. Comparison in terms of size and Flops of filter-level pruning on AlexNet+GAP with the
plant seedlings dataset.

AlexNet+GAP Original 75% Pruning 80% Pruning 85% Pruning 90% Pruning

Filter-level pruning

Size 2.93 Mb 0.234Mb 0.17 Mb 0.11 Mb 0.08 Mb

FLOPs 1,509,781 96,525 64,365 37,017 17,391

Accuracy 88.50 86.52 85.80 77.72 72.33

Pruning + postquantization

Size 0.73 Mb 0.06 Mb 0.04 Mb 0.03 Mb 0.02 Mb

Accuracy 88.31 86.16 86.25 77.62 72.32

Table 11. Comparison in terms of size and Flops of filter-level pruning on LeNet5+GAP with th plant
seedlings dataset.

LeNet5+GAP Original 75% Pruning 80% Pruning 85% Pruning 90% Pruning

Filter-level pruning

Size 349.97 Kb 63.55 Kb 52.8 Kb 43.8 Kb 36.8 Kb

FLOPs 167,367 20,403 15,787 10,863 6997

Accuracy 83.47 71.07 67.65 70.08 57.95

Pruning + postquantization

Size 86.05 Kb 15.42 Kb 12.95 Kb 12.66 Kb 9.23 Kb

Accuracy 83.55 71.06 68.10 69.36 54.80

6.4. Input Layer Resizing

The size of the input image is also an important parameter in the architecture of the model.
The optimal choice of the input image considerably reduces the size of the model. Table 12 presents
the use of VGGNet16 on the plant seedlings dataset with different sizes of input layers.

Table 12. Size of VGGNet16 with different sizes of the input image from the plant seedlings dataset.

VGGNet16 Input Size Size Accuracy

224 × 224 × 3 512.91 Mb 93.19

100 × 100 × 3 248.91 Mb 94.24

50 × 50 × 3 152.91 Mb 93.97

The use of input images of size 50 × 50 × 3 instead of 224 × 224 × 3 as proposed by [6] on
ImageNet, can allow us to have a model more than three times smaller with VGG16.

7. Conclusions and Future Work

In this paper, we raised the interest of DL model compression in the application to plant
disease detection in agriculture. We discussed the DL inference on low-resources devices, then we

Appl. Sci. 2020, 10, 6866 16 of 19

summarized important techniques for size compression and consequently times speed-up which have
been applied to allow DL on devices with limited resources. To evaluate the performance of model
compression, we applied two pruning methods, combined with quantization to compress LeNet5,
VGG16, and AlexNet on two databases used in agriculture. The results show on one hand that it is
possible with fine-grained pruning to compress the size of these models by an average factor of 38
by pruning 95% of the model. Additionally, that in some cases only 1% of the weight of the fully
connected layers can be used. However, deployment requires the use of specialized hardware. On the
other hand, filter-level pruning can compress the size of huge models such as VGGNet by a factor of
352 and accelerate it by a factor of 99, without considerable accuracy loss. However, it is less efficient
on smaller models.

Filter-level pruning has the advantage of directly reducing the architecture of the model which
allows it to be deployed directly in farms on limited resources such as Arduino Yun (64 MB), Raspberry
Pi (256 MB-1 GB), drones, and smartphones. In future work, we will experiment with fine-grained
pruning in real farming environments using resources such as EIEs (Efficient Inference Engine) and
FPGAs (Field Programmable Gate Arrays) to speed-up pruned model inferences.

Author Contributions: Conceptualization, A.N.F. and J.L.E.K.F.; methodology, A.N.F., J.L.E.K.F. and M.A.;
software, A.N.F.; validation, A.N.F., J.L.E.K.F. and M.A.; writing—original draft preparation, A.N.F., and J.L.E.K.F.;
writing—review and editing, J.L.E.K.F., and M.A.; supervision, J.L.E.K.F. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A Fine-Grained Pruning Algorithm

Algorithm A1: Fine-Grained Pruning

FOR PEER REVIEW 17 of 20

Author Contributions: Conceptualization, A.N.F. and J.L.E.K.F.; methodology, A.N.F., J.L.E.K.F. and M.A.;

software, A.N.F.; validation, A.N.F., J.L.E.K.F. and M.A.; writing—original draft preparation, A.N.F., and

