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Abstract: Digital watermarking has been widely studied as a method of protecting the intellectual
property rights of digital images, which are high value-added contents. Recently, studies
implementing these techniques with neural networks have been conducted. This paper also proposes
a neural network to perform a robust, invisible blind watermarking for digital images. It is a
convolutional neural network (CNN)-based scheme that consists of pre-processing networks for both
host image and watermark, a watermark embedding network, an attack simulation for training, and
a watermark extraction network to extract watermark whenever necessary. It has three peculiarities
for the application aspect: The first is the host image resolution’s adaptability. This is to apply
the proposed method to any resolution of the host image and is performed by composing the
network without using any resolution-dependent layer or component. The second peculiarity is
the adaptability of the watermark information. This is to provide usability of any user-defined
watermark data. It is conducted by using random binary data as the watermark and is changed
each iteration during training. The last peculiarity is the controllability of the trade-off relationship
between watermark invisibility and robustness against attacks, which provides applicability for
different applications requiring different invisibility and robustness. For this, a strength scaling
factor for watermark information is applied. Besides, it has the following structural or in-training
peculiarities. First, the proposed network is as simple as the most profound path consists of only
13 CNN layers, which is through the pre-processing network, embedding network, and extraction
network. The second is that it maintains the host’s resolution by increasing the resolution of
a watermark in the watermark pre-processing network, which is to increases the invisibility of
the watermark. Also, the average pooling is used in the watermark pre-processing network to
properly combine the binary value of the watermark data with the host image, and it also increases
the invisibility of the watermark. Finally, as the loss function, the extractor uses mean absolute
error (MAE), while the embedding network uses mean square error (MSE). Because the extracted
watermark information consists of binary values, the MAE between the extracted watermark and
the original one is more suitable for balanced training between the embedder and the extractor.
The proposed network’s performance is confirmed through training and evaluation that the proposed
method has high invisibility for the watermark (WM) and high robustness against various pixel-value
change attacks and geometric attacks. Each of the three peculiarities of this scheme is shown to work
well with the experimental results. Besides, it is exhibited that the proposed scheme shows good
performance compared to the previous methods.

Keywords: digital watermark; neural networks; invisibility; robustness; digital images

Appl. Sci. 2020, 10, 6854; doi:10.3390/app10196854 www.mdpi.com/journal/applsci


http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-9760-4801
https://orcid.org/0000-0003-1046-395X
https://orcid.org/0000-0002-4668-743X
http://www.mdpi.com/2076-3417/10/19/6854?type=check_update&version=1
http://dx.doi.org/10.3390/app10196854
http://www.mdpi.com/journal/applsci

Appl. Sci. 2020, 10, 6854 2 0f 20

1. Introduction

With the general use of digital data and the widespread use of the Internet, there are frequent
acts of infringement of intellectual property rights, such as illegal use, copying, and digital content
theft. Digital images are high value-added contents such that their intellectual property rights must be
protected. A recent technique for this is digital watermarking [1].

Watermarking embeds the owner’s information (watermark (WM)) into the content, and the
result is stored or distributed. This technology is to claim ownership by extracting the embedded WM
information when it is necessary. Various technologies have been researched/developed according to
the occupied technologies, application field, etc. Until recently, the methods have been proposed to
perform WM embedding algorithmically, extract the WM algorithmically according to the embedding
process, or modify it [2-8]. For invisibility, a typical method embeds the WM in a discrete cosine
transform (DCT) domain [2], a discrete wavelet transform (DWT) domain [3,4], a discrete Fourier
transform (DFT) domain [5], or a quantization index modulation (QIM) domain [6-8].

In general, watermarking might suffer from a malicious attack intended to damage or remove the
embedded WM information or a non-malicious attack by inevitable processes to store or distribute the
content. Therefore, WM embedding can be performed algorithmically or deterministically. However,
WM extraction has a different situation. Because of the malicious or non-malicious attacks, the WM
embedded host data is damaged that the embedded WM data may also be damaged. Therefore, it may
not be appropriate to extract the WM algorithmically or deterministically, and a more statistical scheme
might show better performance.

With this and other reasons, recent studies have been tending to perform watermarking with
a neural network (NN) [9-15], which are explained separately in Section 2. The purpose of them is the
same as protecting intellectual property rights or ownership. In this technique, the embedder must
embed a WM for the extractor to easily extract the WM with high invisibility; the extractor must extract
the WM by accurately analyzing the host image’s characteristics and the embedded WM. With deep
learning, this relationship can be organized into a loss function that is used in back-propagation.
Usually, it is performed by separating the embedding network and the extraction processes.

In this paper, we investigate a NN to perform invisible watermarking that hides the insertion of
WM information for digital image content as much as possible, robust watermarking that loses WM
information as small as possible despite malicious and non-malicious attacks, and blind watermarking
that does not use original content information when extracting WM information. The structure uses
a convolutional neural network (CNN) and is implemented as simply as possible by incorporating
minimum CNN layers. It consists of pre-processing networks for both the host image and the WM,
a WM embedding network, an attack simulation for robustness training, and a WM extraction network.
In the WM pre-processing network, the resolution of the WM data increases to that of the host image for
the embedding network to maintain the host image’s resolution during the process. This is to retain the
amount of information of the host image to increase the watermarked image quality. Also, this network
uses average pooling for each layer. This is to smoothen the discrete characteristics of the binary WM
values to combine with the host image smoothly to increase the WM invisibility. In training, mean
absolute error (MAE) between the extractor WM and the original WM is used, while the embedder uses
mean square error (MSE) as its loss function. This is because MAE is more suitable for discrete values
than MSE. It also helps train the extractor network and balance the losses for the two networks more
efficiently. The proposed NN is adaptive to the watermark information for a user to use his watermark
information without any further training conducted by training the NN with random patterns as the
watermark. It also has the adaptability to the host image’s resolution to apply any the host image
resolution by not including any resolution-dependent layer or component in the NN. This network can
also control the WM’s invisibility and the robustness against attacks, which have trade-off relationship
by incorporating a strength scaling factor for the WM information as a hyper-parameter inside the NN.
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This paper’s composition is as follows: Section 2 introduces the relevant previous studies;
the proposed network structure is explained in Section 3; Section 4 discusses the training technique
and the experimental results, and this paper is concluded in Section 5.

