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Abstract: Playing the piano in the correct position is important because the correct position helps
to produce good sound and prevents injuries. Many studies have been conducted in the field of
piano playing posture recognition that combines various techniques. Most of these techniques are
based on analyzing visual information. However, in the piano education field, it is essential to utilize
audio information in addition to visual information due to the deep relationship between posture
and sound. In this paper, we propose an audio-visual tensor fusion network (simply, AV-TFN) for
piano performance posture classification. Unlike existing studies that used only visual information,
the proposed method uses audio information to improve the accuracy in classifying the postures of
professional and amateur pianists. For this, we first introduce a dataset called C3Pap (Classic piano
performance postures of amateur and professionals) that contains actual piano performance videos
in diverse environments. Furthermore, we propose a data structure that represents audio-visual
information. The proposed data structure represents audio information on the color scale and visual
information on the black and white scale for representing relativeness between them. We call this
data structure an audio-visual tensor. Finally, we compare the performance of the proposed method
with state-of-the-art approaches: VN (Visual Network), AN (Audio Network), AVN (Audio-Visual
Network) with concatenation and attention techniques. The experiment results demonstrate that
AV-TFN outperforms existing studies and, thus, can be effectively used in the classification of piano
playing postures.
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1. Introduction

Studies on classifying playing postures are being carried out in various fields. Research on piano
playing posture classification can be used for piano education, playing posture training, and evaluation
systems, making these studies important. Moreover, identifying the correct posture during piano
performance enables a pianist to protect his body from various Playing Related Musculoskeletal
Disorders (PRMDs) [1].

To prevent PRMDs, a variety of methods have been proposed, including the analysis of players’
posture through wearable and physical devices. For example, [2] proposed a motion capture system
integrated with a data glove that can visualize the skeleton of the pianist’s arms and hands. However,
most of these devices are expensive and uncomfortable to use. As a result, alternative methods that use
visual information are proposed. For example, the authors of [3,4] proposed a method that uses Kinect
depth sensors to recognize the pianist’s head, shoulder, arm silhouette, elbow, and wrist. The authors
of [5] analyzed the differences in finger movements between professional and amateur pianists using
statistical analysis methods. The authors of [6] proposed a piano playing posture training method that
calculates the skeleton error rate of the teacher and student detected by the Kinect sensors. However,
there are certain cases when the posture classification accuracy may degrade because of deteriorating
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video quality and rapid hand movement. Thus, in this paper, we propose to utilize audio information
in addition to visual information due to the deep relationship between posture and sound.

This study proposes an Audio-Visual Tensor Fusion Network (AV-TFN), the first deep
learning-based method for piano playing posture classification method using audio-visual information.
The main idea of the AV-TFN is a novel data representation method that can preserve the identity of
each piece of audio-visual information. More precisely, the contributions of this paper are as follows.

• We first propose a dataset called C3Pap (Classic Piano Performance Postures of Amateur and
Professionals). For this study, we collected videos of both professional and amateur pianists from
the YouTube platform. The main advantage of the proposed dataset is that we collected actual
performance videos in diverse environments, unlike existing datasets that do not consider various
situations of the pianist.

• Second, this study proposes an audio-visual fusion method that represents the audio-visual
information as a data structure. The proposed audio-visual fusion method expresses audio
information on the color scale and visual information on the black and white scale. It mixes the
two colors to represent one data structure. As such, it is a data representation method that can
retain audio-visual identity in one data structure and represent relativeness between audio and
video information for piano playing posture classification.

• Third, this study demonstrates the superiority of the proposed AV-TFN method through
comparisons of the performances of the visual network (VN) [7], audio network (AN),
and audio-visual network (AVN) with concatenation (AVN-Concat) [8] and attention
(AVN-Atten) [9] techniques. The experiment results show that AV-TFN significantly improves
F1 score compared with AN, VN, AVN-Concat, and AVN-Atten methods, while also achieving
speeds similar to that of the fast VN method.

This study is organized as follows. Section 2 discusses related studies. Section 3 introduces the
proposed AV-TFN. Section 4 presents the experiments and analyzes the results. Finally, Section 5
concludes the paper and highlights future research.

2. Related Work

In this section, we first discuss related studies on player posture in the piano education field and
describe their limitations.