J.L.E.K.F.; writing—review and editing, J.L.E.K.F., and M.A.; supervision, J.L.E.K.F. All authors have read and

agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Fine‐Grained Pruning Algorithm

Algorithm A1: Fine‐Grained Pruning

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Begin

/* Initialization */

𝑀𝑎𝑠𝑘 1
𝑊 𝑧𝑎𝑣𝑖𝑒𝑟 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛
𝑡 0, 𝑡 𝑓𝑖𝑟𝑠𝑡 𝑝𝑟𝑢𝑛𝑖𝑛𝑔 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 , 𝑠𝑡𝑒𝑝

/* Pretraining */

𝑊ℎ𝑖𝑙𝑒 𝑡 𝑡

𝑊 W 𝜇∇
𝑡 𝑡 1

/* Pruning */

𝑆 𝑆 𝑆 𝑆 1
𝑡 𝑡

𝑡_0 𝑡

𝑊 𝑠𝑜𝑟𝑡 𝑊

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑊 𝑆 𝑙𝑒𝑛𝑔ℎ𝑡 𝑊

 𝑖𝑓 |𝑊| 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
𝑀𝑎𝑠𝑘 0

𝑊 𝑊. 𝑀𝑎𝑠𝑘

/* Retraining */

𝑊 W 𝜇∇
𝑊 𝑊. 𝑀𝑎𝑠𝑘
𝑡 𝑡 1
𝑖𝑓 𝑡 ≡ 𝑠𝑡𝑒𝑝 then Goto Pruning

End

Appl. Sci. 2020, 10, 6866 17 of 19

Appendix B Filter-level Pruning

Algorithm A2: Filter-level Pruning

FOR PEER REVIEW 18 of 20

Appendix B: Filter‐level Pruning

Algorithm A2: Filter‐level Pruning

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Begin

/* Initialization */

𝑀𝑎𝑠𝑘 1
𝑊 𝑧𝑎𝑣𝑖𝑒𝑟 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛
𝑡 0, 𝑡 𝑓𝑖𝑟𝑠𝑡 𝑝𝑟𝑢𝑛𝑖𝑛𝑔 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 , 𝑠𝑡𝑒𝑝

/* Pretraining */

𝑊ℎ𝑖𝑙𝑒 𝑡 𝑡

𝑊 W 𝜇∇
𝑡 𝑡 1

/* Pruning */

𝑆 𝑆 𝑆 𝑆 1

𝐹𝑖𝑙𝑡𝑒𝑟𝑆𝑢𝑚 |𝑊|

𝐹 𝑠𝑜𝑟𝑡 𝐹𝑖𝑙𝑡𝑒𝑟𝑆𝑢𝑚
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝐹 𝑆 𝑙𝑒𝑛𝑔ℎ𝑡 𝐹

𝑖𝑓 |𝑊| 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑀𝑎𝑠𝑘 0

/* Retraining */

𝑊 W 𝜇∇
𝑊 𝑊. 𝑀𝑎𝑠𝑘
𝑡 𝑡 1
𝑖𝑓 𝑡 ≡ 𝑠𝑡𝑒𝑝 then Goto Pruning

End

References

1. Kamilaris, A.; Prenafeta‐Boldú, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018,

147, 70–90, doi:10.1016/j.compag.2018.02.016.

2. Zheng, Y.‐Y.; Kong, J.‐L.; Jin, X.‐B.; Wang, X.‐Y.; Su, T.‐L.; Zuo, M. CropDeep: The crop vision dataset for

deep‐learning‐based classification and detection in precision agriculture. Sensors 2019, 19, 1058.

3. Jin, X.‐B.; Yu, X.‐H.; Wang, X.‐Y.; Bai, Y.‐T.; Su, T.‐L.; Kong, J.‐L. Deep learning predictor for sustainable

precision agriculture based on internet of things system. Sustainability 2020, 12, 1433.

4. Zhang, C.; Patras, P.; Haddadi, H. Deep learning in mobile and wireless networking: A survey. IEEE

Commun. Surv. Tutor. 2019, 21, 2224–2287.