2. Analysis of Previous Methods

NN-based watermarking schemes have been proposed [9-15], and their characteristics are
described in this section, which is summarized in Table 1 except [9] because it is different from
other schemes in that it is a non-blind scheme and only a part of embedder was implemented
by NN. The characteristics in Table 1 include the domain of the data used by NNs (Domain),
whether the method has a restriction on the resolution of the host image (Host image resolution
adaptability), whether it is limited by a specific WM data (WM adaptability), the characteristics of the
embedding and extractor networks (Embedding network and extractor network), attack simulation,
attacks included in a mini-batch in the attack simulation process, training characteristics,
and invisibility—robustness controllability.

First, we briefly explain the method by H. Kandi [9]. It is the first method to propose a digital
watermarking method using deep learning. This method uses a codebook scheme that a codebook is
generated in the WM embedding process, and it is used in the WM extraction process. That means it
is a non-blind scheme. It uses the normalized original host image (Posimg) and its inverted image
(Negimg) consisting of the pixels by subtracting the normalized pixel values from ‘1’. Posimg and
Negimg are processed to reduce the resolution, and then the results are up-sampled to the original
resolution to form the positive codebook and negative codebook, respectively. It uses a binary WM
data, and the watermarked image is formed by taking the corresponding pixel group from the positive
codebook when the WM bit is “1” and from the negative codebook by changing each pixel value by
subtracting the pixel value of the negative codebook from ‘1” when the WM bit is ‘0’. NN is used
only the process to reduce the image resolution for both Posimg and Negimg. It is the encoder type
of an autoencoder (AE) because the resolution must be reduced. The extraction process consists of
determining the embedded WM value by taking the corresponding pixel group and calculating which
images their values are close to, the normalized watermarked, and attacked the host image or its
inverted one. It experimented only for two images, Lena and Mandrill, for various pixel-value change
attacks and geometric attacks, and it showed various metrics for invisibility and robustness.

Since the study of [9], most afterward works are blind watermarking methods. J. Zhu proposed
a method named "HiDDeN’, which consists of a WM embedding network, noise layer (similar to the
attack simulation in our scheme), WM extracting network, and an adversary network. The adversary
network is for the steganographic process, which is an additional function. However, it is used for
watermarking function, too. The adversary network’s loss function is an adversarial loss, while the
embedding and extraction networks use L2 norm loss. The watermarking process’s loss function
is the scaled combination of the three, but the adversary network uses only the adversarial loss.
All the layers except the final layer of the extractor network consist of CONV (convolution)-BN (batch
normalization)-ReLU (rectified linear activation) combination with mostly 64 channels. The WM data
is re-structured to 1-dimensional data, and the result is replicated as many as the resolution of the host
image, which is to affect the WM data to the whole host image. The replicated WM data is concatenated
to the host image to enter to the WM embedding network. The WM embedding network’s result enters
both the WM extraction network through the noise layer and the adversary network. The extraction
network reduces the resolution and finally processes with a global pooling and a FC (fully connected)
layer, which means it is dependent on the host image resolution. It uses random WM data, but specific
attacks and their strengths are used in training. One more thing to note is that it proposed a scheme to
make the JPEG compression differentiable with two schemes, JPEG mask, and JPEG drop.

M. Ahmadi proposed a scheme to use the DCT frequency domain by implementing and training
a network to perform a DCT separately [11]. The network consists of a WM embedding network,
attack simulation, and WM extraction network. Before entering the network, the host image is reduced
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to the resolution of WM and DCTed by a DCT network that has been constructed and trained already.
The WM data is multiplied by a scaling factor and concatenated to the DCTed host image data,
the result of which is processed in the WM embedding network that consists of convolution layers with
ELU (exponential linear unit) activation. The middle three layers of the embedding network perform
the circular convolution for a global convolution. It increases the resolution to that of the original
host image, and finally, an inverse DCT layer is processed to form the watermarked image. The WM
extraction network also includes the DCT layer and the inverse DCT layer used in the embedding
network and several convolution layers, including the circular convolution layers. It reduces the
resolution to that of the WM data. It also used specific kinds and strengths of attacks in training with
only one kind of attack in a mini-batch, by which it cannot guarantee the performance for other WM
information. The SSIM value is used as the loss of the WM embedding network and the cross-entropy
for the extraction network. For the cost function of the training, a trade-off combination of the two
values by multiplying A and 1-A, respectively, is used, where A is determined empirically. It also
proposed a scheme to use the DCT within the network.