2.1. Piano Playing Posture Classification Methods

There have been numerous studies of piano playing posture classification in the past. Several
studies use wearable devices distributed over the human’s body and collect the motion data from them.
For example, [2] proposed a motion capture system integrated with a data glove that can visualize
the skeleton of the pianist’s arms and hands. The authors of [10] proposed a piano playing posture
training system that uses VICON MX 3D Motion Capture System. This system overlays the teacher and
student’s postures to help the student play with the correct posture. However, most of these wearable
devices are expensive and uncomfortable to use. As a result, alternative methods that use inexpensive
devices, such as Kinect, are proposed. The authors of [3,4] proposed a method that uses Kinect depth
sensors to recognize the pianist’s head, shoulder, arm silhouette, elbow, and wrist. The authors
of [11,12] investigated the classification of piano hand posture using Kinect depth sensors. The authors
of [6] proposed a piano playing posture training method that calculates the skeleton error rate of the
teacher and student detected by the Kinect sensors. Using statistical analysis methods, ref. [5] analyzed
the differences in finger movements between professional and amateur pianists. The authors of [13]
used principal component analysis (PCA), a statistical procedure, to analyze pianists’ posture and
classify them into various levels. The authors of [7] performed a feasibility test that recommends a
suitable deep learning algorithm to determine the correct posture for a pianist. Though this is not a
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study on posture classification, [14] proposed a Long Short-Term Memory (LSTM)-based model for
predicting playing posture from sound while emphasizing the relationship between posture and sound.

Recall from Section 1 that there are certain cases in which the accuracy of posture classification may
degrade due to insufficient visual information. For example, Figure 1a shows a case when the skeletal
recognition rate decreases due to deteriorating video quality. Moreover, the skeleton recognition rate
and may decrease when distortion occurs, such as a hand covering the piano or when the camera
zooms in and out (refer to Figure 1b). On the other hand, the accuracy of posture classification may
degrade due to the characteristics of the piano domain. For example, when a staccato is played,
the hand momentarily rises upward from the reaction. When the wrist quickly rises, the skeleton
recognition rate decreases, and the posture classification accuracy decreases, as shown in Figure 1c.
Furthermore, because playing a rotation requires alternating between two notes with a large leap, left
and right rotation of the wrist occurs, thus decreasing the skeleton recognition rate (refer to Figure 1d).
Besides, sudden movements, such as suddenly crouching or lifting the shoulders or elbows, may also
deteriorate the accuracy of posture classification.

Figure 1. Limitations of existing methods. The posture classification accuracy may degrade when the
skeletal recognition rate decreases due to (a) deteriorating video quality; (b) hand covering the piano;
(c) rapid hand movement; (d) hand rotation.

The main feature of the proposed method is to utilize audio information to compensate for cases in
which the accuracy of posture classification deteriorates. As audio information is related to posture [15],
it can be used to enhance posture classification accuracy even if the skeleton recognition rate decreases.
We use audio information in addition to video data due to the following reasons. First, when using
audio data, the patterns of notes played for each technique differ. Therefore, audio data facilitate
the classification of piano techniques in cases of insufficient visual information. Second, the sound
produced by professional pianists and amateur pianists differ. Specifically, that of professional pianists
is more resonant and rounder than that of amateur pianists. Audio data thus can also facilitate the
classification of the postures of professional and amateur pianists by technique.

2.2. Data Representation Methods

To the best of our knowledge, there are no methods that use video and audio information to
classify postures in the music domain. Thus, we investigated studies on representing audio-visual
information to solve various problems in other domains. We can classify these studies into two types.
The first type involves extracting features from each data and connecting the feature points in one
dimension [8,16]. In contrast, the second type involves extracting a feature vector from each datum
and performing a Cartesian product operation [17].