5. Zhang, L.; Jia, J.; Gui, G.; Hao, X.; Gao, W.; Wang, M. Deep learning based improved classification system

for designing tomato harvesting robot. IEEE Access 2018, 6, 67940–67950.

6. Rahnemoonfar, M.; Sheppard, C. Deep count: Fruit counting based on deep simulated learning. Sensors

2017, 17, 905.

7. Ebongue, J.L.F.K. Rethinking Network connectivity in rural communities in Cameroon. arXiv 2015,

arXiv:1505.04449.

8. Fendji, J.; Thron, C.; Nlong, J.M. Mesh router nodes placement in rural wireless mesh networks. In the

Proceedings of the CARI, Saint Louis, Senegal, 16‐23 October 2014, pp. 265–272.

9. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge computing: Vision and challenges. IEEE Internet Things J.

2016, 3, 637–646.

10. Atanbori, J.; French, A.P.; Pridmore, T.P. Towards infield, live plant phenotyping using a reduced‐

parameter CNN. Mach. Vis. Appl. 2020, 31, 2.

References

1. Kamilaris, A.; Prenafeta-Boldú, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018,
147, 70–90. [CrossRef]

2. Zheng, Y.-Y.; Kong, J.-L.; Jin, X.-B.; Wang, X.-Y.; Su, T.-L.; Zuo, M. CropDeep: The crop vision dataset for
deep-learning-based classification and detection in precision agriculture. Sensors 2019, 19, 1058. [CrossRef]
[PubMed]

3. Jin, X.-B.; Yu, X.-H.; Wang, X.-Y.; Bai, Y.-T.; Su, T.-L.; Kong, J.-L. Deep learning predictor for sustainable
precision agriculture based on internet of things system. Sustainability 2020, 12, 1433. [CrossRef]

4. Zhang, C.; Patras, P.; Haddadi, H. Deep learning in mobile and wireless networking: A survey. IEEE Commun.
Surv. Tutor. 2019, 21, 2224–2287. [CrossRef]

5. Zhang, L.; Jia, J.; Gui, G.; Hao, X.; Gao, W.; Wang, M. Deep learning based improved classification system for
designing tomato harvesting robot. IEEE Access 2018, 6, 67940–67950. [CrossRef]

6. Rahnemoonfar, M.; Sheppard, C. Deep count: Fruit counting based on deep simulated learning. Sensors
2017, 17, 905. [CrossRef]

7. Ebongue, J.L.F.K. Rethinking Network connectivity in rural communities in Cameroon. arXiv 2015,
arXiv:1505.04449.

8. Fendji, J.; Thron, C.; Nlong, J.M. Mesh router nodes placement in rural wireless mesh networks. In
Proceedings of the CARI, Saint Louis, Senegal, 16-23 October 2014; pp. 265–272.

9. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge computing: Vision and challenges. IEEE Internet Things J. 2016,
3, 637–646. [CrossRef]

10. Atanbori, J.; French, A.P.; Pridmore, T.P. Towards infield, live plant phenotyping using a reduced-parameter
CNN. Mach. Vis. Appl. 2020, 31, 2. [CrossRef]

http://dx.doi.org/10.1016/j.compag.2018.02.016
http://dx.doi.org/10.3390/s19051058
http://www.ncbi.nlm.nih.gov/pubmed/30832283
http://dx.doi.org/10.3390/su12041433
http://dx.doi.org/10.1109/COMST.2019.2904897
http://dx.doi.org/10.1109/ACCESS.2018.2879324
http://dx.doi.org/10.3390/s17040905
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1007/s00138-019-01051-7

Appl. Sci. 2020, 10, 6866 18 of 19

11. Atanbori, J.; Chen, F.; French, A.P.; Pridmore, T.P. Towards Low-Cost Image-Based Plant Phenotyping Using
Reduced-Parameter CNN. In Proceedings of the 29th British Machine Vision Conference, Newcastle upon
Tyne, UK, 4–6 September 2018; pp. 98–107.

12. Giselsson, T.M.; Jørgensen, R.N.; Jensen, P.K.; Dyrmann, M.; Midtiby, H.S. A public image database for
benchmark of plant seedling classification algorithms. arXiv 2017, arXiv:1711.05458.