S. M. Mun proposed a watermarking method with an AE-structured NN, consisting of residual
blocks [12]. All residual blocks are composed of a unit that performs ReLU after adding CONV(1 x
1)-ReLU-CONV(3 x 3)-ReLU-CONV(1 x 1) and CONV(1 x 1). For the embedding, the host image is
reduced to the WM'’s resolution by the AE encoding process. To each of the resulting layers, the WM
information is added to form the embedding AE’s encoded data, which is entered into the decoder
of the embedding AE. This decoder increases the resolution to that of the host image and reduces
the resulting number of images to the original host image’s channels. The watermarked image is
output by accumulating the WM information multiplied by different strength factors to the host image
several times. The extractor has the AE encoding structure only. It does not use any pooling layer in
the network. The attack simulation maintains a constant distribution for all the specified attacks in
each mini-batch. It also uses only specific WM information, even though it includes the inverted WM
information, to avoid overfitting WM.

X. Zhong proposed a scheme to replace the attack simulation with a Frobenius norm [13]. Each of
its embedder and extractor networks consists of four connected function networks, each other and
one layer (invariance layer) connect the two networks. Thus, each pair network forms a loss function,
and the final cost function for training is constructed with the linear combination of the four by
determining the four-loss functions by determining the scaling factors empirically. The host image is
fixed to 128 x 128 color image, but the binary random data is used as the WM data. Each network
consists of convolutional layers, but the invariance layer connects the embedder network, and the
extractor network consists of a sparse FC layer with tanh activation. The WM information is
up-sampled (network ) to the host image’s resolution, and the result is concatenated to the host image
to enter into the embedding network. The embedder reduces the resolution to that of the WM data
(network 1), increases it to the host image (network ), and additionally processes it without changing
resolution (network ¢). Both embedder and extractor consist of conventional CNN layers.

Bingyang used the same network structure as J. Zhu [10] but incorporated an adaptive attack
simulation such that it selects more the attacks for which the network shows weak robustness [14].
The method to consider the weak robustness is to include the extractor loss for the worst-case attack
result. However, in a mini-batch, only one kind of attack with different strengths is included.
It processes in the spatial domain and uses the FC layer to extract the WM. For WM embedding,
it uses an adversarial loss, not only for the steganography layer, for training with using random
patterns as the WM data.

Y. Liu proposed a two-stage training scheme TSDL, two-stage separable deep learning), in which
the entire NN with adversary network is trained without any attack (FEAT, free end-to-end adversary
training), at first, then in the next train only the extractor without the adversary network is re-trained
(ADOT, noise-aware decoder-only training) by adding the attack simulation [15]. In this scheme,
the duplicated binary (here, 1, and —1) to the resolution of the host image is concatenated in each
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convolution layer in the embedder network except the last two layers performing 3 x 3 convolution
and 1 x 1 convolution, in order. WM extraction network and the adversary network also consist of
1 x 1 and 3 x 3 convolution layers. The final layer of the extractor network consists of a FC layer
after average pooing and ReLU activation. The loss function for the embedder network and the
extractor network are MSE (mean square error) loos, but the adversary network uses an adversarial
loss. For each of the two training processes, the appropriate combinations of the loss functions are
used by multiplying scaling factors determined empirically. In training, it included only one kind of
attack that is included in a mini-batch. It also used specific kinds and strengths of attacks in training
and showed the test results for only the kinds and strengths of attacks used in training.

Most of the methods are blind schemes [10-15], use spatial domain data [9-15], and target
a specific resolution of host images and WM information [9-15]. Through analysis of previous studies
that performed watermarking using deep learning, we drew three as follows.

e  When a specific WM is used for training, additional training is essential whenever one wants to
use a new WM [9,10,12].

e  Using FC layer(s) restricts the applicable resolution of the host images [10,14,15]. These methods
cannot guarantee their usefulness in general applications with other host image resolution.

e  Some methods did not realize the controllability of the tradeoff relationship between invisibility

and robustness [9,10,13,14]. Because they cannot provide options for the user’s preference,
their practicality may be restricted.

Therefore, for the three problems we have raised, we propose a new neural network structure
with three goals, which are resolution adaptability of host images, content adaptability of watermark,
and controllability of invisibility and robustness, for deep learning as follows.

e  Resolution adaptability of host image: Deep learning network capable of embedding watermarks

in host images of all resolutions.
o Content adaptability of watermark: Deep learning network that can change the content of the

watermark to be inserted without re-training.
o  Controllability of invisibility and robustness: Deep learning network with controllable visual

visibility and watermarking intensity.

Table 1. Characteristics of state-of-the-art networks and ours.

[10] [11] [14]
Ttems HiDDeN ReDMark [12] 1] ROMark [15] Ours
Domain spatial frequency spatial spatial spatial spatial spatial

Host resolution specific no result no result no result specific specific eneral
adaptability (EC layer) (FC layer) (FC layer) &

Host resolution specific eneral specific eneral eneral eneral eneral
adaptability P 8 P & 8 & 8
Embedding adversarial c1rcu1a.r AE using adversarial adversarial Simple CNN

convolution . CNN and average
network loss residual block loss loss )
and DCT layer pooling
Extractor global global
pooling and DCT layer residual block CNN pooling and FC layer Simple CNN
network
EC layer FC layer
Embedder specific attack  specific attack  specific attack ~ Frobenius  variety attack specific attack ~ variety attack
simulation and strength and strength and strength norm and strength  and strength  and strength
A?ta.ck one kind one kind all kinds - one kind one kind all kinds
per mini-batch
Training differentiable  differentiable residual block 10:3 :fii(;re differentiable two-stage B
characteristic JPEG attack DCT layer . JPEG attack training
embedding
Invisibility—
robustness X O O X X O O
controllability

Accordingly, we propose a blind, invisible, and robust watermarking NN that adapts to the
resolution of the host image and WM information. This method uses spatial domain data and consists
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of CNN layers with average pooling layers. In its attack simulation, all the attacks are included in
each mini-batch, with random strength, but maintain a balanced distribution. Moreover, randomly
generated data is used as the WM information in the training process that any data can be used as
the WM. This method also includes a strength factor which adjusts the tradeoff relationship between
invisibility and robustness.