The existing related studies of the first type include the works of Poria et al. [8] and
Morency et al. [16], who fused multi-modal data that contain text, acoustic, and visual information for
emotion analysis. In [8,16], features of length n were extracted from multi-modal data and combined
into a single feature (refer to Figure 2a). The existing related studies of the second type include the work
of Zadeh et al. [17], who proposed a tensor fusion network that fuses visual, acoustic, and language
information through the Cartesian product operation for emotion analysis. In this approach, three
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modal data are firstly expressed as tensors with the same length n. After that, the Cartesian product
operation is performed using pairs of these tensors. However, in existing studies [8,16,17], since the
feature vector of the data before fusion cannot be known, it is difficult to express relevance. For
example, in Figure 2b, the calculated values of audio feature a1 (0.5) and visual feature v1 (0.4) yield to
a fusion of f1 = 0.2. With the data fusion result of 0.2, it is unknown whether the feature vector before
fusion was (0.5, 0.4) or (0.2, 1.0). In other words, existing data representation methods are limited in
that the relationships among data cannot be learned simply by connecting them.

Figure 2. Comparison of the proposed data representation method with existing ones: (a) Simple
concatenation (Adapted from [8,16]); (b) Cartesian product (Adapted from [17]); (c) proposed method
(AV-TFN).

To overcome these limitations, we developed a novel color-based data representation method
that can express the relationship between audio-visual information by preserving the characteristics
of the original data even after fusion. For example, in Figure 2c, the Cyan Magenta Yellow and Key
(CMYK) values, obtained by changing the feature vector into a color according to a specific rule,
are stored. Here, the result is obtained by mixing the color tone (red) as the audio feature and the
brightness (dark) as the visual feature is dark red. Because of the colors are mixed by rules, even after
mixing, it is possible to estimate what colors were mixed. This solves the problem of the inability to
track feature vectors before fusion in the existing methods and helps the deep learning model encode
meaningful information.

3. Proposed Audio-Visual Tensor Fusion Network

Recall from Section 1 that this study proposes an AV-TFN, the first deep learning-based piano
playing posture classification method using audio-visual information. Figure 3 demonstrates the overall
process of AV-TFN. We first (a) collect the C3Pap dataset with five piano techniques; (b) extract audio
features using Mel Frequency Cepstral Coefficient (MFCC), which is a well-known technique used in
automatic speech and speaker recognition, and visual features using OpenPose [18], which enables us
to extract skeleton information of the human body; (c) produce audio-visual tensor fusion using MFCC
and skeleton data; (d) classify audio-visual tensors using proposed AV-TFN. Subsequent sections
describe each step of the AV-TFN in detail.
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Figure 3. Overall process of AV-TFN.

3.1. Explanation of C3Pap Dataset

We first describe the proposed dataset called C3Pap. C3Pap consists of videos of professional
pianists and amateurs playing scales, arpeggios, and chords based on [11,12]. Besides, Sandor,
a Hungarian-American pianist introduced technical or physical movement patterns fundamental to
playing the piano; accordingly, this dataset added staccato and rotation techniques based on [19].
Details of representative piano playing techniques are shown in Figure 4.

Figure 4. Representative piano playing techniques. (a) Arpeggio is a technique of playing the chords in
rising or descending order from a low note to high; (b) chord is a set of more than one note; (c) rotation
is a technique of playing two notes with a leap using the rotation of the front arm; (d) scale is a technique
of playing the notes in one octave in order; (e) staccato is a technique of playing the notes with a
short duration.

We also collected data of professional pianists having outstanding careers, such as international
piano competition winners, and data of piano students playing for the hobby from the Youtube
platform. A total of 360 videos were collected, and a total of 11,850 sequences were extracted by using
OpenPose. The number of players in the piano playing videos was 13 (eight professionals and five
amateurs), and the number of music pieces used was 17. It is important to note that the automatic
annotation was performed according to the note composition that constitutes the technique. Here,
note composition refers to the pattern of notes forming each technique. For example, if the interval
between notes is 1 degree, it means the scale technique, and if multiple notes are stacked, it means the
chord technique. The details of C3Pap is given in Table 1.
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Table 1. Characteristics of Classic Piano Performance Postures of Amateur and Professionals
(C3Pap) dataset.