13. Wu, S.G.; Bao, F.S.; Xu, E.Y.; Wang, Y.-X.; Chang, Y.-F.; Xiang, Q.-L. A leaf recognition algorithm for plant
classification using probabilistic neural network. In Proceedings of the 2007 IEEE International Symposium
on Signal Processing and Information Technology, Giza, Egypt, 15–18 December 2007; pp. 11–16.

14. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc.
IEEE 1998, 86, 2278–2324. [CrossRef]

15. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks.
In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–8
December 2012.

16. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv
2014, arXiv:1409.1556.

17. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016;
pp. 770–778.

18. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer
vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV,
USA, 26 June–1 July 2016; pp. 2818–2826.

19. Tzounis, A.; Katsoulas, N.; Bartzanas, T.; Kittas, C. Internet of things in agriculture, recent advances and
future challenges. Biosyst. Eng. 2017, 164, 31–48. [CrossRef]

20. Lane, N.D.; Bhattacharya, S.; Mathur, A.; Forlivesi, C.; Kawsar, F. DXTK: Enabling resource-efficient Deep
learning on mobile and embedded devices with the DeepX toolkit. In Proceedings of the 8th EAI International
Conference on Mobile Computing, Applications and Services, Cambridge, UK, 30 November–1 December
2016; pp. 98–107.

21. Lee, S.H.; Chan, C.S.; Wilkin, P.; Remagnino, P. Deep-plant: Plant identification with convolutional neural
networks. In Proceedings of the 2015 IEEE International Conference on Image Processing (ICIP), Quebec
City, QC, Canada, 27–30 September 2015; pp. 452–456.

22. Yalcin, H. Plant phenology recognition using deep learning: Deep-Pheno. In Proceedings of the 2017 6th
International Conference on Agro-Geoinformatics, Fairfax, VA, USA, 7–10 August 2017; pp. 1–5.

23. Mohanty, S.P.; Hughes, D.P.; Salathé, M. Using deep learning for image-based plant disease detection. Front.
Plant. Sci. 2016, 7, 1419. [CrossRef] [PubMed]

24. Dyrmann, M.; Karstoft, H.; Midtiby, H.S. Plant species classification using deep convolutional neural network.
Biosyst. Eng. 2016, 151, 72–80. [CrossRef]

25. Mortensen, A.K.; Dyrmann, M.; Karstoft, H.; Jørgensen, R.N.; Gislum, R. Semantic segmentation of
mixed crops using deep convolutional neural network. In Proceedings of the International Conference of
Agricultural Engineering (CIGR), Aarhus, Denmark, 26–29 June 2016.

26. Christiansen, P.; Nielsen, L.N.; Steen, K.A.; Jørgensen, R.N.; Karstoft, H. DeepAnomaly: Combining
background subtraction and deep learning for detecting obstacles and anomalies in an agricultural field.
Sensors 2016, 16, 1904. [CrossRef]

27. Bargoti, S.; Underwood, J. Deep fruit detection in orchards. In Proceedings of the 2017 IEEE International
Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 3626–3633.

28. Sa, I.; Ge, Z.; Dayoub, F.; Upcroft, B.; Perez, T.; McCool, C. Deepfruits: A fruit detection system using deep
neural networks. Sensors 2016, 16, 1222. [CrossRef]

29. Stein, M.; Bargoti, S.; Underwood, J. Image based mango fruit detection, localisation and yield estimation
using multiple view geometry. Sensors 2016, 16, 1915. [CrossRef]

30. Sladojevic, S.; Arsenovic, M.; Anderla, A.; Culibrk, D.; Stefanovic, D. Deep neural networks based recognition
of plant diseases by leaf image classification. Comput. Intell. Neurosci. 2016, 6, 1–11. [CrossRef]

31. Denil, M.; Shakibi, B.; Dinh, L.; Ranzato, M.; De Freitas, N. Predicting parameters in deep learning. In
Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 5–10
December 2013; pp. 2148–2156.