The next section describes the proposed deep learning network architecture for watermarking to
achieve our three goals.

3. Proposed Watermarking Framework

In the previous section, we derived three items that deep learning-based watermarking should
overcome through analysis of previous studies and selected functional goals of the deep learning
network for the three items. We intend to solve the problems presented in this section and propose
a new network structure for watermarking to achieve the goals. Since the network we are proposing
contains various functions, the entire network is composed of four sub-networks as follows.

e  Host image pre-processing network for resolution adaptability of host images.
WM pre-processing network for content adaptability of watermarks.

o Embedding network, Attack Simulation, Extraction network for controllability of invisibility
and robustness.

Next, the detailed structure and operation of these sub-networks and a method of improving the
watermarking performance of the proposed network through their combination will be described.

3.1. Overall Watermarking Scheme

Figure 1 shows the overall structure of the proposed digital watermarking scheme: (a) for the
embedder, (b) for the extractor, both relatively conventional. Our scheme is designed to process
only one channel that Y component after converting RGB image to YCbCr components is used.
Before entering it, it is normalized to the range of [—1, 1]. Meanwhile, the WM data is binary data, and
it is scrambled with a key. Both normalized host image data and scrambled WM data are preprocessed,
and the results are concatenated. Here, the WM data is multiplied by a strength scaling factor (s),
to adjust the trade-off between invisibility and robustness. The concatenated result is processed in the
embedding network to output the watermarked data, which is de-normalized and converted to RGB
format with the converted Cb and Cr components to form the watermarked host image.

The extraction process receives a watermarked and attacked RGB image, which is converted to
YCbCr format. Only the Y component is taken and normalized to the [—1, 1] ranged data processed in
the extractor network. It extracts the WM information as the output, and the result is de-scrambled
with the key used in the scrambling process. The de-scrambled data is the final extracted WM.

3.2. Structure of Watermarking Network to Be Trained

As mentioned before, our intentions with the proposed NN-based watermarking scheme
are simplicity in the network structure and depth, host resolution adaptability, WM adaptability,
and controllability between invisibility and robustness of WM. Also, to increase the quality of the
watermarked image, WM invisibility, and balanced training, we use several techniques such as
maintaining the host image’s resolution, average pooling for processing the WM data, MAE loss for
the extractor network. Those are more focused in the following explanations.
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Figure 1. Proposed digital watermarking system: (a) watermark embedding, and (b) watermark extraction.

Among the functional blocks in Figure 1, only the solid-lined ones are implemented in the
network; those in the dotted blocks are processed in off-the-network. This network structure is
shown in Figure 2, which includes pre-processing networks for host and WM, WM embedding
network, and WM extraction network. Here, the attack simulation process is included for training.
This network’s first structural feature is that it consists of only the simple CNNs with a relatively
shallow depth that the highest depth has only 13 CNNSs. Each of the consisting networks and their
components was determined empirically based on the tremendous experiments” data. The second
feature is that the WM pre-processing network increases the resolution to that of the host image, while
most previous works reduce the host image’s resolution to that of the WM. This is to maintain the
host image’s information to increase the invisibility of the WM, which is based on our experimental
results that it is more challenging to obtain invisibility performance than robustness, and the scheme
maintaining the host resolution was superior in invisibility with the same robustness.

Other features of our network are dealt with in detail in the following sub-sections to explain
each network.
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Figure 2. Structure of proposed network for training.

3.2.1. Pre-Processing Network for Host Image

First, the host image pre-processing network maintains the original image’s resolution and is
composed of one convolutional layer (CL) with 64 filters whose strides are the same as 1. Since the
embedding network’s output should be similar to the host image, the input image, this network should
not damage the host significantly. Thus, it consists of only one CL with 3 x 3 filters. Nevertheless,
it uses 64 filters (it means 64 channels are produced) to extract as many characteristics of the host
image as possible.

3.2.2. Pre-Processing Network for WM

The WM pre-processing network is configured to gradually increase the resolution to match the
host image pre-processing network’s resolution. This is to increase the WM invisibility, as explained
before. It has been confirmed by our experiments that the case maintaining the resolution of the
host image in WM embedding has high WM invisibility than the case reducing the resolution to that
of the WM and increasing the resolution to output the watermarked image. This network includes
four network blocks: the first three consist of the CL, batch normalization (BN), activation function
(AF), an average pooling (AP), but the last block consists of CL and AP. All CLs have a 0.5 stride
for up-sampling. The corresponding number of filters is 512, 256, 128, and 1, respectively. AF is the
rectified linear unit (ReLU), and AP is a 2 x 2 filter with a stride of 1. AP is used because WM is
a binary data that the values are discrete, but the host image data is real and continuous; it is necessary
to smoothen the WM data with the APs to combine with the host image data retaining the continuous
characteristics. It also has been confirmed with our experiments. The WM pre-processing network
output is multiplied by the strength scaling factor to control the invisibility and robustness of the WM.