Characteristic Measure

Number of amateur pianists 8
Number of professional pianists 5

Number of music piece 17
Total sequence 11,850

Total length 1506 s
Mean clip length 4.18 s
Min clip length 1 s
Max clip length 14 s

Frame rate 29.97 fps
Audio Yes

The C3Pap dataset has the following advantages over existing datasets proposed in [5,11–13],
as shown in Figure 5. First, the proposed dataset has the largest total number of music pieces played
by pianists, including music pieces from real performances. Second, the C3Pap dataset has the highest
number of pianists compared with existing datasets, and the ratio of professional and amateur pianists
is even. Moreover, the videos of the professional pianists in C3Pap include only the world’s renowned
pianists who have won numerous international piano competitions or contracted with major record
labels. Third, the proposed dataset contains actual performance videos in diverse environments, unlike
existing datasets that do not consider various situations of the pianist.

Figure 5. Advantage of the C3Pap dataset over existing datasets [5,11–13].

3.2. Feature Extraction

The feature extraction step for visual information proceeds as follows. The visual information
of the skeleton is extracted using OpenPose, which enables us to extract skeleton information of the
human body. According to previous research on piano playing, this study focused on the joints that
should be viewed while playing piano rather than extracting all joints. Banowetz noted that the angle
of the head and neck is related to the injury posture [20]. In [21], the angle of the head and neck
is measured to analyze the level of improvement in piano performance. The authors of [5,22–24]
measured the coordinates, angles, and silhouettes of the shoulders, spine, elbows, wrists, and fingers.
The experimental results of [25] demonstrated that the pinky movements of amateur and professional
pianists differed. Hence, this study used videos of pianists playing piano filmed from the right side



Appl. Sci. 2020, 10, 6857 7 of 15

to observe the joints that are important in playing the piano. There is a total of 10 skeleton types to
extract, including the head, neck, right shoulder, right elbow, right wrist, and four joints of the right
pinky. Using OpenPose, the two-dimensional position information of each joint, and the attribute
values of each coordinate can be extracted [18].

The feature extraction step for audio information proceeds as follows. After extracting the audio
from the videos, we used the MFCC technique to extract the features of the audio information. MFCC
is a state-of-the-art technique for extracting features from speech and is utilized in a variety of speech
processing fields, such as instrument classification and speech classification. In the context of the
proposed method, MFCC divides the audio information into certain sections and analyzes the spectrum
for each section to extract the features. Once features for audio information are extracted, these are
normalized to a value between −1 and 1.

3.3. Data Normalization

The data of the skeleton extracted from the visual information were normalized in two steps.
In the first step, we perform a Procrustes transformation. As the C3Pap consists of piano playing
videos collected from YouTube, the distance between the camera and the player and the direction of
the camera differ in each video. If the data are not normalized, rather than training to classify postures
according to the actual posture, the model will incorrectly train to classify postures according to the
camera’s location. To compensate for this, the skeleton coordinates of the entire frame are changed to
match one frame. As such, by normalizing one frame to a standard, the camera direction and distance
between the player and the camera can be unified to one standard.

Recall from Section 2 that skeleton extraction may lead to the following problems. The first
problem is the distortion caused by the hand covering the piano, and the second problem is low video
quality in the videos collected from YouTube. Both lead to issues with the skeleton recognition rate,
ultimately causing the incorrect skeleton to be recognized or the skeleton to not be recognized at all,
resulting in a null value. We consider this value as an outlier. Thus, in the second step, when the
skeleton recognition rate decreases, the interquartile range (IQR) is used to compensate by removing
outliers and replacing them with an average of adjacent values [26]. Specifically, we replaced the
null values with the average of the frames before and after, in which the null value occurs using IQR.
This procedure is repeated while increasing the left index and right index by increments of 1 until they
are within the IQR.

3.4. Audio-Visual Tensor

To learn the relevance of sound and posture, it is important to preserve the identity of each data
even if the data are fused. Unlike the previous method of digitizing data into a two-dimensional or
three-dimensional data structure, this paper proposes mixing colors to identify each piece of data
better. Specifically, we propose a novel multimodal data representation method that can express the
relationships among data using an approach inspired by color characteristics. A single color can
be expressed in terms of hue and brightness. For example, mixing red and gray results in gray-red.
Because the colors are mixed by rules, even after mixing, it is possible to estimate what colors were
mixed. If multimodal data are expressed using color and brightness, each feature can be preserved
after fusion, and the relationship can be expressed by utilizing these features. As a result, an effective
data representation method will help deep learning models perform decoding to a meaningful degree.