http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1016/j.biosystemseng.2017.09.007
http://dx.doi.org/10.3389/fpls.2016.01419
http://www.ncbi.nlm.nih.gov/pubmed/27713752
http://dx.doi.org/10.1016/j.biosystemseng.2016.08.024
http://dx.doi.org/10.3390/s16111904
http://dx.doi.org/10.3390/s16081222
http://dx.doi.org/10.3390/s16111915
http://dx.doi.org/10.1155/2016/3289801

Appl. Sci. 2020, 10, 6866 19 of 19

32. Ba, J.; Caruana, R. Do deep nets really need to be deep? In Proceedings of the Advances in Neural Information
Processing Systems, Montreal, QC, Canada, 8–13 December 2014; pp. 2654–2662.

33. Han, S.; Pool, J.; Tran, J.; Dally, W. Learning both weights and connections for efficient neural network.
In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–12
December 2015; pp. 1135–1143.

34. Lee, N.; Ajanthan, T.; Torr, P.H. Snip: Single-shot network pruning based on connection sensitivity. arXiv
2018, arXiv:1810.02340.

35. Wen, W.; Wu, C.; Wang, Y.; Chen, Y.; Li, H. Learning structured sparsity in deep neural networks. In
Proceedings of the Advances in Neural Information Processing Systems, Barcelona, Spain, 5–10 December
2016; pp. 2074–2082.

36. LeCun, Y.; Denker, J.S.; Solla, S.A. Optimal brain damage. In Proceedings of the Advances in Neural
Information Processing Systems, Denver, Colorado, USA, 26–29 November 1990; pp. 598–605.

37. Hassibi, B.; Stork, D.G.; Wolff, G.J. Optimal brain surgeon and general network pruning. In Proceedings of
the IEEE International Conference on Neural Networks, San Francisco, CA, USA, 28 March–1 April 1993;
pp. 293–299.

38. Gupta, M.; Aravindan, S.; Kalisz, A.; Chandrasekhar, V.; Jie, L. Learning to Prune Deep Neural Networks via
Reinforcement Learning. arXiv 2020, arXiv:2007.04756.

39. Banerjee, B. Pruning for Monte Carlo Distributed Reinforcement Learning in Decentralized POMDPs. In
Proceedings of the AAAI, Bellevue, WA, USA, 14–18 July 2013.

40. Mao, H.; Han, S.; Pool, J.; Li, W.; Liu, X.; Wang, Y.; Dally, W.J. Exploring the regularity of sparse structure in
convolutional neural networks. arXiv 2017, arXiv:1705.08922.

41. Ge, S. Efficient deep learning in network compression and acceleration. In Digital Systems; IntechOpen:
London, UK, 2018.

42. Lebedev, V.; Lempitsky, V. Fast convnets using group-wise brain damage. In Proceedings of the Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, BLas Vegas, NV, USA, 26 June–1 July
2016; pp. 2554–2564.

43. Luo, J.-H.; Wu, J.; Lin, W. Thinet: A filter level pruning method for deep neural network compression. In
Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017;
pp. 5058–5066.

44. Zhu, M.; Gupta, S. To prune, or not to prune: Exploring the efficacy of pruning for model compression. arXiv
2017, arXiv:1710.01878.

45. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H.
Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017,
arXiv:1704.04861.

46. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017;
pp. 1251–1258.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Deep Learning Models
	State-of-the-Art Models
	Deep Learning Models Constraints

	Related Works on Models Compression
	Parameter Pruning
	Pruning Schedule
	Salience Criteria
	Granulation

	Quantization
	Low-Rank Factorization
	Separable Convolution
	Knowledge Distillation
	Model Compression Metric

	Proposed Compression Approach
	Initialization
	Pretraining
	Pruning
	Retraining
	Compression of the Model
	Quantization

	Datasets and Experimentation Setup
	Datasets
	Experimentation Setup
	Pruning
	Experimentation Setting 1
	Experimentation Setting 2
	Experimentation Setting 3

	Evaluation
	Pruning with Same Pruning Ratio per Layer
	Only Fully Connected Layers Pruning
	Filter Pruning
	Input Layer Resizing

	Conclusions and Future Work
	Fine-Grained Pruning Algorithm
	Filter-level Pruning
	References