3.2.3. WM Embedding Network

The WM embedding network concatenates the results of the 64 channels of the pre-processed
host information and one channel of the pre-processed WM information and uses them as the input to
output the watermarked image information. The network consists of CL-BN-AF (ReLU) for the front
four blocks, and the last block consists of CL-AF (tanh). The tanh activation maintains the positive and
negative values to meet the data range of [—1, 1] to the input host information. All CL strides are set to
1 to maintain the resolution of the host image for invisibility. All blocks, except the last one, have 64
CL filters; the last block has the same number of filters as the number of channels in the host image,
which is one here. Because we are aiming for invisible watermarking, we use the mean square error
(MSE) between the watermarked image (Ijya4) and the host image (Ij,y5¢) as a loss function (L;) of the
pre-processing network and the embedded network. This is shown in Equation (1).
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1 MN 2
L1 = g5y & Uin0]) = o) @

Here, M x N is the resolution of the host image.

3.2.4. Attack Simulation

For high robustness, the watermarked image is intentionally suffered from preset attacks in the
attack simulation. It comprises seven pixel-value change attacks and 3 geometric attacks, which are
considered the malicious and non-malicious attacks are occurring in the distribution process. Table 2
shows the types, strengths, and the ratio of each attack used in one mini-batch [10,11] in training.
We maintain the ratios for each mini-batch, including the ones not attacked (‘identity” in the table).

Table 2. Attacks for attack simulation used in training.

Attack Type Attack Strength Ratio
No attack Identity - 1/12
Gaussian filtering 3 x3,5x5,7x7,9%x9  2/12

Average filtering 3x3,5x%x5 2/12

Pixel-value Median filtering 3x3,5x%x5 1/12
change Salt & Pepper p=01 0.5/12
attack Gaussian noise Sigma =0.1 0.5/12

. 5-point stencil,

Sharpening 9-point stencil 1/12

JPEG Quality factor = 50 1/12

Geometric Rotation 0~90° (random) 1/12
attack Crop 0.5~0.8 (random) 1/12
Dropout 0.3~0.9 (random) 1/12

3.2.5. WM Extractor Network

The extraction network is a reversely symmetrical structure to the WM pre-processing network
except for the number of filters used. It reduces the resolution of the watermarked and attacked image
and extracts the WM information. It consists of three CL-BN-AF (ReLU) blocks and one CL-AF (tanh)
block, that is the last block. We set the stride of all CLs to 2 for down-sampling. The number of filters
used in the CLs is 128, 256, 512, and 1, respectively. This network uses mean absolute error (MAE)
between the extracted WM (W M,y;) and the original WM (WM,) as a loss function (L;). The reason
why MAE is used for the extraction network is that the WM information consists of binary values
(compare to Equation (1) that uses MSE for the host image information). It is determined empirically
based on the data from lots of experiments. This is shown in Equation (2).

1 X o .
Lo = <L 3 WM, 1) — WM ) @
i,j

Here, X x Y is the resolution of the WM information.

3.2.6. Loss Function of the Network for Training

With the two-loss terms of Equations (1) and (2) for host information and WM information,
respectively, the loss function of the whole network for training is constructed as Equations (3) and (4)
for WM embedding and WM extraction, respectively.

Loy = ALy + AzLp 3)
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Lext = /\3 L2 (4)

In these two equations, A1, A, and A3 are set to the hyper-parameters that control invisibility and
robustness. A; represents the strength of the L loss applied to the embedding network, A, represents
the strength of the L, loss applied to the embedding network, and A3 is the strength of the L, loss
applied to the extraction network. Because the L; loss and the L, loss have different properties, it is not
easy to analytically determine the three hyper-parameters. Therefore, they are obtained empirically.

4. Experimental Results and Discussion

Qualitative and quantitative evaluations from various experiments were performed to evaluate
the invisibility and robustness of the proposed digital watermarking scheme. First, the dataset
used and the environment set for implementation are described, and the measurement method
for quantitative evaluation is described. The invisibility, robustness, WM adaptability, host image
adaptability, and controllability of the invisibility and robustness are then verified. Finally, the results
are compared with the state-of-the-art methods.

4.1. Dataset

4.1.1. Host Image

We used the BOSS dataset [16], which consists of 10,000 grayscale images with 512 x 512
resolution, as the training dataset. The first reason that we chose the BOSS dataset is that it is
used broadly in deep learning for various applications and techniques. Also, it contains only gray
images that are more convenient to use in our network because it uses only the Y component, although
Figure 1 and its explanation assumed more available RGB color images. Besides, a standard dataset [17],
which has 49 grayscale images with 512 x 512 resolution and is used broadly as the evaluation dataset,
was used as the evaluation dataset. We have down-sampled images in both datasets to 128 x 128
resolution to use as the host images.

4.1.2. Watermark

Binary images having a resolution of 8 x 8 was used as the WM. A random WM was generated for
each iteration in the training process, and it was scrambled with a corresponding key. These randomly
generated WMs are to adapt the network to any WM information. Also, they reduce overfitting in the
training process.

4.2. Training

The proposed watermarking network was trained in a PC with an Intel (R) Core (TM) i7-9700
CPU @ 3.00 GHz, 64 GB RAM, and the RTX 2080ti GPU. The hyper-parameters and their values used
in training are listed in Table 3, set empirically. A mini-batch includes 100 host images, and a newly
generated random-pattern WM data was used for each mini-batch. The training was continued until
the loss value is stable, which was 4000 epochs. It used Adam optimizer [18] with learning rates 0.0001
and 0.00001 for the embedding network and the extraction network, respectively. During the training,
the strength factor was set to 1, and the weight decay rate was 0.01.

The values of the As were set by separate experiments after determining the other parameters.
The finally determined As values were 45, 0.2, and 20 for A1, Ay, and A3, respectively. The values of A4
and A, are to balance the invisibility and robustness for embedder, while the value of A3 is to balance
the training speed of the embedder and the extractor with the weight decay rate. All three values are
correlated that we have experimented for the large ranges of values for them.