We represent visual information in grayscale and audio on the color scale. In the piano field, the
lower and higher tones are different, and there is also a difference in the quality of sound produced
by professional and amateur pianists. Thus, this complex set of information is represented in a 3D
color scale. In contrast, we represent visual information in grayscale because we capture only the
human skeleton’s spatial information, which is relatively simple than audio information. For example,
a professional pianist plays a chord with the wrist down to produce a rich sound. Thus, the audio
tensor expressing the characteristics of the sound stores rich sound information in color scale (say red
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color), and the visual tensor expressing the characteristics of the posture is a light grayscale expressing
low wrist movement. The audio tensor is expressed in color by adjusting the CMY value, excluding
K, and in the case of a visual tensor, it is expressed in grayscale by adjusting the K value, excluding
CMY. Combining the two creates a red tensor with low brightness, which is classified as pro_chord.
Thus, when using the proposed method, we can preserve the relationship between audio and visual
information and enable the inter-modality features to be efficiently modeled.

Figure 6 shows the process of creating an audio-visual tensor. Here, we extract ten joints of
the skeleton, where each joint has an x and y coordinate. Thus, the length of the horizontal axis of
the visual tensor is 20 pixels. As the vertical axis was extracted at 30 FPS, the visual tensor is set to
30 pixels. To convert each coordinate value to grayscale, CMYK, a color representation method, is
used. Grayscale can be produced by assigning the integer value to K. Accordingly, obtained coordinate
values are multiplied by 100 and then converted to an integer. On the other hand, MFCC features are
extracted from audio mp3 files obtained from the video. In this process, 1 s of audio is extracted to
match the visual tensor and time sequence. Furthermore, an audio matrix is created based on the
extracted MFCC features. The size of the audio matrix is set equal to that of the video matrix. If the
value in the audio matrix is positive, then blue is assigned, and, if negative, then red is assigned.
Finally, the CMY of the audio tensor (note without K) is combined with the K of the visual tensor to
create an audio-visual tensor image.

Figure 6. Construction process of audio-visual tensor in AV-TFN.

3.5. Model Training

Because the audio and video are represented as images in this study, the piano playing postures
are classified using the Convolutional Neural Network (CNN), suitable for image analysis. The model
was thus constructed as follows. Experiments using numerous hyperparameters demonstrated that
kernel size and stride size influenced the performance of piano playing posture classification (refer to
Section 4.2). Thus, the kernel size was set differently according to the input resolution. Specifically,
when the resolution is 20 × 30, the kernel size is set to (1,1). When the resolution is 40 × 60, the kernel
size is set to (2,2). When the resolution is 80 × 120 or 120 × 180, the kernel size is set to (6,6). The stride
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size was also set differently according to the input resolution. When the resolution is 20 × 30 or 40 × 60,
the stride size is set to 1. When the resolution is 80 × 120 or 120 × 180, the stride size is set to 6. Other
conditions, including the number of layers, number of filters, batch size, dropout, and number of fully
connected layers, did not impact posture classification accuracy. Accordingly, the number of filters
was set to 32, the batch size was set to 200, and the epoch was set to 1000. For the optimizer, Stochastic
Gradient Descent (SGD) with a learning rate of 0.001, momentum of 0.9, and decay of 1e-6 was used.
Dropout was not used, and the number of fully connected layers was set to one. One CNN layer
is used, and, after flattening the data to one dimension, ten dense unit layers are formed. Posture
classification is then conducted using the Softmax function.

4. Performance Evaluation

In this section, we present performance evaluation. We first describe the implementation details
and hyperparameter setting, and then we discuss the results of experiments.

4.1. Implementation Details

Table 2 shows a summary of the experiments conducted in this paper. To the best of our knowledge,
there are no methods that use video and audio information to classify postures in the music domain.
Thus, we have adopted several methods from different domains. Specifically, we compared the
proposed AV-TFN with VN [7] and AN that utilize only visual and audio networks, respectively.
Besides, we compared the proposed method with AVN_Concat [8] and AVN_Atten [9] that use
audio-visual information with various data representation techniques.

Table 2. Summary of experiments and hyperparameters.