With the hyper-parameters in Table 3, the training took about four days with the BOSS dataset.
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Table 3. Hyper-parameters used in training.

Hyper-Parameter Value
Hyper-parameter Value
Epoch 4000
Mini-batch 100
Optimization Adam
A 45
A2 0.2
A3 20
Embedding network 0.0001

learning rate
Extracthn network 0.00001
learning rate
s 1

4.3. Performance Assessment Metrics

For the quantitative evaluation of invisibility, the peak-signal-to-noise-ratio (PSNR) of Equation (5)
has been used primarily in the previous works, and it is thus used in this study, too. As previously
mentioned, the pixel value of the WM embedder’s output is ranged to [—1. 1] because of normalization.
It is converted to an integer in the range of [0, 255] as a final watermarked image used for the
invisibility evaluation.

2

255
PSNR = 1010g10(m) ®)

Robustness is evaluated by the bit error ratio (BER) of the extracted WM information. Because the
WM information comprises binary images, the original and extracted, WM information’s pixel value is
measured as one if they are the same, and 0 if they are different. The resulting values are averaged for
the number of pixels. It is shown in Equation (6).

BER(%) = 1005y 3" 6(WMo (i, j), WMext (i, )

0, A+B 6
é(A’B):{l AiB ©

Besides, the WM capacity is shown in Equation (7), which is the ratio of the WM resolution to
the host image resolution. In this equation, the resolution of the WM and the host image is (X, Y) and
(M, N), respectively. In this study, the WM capacity was fixed at 0.0039, without the loss of generality
and practicality.

capacity = % (7)

4.4. Results

4.4.1. Invisibility of Watermarked Image

When s = 1, the watermarked image’s average PSNR to the original host image from the training
result showed 43.23 dB. We also applied the trained weight set to the evaluation dataset, the result of
which showed the PSNR range of [37.46 dB, 42.13 dB]. The average was 40.58 dB. Figure 3 shows three
example pairs of the host image (a), watermarked image (b), and the 100 times magnified difference
image (c) from the test dataset. They are the ones showing the lowest (1st row), middle (2nd row),
and the highest (3rd row) invisibility, respectively. As you can see, it is not easy to distinguish
the original image and the watermarked image with the naked eyes, even for one with the lowest
invisibility. Therefore, it can be said that the invisibility of our scheme is very high.
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(a) (b) (c)

Figure 3. Examples showing invisibility: (a) host images, (b) watermarked images, and (c) magnified

difference image, peak-signal-to-noise-ratios (PSNRs) of the first, second, and third row are 37.46 dB,
40.87 dB, and 42.13 dB, respectively.

4.4.2. Robustness for Various Attacks

With the trained weight set, robustness experiments were conducted on various types and
strengths of attacks on the evaluation dataset. Figure 4 shows some examples of the attacked images.
The purpose of the attack is to use the image without ownership by malicious or non-malicious
weakening or removing WM. However, as you can see from the figures, some attacks damage the
image too much to reuse that those attacks are entirely meaningless. However, we included them to
compare with previous works that included them.

The experimental robustness results are shown in Table 4 (right now, the first column of the three
BER columns), in which the BER values are the average values for all the images in the evaluation
dataset. Note that the values in Table 4 are when s = 1. As you can see in Table 4, the BER values tend
to increase as the attack strength increases for each kind of attack. Note that the rotation attack disturbs
the image information most at the 45 degrees. So the BER increases as the rotation angle increases,
but after 45 degrees, it decreases as the angle increases more. It means that the proposed network was
trained well without overfitting to a specific kind of strength.

As values in the table, most pixel-value change attacks showed high robustness as less BERs
than 10% except Gaussian filtering attacks with 7 x 7 and higher filters, Gaussian noise attacks with
o larger than 0.08, and JPEG attack with higher compression than quality 40. Especially, it showed
strong robustness for the salt-and-pepper noise addition attacks. For the geometric attacks, it is quite
vital for the rotation attacks but shows high BERs against more than 50% of crop and cropout attacks
and higher dropout attacks of 30%. However, those attacks for which the proposed scheme shows
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higher than 10% of BER are potent attacks that damage the host image a lot. Therefore, we believe the
proposed scheme would be robust enough for meaningful attacks.

Figure 4. Examples of attacked images: (a) host image, (b) Gaussian filtering (9 x 9), (c) average
filtering (5 x 5), (d) median filtering (5 x 5), (e) salt and pepper noise addition (p = 0.1), (f) Gaussian
noise addition (sigma = 0.1), (g) Laplacian sharpening (5-point stencil), (h) JPEG compression (quality
factor = 50), (i) rotation (30°), (j) crop (p = 0.5), (k) dropout (p = 0.5).

For reference, Figure 5 shows some examples of the extracted watermarks according to their BERs.
From the figures, it is quite clear that the extracted WM with a higher BER value than 10% cannot
guarantee to protect the host image’s intellectual property rights.
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Table 4. Average bit error ratio (BER) values of extracted watermarks resulting from various attacks.