Ex Parameters

Ex. 1 Comparing performance of AV-TFN
with other methods

Image resolution 80× 120
Kernel size (6,6)

Models VN, AN, AVN-Concate,
AVN-Atten, AV-TFN

Tensor fusion ratio 50:50

Ex. 2
Estimating performance of model as

image resolution increases

Image resolution 20× 30, 40× 60, 80× 120, 120× 180
Epoch 1500

Kernel size (1,1), (2,2), (6,6)
Models AN, AVN-Concate, AV-TFN

Tensor fusion ratio 50:50

Ex. 3 Estimating effect of tensor fusion ratio
as tensor fusion ratio is varied

Image resolution 20× 30
Epoch 1500

Kernel size (1,1)
Models AV-TFN

Tensor fusion ratio 0:100, 50:50, 100:0

Figure 7 demonstrates the structure of competing models. Each model was formed with the
structure outputting the best performance (i.e., number of layers, number of filters, and optimizer).
For VN and AN, the skeleton extracted from the video and MFCC extracted from the audio were used
as input values. Through hyperparameter setting experiments (refer to Section 4.2), LSTM was selected
to process time-series data for VN. Here, four LSTM layers and one hundred LSTM cells were used,
where the epoch was set to 1000. As for AN, four CNN layers were used, where the number of filters
was set to 32, the batch size was set to 200, the kernel size was set to (3,3), and the epoch was set to
100. Furthermore, after flattening the data to one dimension, ten dense unit layers are formed. In the
last layer, the Softmax operation is performed to classify the posture. For both VN and AN, we use
Adagrad optimizers with a learning rate of 0.01 and decay of 0.0.
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Figure 7. Structure of competing models.

We constructed AVN-Concat as follows. The input values for AVN-Concat are the skeleton data
and MFCC. For this, LSTM and CNN were used, which are suitable for time series data processing and
audio classification, respectively. For the visual information, four CNN layers were used for processing.
Here, the number of filters was set to 32, the batch size was set to 200, the kernel size was set to (3,3),
and the epoch was set to 100. Furthermore, after flattening the data to one dimension, the Softmax
function is executed. For the audio information, four LSTM layers comprising 100 cells are used for
processing. Furthermore, after flattening the data to one dimension, the Softmax function is executed.
Each stream of CNN and LSTM is concatenated, and ten dense unit layers are formed. In the last layer,
Softmax operation is performed one more time to classify the postures. We use SGD optimizers for
AVN-Concat, where a learning rate was set to 0.001, decay was set to 1e-6, and momentum was set to
0.9. As for AVN-Atten, the input data are concatenated into one dimension through a bi-direction Gated
Recurrent Unit (GRU) layer with 200 attention units. Furthermore, AVN-Atten performs classification
of postures using a dense layer and Adam optimizers, where a learning rate was set to 0.001, the beta_1
was wet to 0.9, the beta_2 was wet to 0.999, and the decay was set to 0.0.

Regarding the training and test ratio, we used 80% of the total data as a training dataset and 20%
as test data, where data were randomly chosen. In experiments 1–3 (Table 2), the same training dataset
and test data were used.

The experimental environment is as follows. For the CPU, an Intel Xeon CPU E5-2620 v3 2.40GHz
was used, and, for the graphics cards, Titan XP and GeForce GTX TITAN were used. Keras and
TensorFlow were used as the development environment. Ubuntu 16.04 was used as the operating
system, and Python3 was selected as the development language.

4.2. Hyperparameter Setting

Figure 8a shows a graph of the F1 score measurements with various posture classification
algorithms. In Figure 8a, x and y axes indicate the algorithm types and F1 score, respectively. The
algorithm types used in the experiments are GRU, LSTM, and 2D Convolutional LSTM (2DConvLSTM),
which are suitable for posture classification. The number of layers and cells for both GRU and LSTM is
set to 3 and 100, respectively. From the graph, we can observe that LSTM exhibited the highest F1
score among the three posture classification algorithms. In general, LSTM has higher classification
accuracy in longer sequences than GRU. Considering that 30 frame rate of long data sequences were
used in our experiments, LSTM output higher accuracy than GRU. Moreover, considering that we use
one-dimensional data, LSTM demonstrates a better performance than 2DConvLSTM, which is more
suitable for two-dimensional data. Therefore, LSTM was selected as a method to perform VN.
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Figure 8. Experiment results with various hyperparameter setting: (a) VN algorithms; (b) number of
LSTM cell.