BER (%)
WM1 WM2 WM3
ol N |
Attack Type Attack Strength Random l
(Average)

No attack - 0.7015 0.6696 0.6696

3 %3 1.5944 1.7538 2.0089

Coussian filterin 5x5 7.5255 7.3023 8.4503

ausstan fittering 7x7 11.5115 11.2883 11.5115
9%9 18.463 19.1964 17.5064

Arverase filterin 3 %3 4273 3.9541 41135

& & 5x5 5.2296 5.3571 4.7832

Median filterin 33 8.4184 7.8763 7.8763

& 5x5 10.5548 10.8418 11.0969

0.01 0.861 0.7972 0.7972

Salt and pebper 0.03 1.1798 1.0204 1.1161

s d%iﬁgn 0.05 1.4031 1.2436 1.3393

. 0.07 1.8176 1.5306 1.8495
Pixel-value 0.09 2.5829 3.1250 2.0408

change

attacks _ ' o =001 0.8291 0.7972 0.7334
Gaussian noise o =0.03 1.977 1.6582 1.977

addition o =0.05 6.0906 6.8878 5.6441

o =0.08 11.9898 12.8508 13.3291

Sharpenin 5-point stencil 3.2844 3.6671 3.5714

penmg 9-point stencil ~ 3.9222 4.6237 4.3686

90 0.9566 0.8610 0.7653

70 42411 3.9860 42411

JPEG 50 8.0676 7.9082 9.0561
30 14.8916 15.1148 14.8278
10 31.4732 31.8240 33.4184

15 2.0727 1.8814 1.9133

30 49107 4.8151 5.2296

Rotation 45 5.0383 5.1339 5.7398

60 3.8265 3.6671 4.7194

75 1.7857 1.8176 1.9452

0.9 0.7015 1.1798 0.9247
0.7 2.1365 4.3367 13.4566
Crop 05 14.6365 16.7411 11.4796
03 24.9681 21.3967 29.1773

0.1 39.6365 48.5013 38.361

Geometri

ii’f?ii“ 0.1 2.2003 3.0293 1.7538
03 9.0561 12.4362 9.088
Cropout 0.5 17.0281 24.2666 20.9184
0.7 24.0434 33.4184 25.4783
0.9 34.8533 44.9298 37.3724

0.9 0.9247 0.9247 1.0523

0.7 2.4554 2.2003 2.3278

Dropout 05 6.25 5.4528 5.5166
0.3 14.8916 15.5612 15.1148

0.1 34.1199 37.3087 34.7577
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Figure 5. Examples of the extracted watermarks (WMs) according to BER: (a) 0, (b) 0.78, (c) 3.51,
(d) 10.93, (e) 21.09.

4.43. WM Adaptability

As mentioned before, a watermarking scheme’s capability to accommodate any WM data is
essential because any user can use the scheme with his WM data, even though some of the previous
works do not have this WM adaptability [10,12]. Our scheme makes it possible by using newly
generated random data as the WM information for every mini-batch in training. We have verified
this adaptability of our scheme by experimenting with various WM information. Table 4 shows two
examples of the results. The one marked as ‘Random (average)’ means the average values for all the
WM data used, while WM2 and WM3 are the two examples of the case using two specific WM data
described in the table. From those columns’ values, it is confirmed that our scheme applies to any WM
data without losing similar robustness.

4.4.4. Host Image Adaptability

Because the proposed method does not use any layers that are dependent on the host image’s
resolution, such as the FC layer, it is adaptable to the resolution of the host image. The WM invisibility
and the robustness against attack were evaluated by changing the host image’s resolution from 64 x 64
to 512 x 512, as shown in Table 5. Here, we fixed the WM capacity to about 0.0039. Note that the
network has been trained with 128 x 128 host images and 8 x 8§ WM data. As shown in Table 5,
the WM invisibility increased as the host image resolution increased.

Figure 6 shows the results from robustness experiments as graphs, in which each graph includes
the results for one kind of attack with the different attack strengths and the different resolution of the
host images. Note that the legends in other graphs for the resolution are the same as (a). According to
Figure 6, the robustness decreases as the resolution increases for the most pixel-value change attacks,
except the Gaussian noise addition and the high-compression JPEG attacks. Those two attacks showed
not much difference in robustness for different resolutions and did not follow the tendency. For most
of the geometric attacks, the robustness tends to decrease as the resolution increases, but the dropout
attack showed increasing robustness as the resolution increases.

Even in the cases that the robustness decreases as the resolution increases, the proportion was not
large, or the increased BER values are not so high. That is, the reduced robustness by resolution change
can still be regarded as high robustness. Therefore, we can conclude that the proposed method applies
to various resolutions of the host image. Especially most pixel-value change attacks, the proposed
scheme is more suitable to the high-resolution trend because mostly it increases the robustness as the
resolution increases.

Table 5. Watermark resolution, host image resolution, measured invisibility.

Host Image Resolution =~ Watermark Resolution Invisibility [dB]

64 x 64 4 x4 39.97
128 x 128 8x8 40.58
256 x 256 16 x 16 41.23

512 x 512 32 x 32 42.35
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Figure 6. BER values resulting from the experiments for the various sizes of host image (the legend
in (a) is applied to all the figures): (a) Gaussian Filtering, (b) average Filtering, (c) median Filtering,
(d) salt and pepper noise addition, (e) Gaussian noise addition, (f) sharpening, (g) JPEG, (h) rotation,
(i) crop, (j) cropout, (k) dropout.

4.4.5. Invisibility—-Robustness Controllability

Invisibility—robustness controllability, which can control the complementary relationship between
these two characteristics, is required according to the user’s need in using a watermarking system,
a more robust scheme by sacrificing invisibility or a more invisible scheme by sacrificing robustness.
In our scheme, the strength scaling factor is used to control this complementary relationship.
When invisibility is more critical than robustness, s is set to a lower value. However, when higher
robustness is needed, s is set to a higher value.

Controllability, invisibility, and robustness for the various attacks with increasing s from 0.5 to 2
are measured, and the results are shown in Figure 7. This figure includes the invisibility change in (a)
and robustness changes for all considered kinds and strengths of the attacks and their strengths in from
(b) to (m). As shown in Figure 6a, the WM invisibility decreases as s increases, as expected. For each of
the attacks, the robustness increases consistently as s increases while maintaining the performance
tendency for the change in the attack’s strength. This shows that the proposed scheme has the firm
capability to control the trade-off relationship between invisibility and robustness.
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Figure 7. Invisibility and robustness according to a change in the strength factor: (a) Invisibility,
(b) No attack, (c) Gaussian Filtering, (d) average Filtering, (e) median Filtering, (f) salt and pepper
noise addition, (g) Gaussian noise addition, (h) sharpening, (i) JPEG, (j) rotation, (k) crop, (1) cropout,
(m) dropout.

4.5. Comparison with State-of-the-Arts Methods

The performances of the proposed scheme are compared with the state-of-the-art methods
(HiDDeN [10], ReDMark [11], and [15]). For a fair comparison, we adjusted s to fit the PSNR similar to
the other methods. Because ReDMark [11] showed precise numerical results, we first compare it with
ours separately for various attacks. We adjusted the PSNR to 40.58 dB by adjusting s = 1. The results
are shown in Table 6. The kinds and the strengths of attacks are from [11]. From the values in this
table, it is clear that the proposed method performs better for all attacks except the Gaussian noise
addition attacks.

The other state-of-the-art methods did not show the clear numerical data. Therefore, we use
the data presented in [15], which is the result of comparing [15] with [10] and [11], for a specific
set of attacks. The comparison results with used training and test dataset are shown in Table 7.
For this comparison, s was set to 2.75 for our scheme, to adjust the PSNR to 33.5 dB. As a result,
the proposed method showed excellent results, except for the crop (0.035) attack, compared with [10]
and [11]. However, when compared with [15], our method only showed better results for the JPEG
compression attack.
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The crop (0.035) attack uses only 3.5% of the watermarked image to extract the WM information,
which is unrealistic because 3.5% of the image is not useful. Also, the method of [15] used the same
kinds and the same strengths of attacks in training. That means the only trained attacks were evaluated.
Therefore, it cannot guarantee the result for other kind or other strength of attack that it cannot be
said to have good robustness results in a real application. Our scheme shows high utility from the
comparisons because it demonstrates exemplary performance in all attacks, except the Gaussian noise
addition attack and high-strength crop attack, which also result in valueless images.

Table 6. Comparison of the proposed method with ReDMark [11].

Attack Strength ReDMark Proposed
PSNR 40.24 [dB]  40.58 [dB]
No attack - - 0.7015
Radius =1 8.6 7.1429
Gaussian filtering Radius =1.6 39 9.7258
Radius =2 - 12.7232
P 3x3 134 8.4184
Median filtering 55 . 10.5548
0.02 2.9 1.0204
Salt and pepper noise addition 0.6 4.5 1.5306
0.1 9.1 3.1888
5% 24 5.9949
Gaussian noise addition 15% 14.5 27
25% 25.6 38.1696
Radius =1 0.9 0.9885
Sharpening Radius =5 2.4 1.7217
Radius = 10 3.2 2.0089
90 1.6 0.9566
JPEG 70 4.2 4.24
50 11.8 8.0676
0.1 7.7 2.1365
Cropout 0.2 13.1 5.3253
0.3 18.8 8.6735

Table 7. Comparison of the proposed method with recent studies.

Attack Strength  [10] [11] [15] I(’:(;P; s7e5;1
Training dataset - COCO Cifar-10, Pascal VOC COCO BOSS
Training dataset - BOSS Standard dataset COCO Standard dataset

PSNR - - 33.5 33.5

JPEG 50 37 254 23.8 0.6696
Cropout 0.3 6 7.5 2.7 5.8355
Dropout 0.3 7 8 2.6 4.7194

Crop 0.035 12 0 11 441327

Gaussian filtering oc=2 4 50 14 4.3048

5. Conclusions

In this paper, we proposed a digital image watermarking method using CNN that does not
limit the resolution of the host image and WM information. This method adjusts the complementary
relationship between invisibility and robustness using the strength factor. The pre-processing network
for watermark increases the WM’s resolution to that of the host image for the invisibility of the
WM. The embedding network processes using CNNs that maintain the resolution to output the
watermarked image. The extraction network also consists of CNNs to output the WM information by
reducing the resolution. We performed attack simulations on the same distribution in each mini-batch
to verify the robustness of the WM. This network is composed of a simple CNN and does not use
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any resolution-dependent layer, such as the FC layer. It is, therefore, adaptive to the resolution of the
input image. It is also independent of the WM information because it uses the newly and randomly
generated WM information for each mini-batch in training.

Invisibility and robustness were measured for various pixel value change attacks and geometric
attacks, for various WM information and host image resolutions. The results showed excellent
performance and showed better performance for meaningful attacks in comparison with the
state-of-the-art works. Therefore, our scheme has been proven to be very practical and universal.
Besides, by adjusting the strength factor, we confirmed that our scheme could effectively control the
complementary relationship between invisibility and robustness.

Therefore, we think the proposed method would be a beneficial watermarking scheme for a digital
image because it enables the embedding and extraction of WMs without restrictions on the host image
and WM information, that is, and without any additional training. The usefulness can be further
improved by adequately controlling the invisibility and the robustness to obtain proper performance,
as per the user requirements.
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