Figure 8b shows the F1 score changes for posture classification with increasing LSTM cells.
In Figure 8b, x and y axes indicate the number of LSTM cells at an increment rate of 25 and the F1 score,
respectively. From the graph, we can observe that the F1 score was the highest with 100 cells when the
number of LSTM layer was set 1. The line showed an upward trend as the number of cells increased;
however, a regular trend was not observed, and the F1 score decreased again with 100 or more cells.
Accordingly, the number of LSTM cells in the LSTM-based posture classification model was set to 100.

Figure 9 demonstrates the effect of kernel and stride sizes on AV-TFN performance. Specifically,
Figure 9a shows the changes in the F1 score for posture classification with increasing CNN kernel
size. In Figure 9a, x and y axes indicate the kernel size and the F1 score, respectively. We set the input
resolution to 80 × 120 and the stride size to 5. From the graph, we can observe that as the kernel size
increased, the F1 score also gradually increased, exhibiting the highest score at (6, 6) and (7, 7). On the
other hand, Figure 9b shows the changes in the F1 score for posture classification with increasing
CNN kernel size, which is not square. When we set input resolution and stride size identical to the
previous experiment, we can observe that the F1 gradually increased, exhibiting the highest score (4, 5),
(5, 4). Furthermore, Figure 9c shows the F1 score changes for posture classification as the stride size
increases. In Figure 9c, x and y axes indicate the stride size and the F1 score, respectively. We set the
input resolution to 80 × 120 and the kernel size to (6, 6). The experiment results indicate that when
the stride size was 1–4, the F1 score was less than 10%, and when the stride size was set to 5 or more,
the F1 score increased to at least 80%.

Figure 9. Experiment results with various hyperparameter setting: (a) and (b) kernel size; (c) stride size.
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4.3. Experiments and Results

Experiment 1. Comparing performance of AV-TFN with other methods.

Table 3 presents the experimental results, demonstrating that the proposed method achieves the
highest accuracy, precision, recall, F1 score, and lowest loss. From the table, we can also observe that
the proposed method achieves the fastest training time and fastest test time. AV-TFN outperforms
VN as it uses audio information to compensate for cases in which the posture classification accuracy
may be degraded because of deteriorating video quality and rapid hand movement. On the other
hand, AV-TFN outperforms AVN-Concat and AVN-Atten owing to a more efficient audio-visual
fusion strategy. That is, the existing multi-modal methods simply concatenate audio-visual features,
which does not allow the intra-modality features to be modeled efficiently. Recall from Section 3 that,
in AV-TFN, the audio tensor is expressed on the color scale by adjusting the CMY value, excluding K,
whereas the visual tensor is expressed in grayscale by adjusting the K value, excluding CMY. Combining
the two creates a tensor that preserves the relationship between the audio and visual information.

Table 3. Experiment results on comparison of AV-TFN with existing methods.

Accuracy Precision Recall F1 Score Error Rate Training Time Test Time

VN [7] 84.9829 83.6057 81.7531 82.0542 0.6118 1.0963 0.6041
AN 80.137 82.8966 80.6059 81.0313 0.9951 1.7541 3.4616

AVN-Concate [8] 76.0274 79.8384 72.9123 73.53 0.9951 5.1612 5.2532
AVN-Atten [9] 81.57 84.8317 75.3428 75.0957 1.0746 5.1982 4.0455
AV-TFN (Ours) 87.7133 86.1329 84.7091 84.9085 0.3943 0.3454 0.2799

Experiment 2. Estimating performance of model as image resolution increases.

We have also performed more detailed experiments to measure the effect of image resolution
on classification accuracy and to find the optimal resolution (refer to Figure 10). This experiment
compares the F1 scores, training time, and test time of the AN, AVN, and AV-TFN as produced tensor
resolution increases. Here, a resolution is determined by regulating the MFCC feature (sampling rates
and MFCC coefficients). From the graphs in Figure 10a,b, we can observe that AV-TFN showed the
highest F1 score and lowest error rate at all resolutions. This is because AV-TFN effectively expresses
the relationship of data by using color features and maintains the existing features even after fusion.
More specifically, Figure 10a shows the changes in the F1 scores of the three models as the image
resolution increases. From the graph, we can observe that the F1 score increases as the input image
resolutions increase. We can also observe that all models tended to improve the F1 score until the
image resolution was 80 × 120, and then fell. We can conclude that the image resolution of MFCC has a
considerable influence on all models. Therefore, if the resolution is low, visual and audio information is
not sufficiently included, which results in a reduced F1 score. On the other hand, when audio features
are extracted with excessive detail, such as 120 × 180, noise increases, degrading classification accuracy.

Figure 10c,d show the changes in the training time and testing time of the three models as the
input image resolution increases. From the graphs, we can observe that AN and AVN exhibited
higher training time and test time as the input image resolution increased. In the case of AVN models,
the network processing the auditory information and the network processing the visual information
must run in sequence, thus lengthening the test and training time. For AV-TFN, the training time and
test time barely increased even with increasing input image resolution. In AV-TFN, the two types
of input values are represented through one data structure that is processed as one network, thus
maintaining relatively low training and test time.

Table 4 demonstrates the results of the experiments as image resolution increases (i.e., in terms of
superiority by percentage points). From the table, we can observe the AV-TFN exhibits an F1 score of
9.1161 percent points (on average) higher than AN, and 16.7775 percent points (on average) higher
than AVN models.
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Figure 10. Experiment results of AN, Audio-Visual Network (AVN), AV-TFN as image resolution
increases: (a) F1 score; (b) error rate; (c) training time; (d) test time.

Table 4. Superiority of AV-TFN compared with AN and AVN.

Image Resolution
AN vs. AV-TFN AVN vs. AV-TFN

F1 Score Error Rate Training Time Test Time F1 Score Error Rate Training Time Test Time

20 × 30 24.136 1.7118 0.008 0.0031 28.3329 3.251 1.9513 0.944
40 × 60 4.4681 0.3704 0.5471 0.7885 14.6703 0.7126 2.4798 1.4651
80 × 120 3.8772 0.6008 1.4087 3.1817 11.3785 0.6008 4.8158 4.9733

120 × 180 3.9825 0.3508 3.3398 5.668 12.7281 0.4891 9.2675 14.9646
Average 9.116 0.7447 1.3259 2.4103 16.7775 1.2634 4.6286 5.5868

Experiment 3. An experiment on estimating effect of tensor fusion Ratio.

An experiment was conducted to test the synergy of audio and video information. As we
mentioned in Section 3, when creating an audio-visual tensor, we mixed the colors of the audio and
visual tensors and set the ratio to 0:100, 50:50, and 100:0. Here, the Tensor Fusion Rate (TFR) 0:100 means
the audio tensor color ratio is 100%, while the visual tensor color ratio is 0%. Table 5 demonstrates
changes in the F1 score for posture classification according to the TFR of the visual and audio tensors.
Experimental results show that the F1 score in the case of 50:50 improves by about 5.4052 percentage
points and 13.0826 percentage points when the two are combined than in the case of 0:100 and 100:0.
This indicates that audio-visual tensors are more synergistic than they are used individually.

Table 5. Performance of AV-TFN as Tensor Fusion Rate (TFR) varied.

IR TFR Accuracy Precision Recall F1 Score

20×
30

0:100 64.7917 64.2071 61.1152 61.636
50:50 70.2083 69.4851 66.4125 67.0412
100:0 62.7083 58.9199 55.3345 53.9586
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5. Conclusions

In this paper, we have proposed an audio-visual tensor fusion network (simply, AV-TFN) for piano
playing posture classification. Unlike existing studies that used only visual information, the proposed
method uses audio information to improve the accuracy in classifying the postures of professional and
amateur pianists. We have compared the proposed method with its variants: VN (Visual Network),
AN (Audio Network), and AVN (Audio-Visual Network). The experiment results demonstrate that
AV-TFN outperforms existing studies and, thus, can be effectively used in the classification of piano
playing postures. This study has the following limitations. First, 3D coordinate values were not used
as input when classifying the piano playing posture, and only 2D coordinate values were used. Second,
only videos of pianists playing piano filmed from the right side were used. Future studies will compare
the performance of posture classification using 2D and 3D coordinates. Furthermore, video data filmed
not only from the right side but also from the left, above, and behind will also be tested.
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