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Abstract: The perception and prediction of the surrounding vehicles’ trajectories play a significant
role in designing safe and optimal control strategies for connected and automated vehicles.
The compression of trajectory data and the drivers’ strategic behavior’s classification is essential to
communicate in vehicular ad-hoc networks (VANETs). This paper presents a Variational Autoencoder
(VAE) solution to solve the compression problem, and as an added benefit, it also provides
classification information. The input is the time series of vehicle positions along actual real-world
trajectories obtained from a dataset containing highway measurements, which also serves as the
target. During training, the autoencoder learns to compress and decompress this data and produces
a small, few element context vector that can represent vehicle behavior in a probabilistic manner.
The experiments show how the size of this context vector affects the performance of the method.
The method is compared to other approaches, namely, Bidirectional LSTM Autoencoder and Sparse
Convolutional Autoencoder. According to the results, the Sparse Autoencoder fails to converge
to the target for the specific tasks. The Bidirectional LSTM Autoencoder could provide the same
performance as the VAE, though only with double context vector length, proving that the compression
capability of the VAE is better. The Support Vector Machine method is used to prove that the context
vector can be used for maneuver classification for lane changing behavior. The utilization of this
method, considering neighboring vehicles, can be extended for maneuver prediction using a wider,
more complex network structure.

Keywords: intelligent transportation systems; autoencoders, maneuver classification; data compression

1. Introduction

The general approach for modeling autonomous vehicles contains hierarchical three-layered
modeling, i.e., the perception layer, a planning layer, and a trajectory control layer. The perception
layer preprocesses data from multiple sensors (lidar, radar, video camera, GPS, etc.) to fuse them into
a reliable perception of the surrounding environment and traffic situation. The trajectory control layer
drives the actuators and gives commands based on the second planning layer. This contains three
sublayers: route planning, behavioral decision-making, and path planning [1].

The route and path planning layer generates a global route and feasible local trajectories.
The behavioral decision-making layer provides safe and feasible driving actions on the strategic
level, such as “left lane change, follow, etc.”. Self-driving vehicles’ decision-making system should
foresee the near future to predict the surrounding vehicles’ future driving behavior [2]. Without the
prediction function, emergency incidents may happen, such as the collision between MIT’s “Talos” AV
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and Cornell’s “Skynet” AV during the 2007 urban challenge, which was held by the Defense Advanced
Research Projects Agency (DAPRA) [3].

Autonomous vehicles must navigate safely and efficiently in a complex vehicle traffic system,
either by individual or cooperative decisions [4]. To do this, they need to make decisions continuously
about what steps to take in a given traffic situation, such as when to start an overtaking or lane change
maneuver. A necessary condition for decision-making is that the autonomous vehicle could interpret
and consider the movement of surrounding vehicles’ behavior [5]. The behavioral prediction for
autonomous driving is challenging and surrounded by great attention. Dagli, Brost, and Breuel present
a hierarchical dynamic Bayesian network utilized for predicting behavioral patterns [6]. Gaussian
process regressions are also used for trajectory pattern classification and prediction by Trautman
and Krause [7].

The Gaussian mixture model for trajectory prediction is also a subject of research. Wiest et al. [8]
present a solution which can predict the future trajectory by learning patterns in trajectories, to infer
a joint probability distribution as a motion model. The future path is predicted by calculating the
probability for the motion, conditioned on the current observed trajectory. Their work’s novelty is
that they provide a distribution over the future trajectories. Hence, the evaluation of the statistical
properties can predict a specific scenario.

Cruz et al. present a study of location prediction applied to trajectories obtained from sensors
placed on road networks [9]. A variety of Recurrent Neural Networks (RNN) is applied using a
different combination of features to measure the features’ impact on the prediction task. The authors
show the underlined road network’s use to estimate a finer granularity trajectory definition and obtain
better models in terms of accuracy and error of distance.

A novel approach presents a Long-Short Term Memory (LSTM) model for motion prediction
of surrounding vehicles on freeways, aware of all the surrounding cars [10]. This model’s output
is not a single motion trajectory but a multi-modal distribution over future motion. A trajectory
encoder LSTM encodes the vehicle’s track histories and relative positions being predicted and its
adjacent vehicles in a context vector. The context vector is appended with maneuver encodings of the
lateral and longitudinal maneuver classes. The decoder LSTM generates maneuver specific future
distributions of vehicle positions at each time step, and the maneuver classification branch assigns
maneuver probabilities.

Rodrigues et al. claim that, in a system consisting of three planners (global path, behavioral,
and local path), the behavior planner is the limitation of a successful oath planning solution. A new
tactical behavior planner is proposed, motivated by how expert human drivers behave in intersections
and is made up of a three-module architecture [11].

High-reliability lane change maneuver prediction is achieved by combining Support Vector
Machine (SVM) and Artificial Neural Network (ANN) methods by Dou, Yan, and Feng [12]. The SVM
and ANN classifiers predict the feasibility and suitability to change lane under certain environmental
conditions. Three different classifiers to predict lane changes are compared, and the best performance
is the proposed combined model with 94% accuracy for non-merge behavior and 78% accuracy for
merge behavior.

Izquierdo et al. have examined vehicle movement and lane changing predictions using ANN and
SVM classifiers. In their paper [13], they evaluate the performance of two kinds of ANNs predicting
the lateral motion of the ego vehicle. Vehicle-to-vehicle communication systems can perform such
prediction extensible to the surrounding vehicles. These two ANN architectures are evaluated in
two datasets to achieve different results in different datasets with different variability. The authors
use a Nonlinear Autoregressive Neural Network (NARNN), which is specially tuned to predict time
series in dynamical models, which indicates when mapping between inputs and outputs is desired.
In conclusion, the authors propose a baseline method to evaluate the lateral position prediction
algorithms’ performance. The NARNN specially indicated to predict dynamical systems is not better
than the baseline method. However, the FFNN can reduce the mean absolute error on the predicted
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positions about 23% and 30% up to 4 s in the University of Peking and University of Alcala datasets,
respectively. For lane change detection, an SVM classifier is tested. The SVM can detect precisely a
lane change 3 s before it happens [13].

Maneuver detection and short-term forecasting of road vehicles are essential parts of the
autonomous cars’ behavior planning algorithms.

Several articles address the problem of classifying the maneuvers of vehicles moving in the
ego vehicle’s environment based on their trajectory data [10–13]. In [14], an LSTM RNN classifier
is presented, which can classify 3 s of vehicle trajectory data to three lateral maneuver classes with
86% precision without using any information about surrounding vehicles. For this specific task,
other approaches and input compilations are compared and discussed. On the other hand, a completely
unified framework for surrounding vehicle maneuver recognition and motion prediction is presented
with a greater generality by Nachiket et al. [15]. Their framework outperforms an interacting multiple
model-based trajectory prediction baselines and runs in real-time at about six frames per second.
Trajectory prediction has an inherent uncertainty because of the surrounding vehicles, and it can be
handled by multi-modal prediction. In [16], this problem is addressed even just in [10], but a CNN
based approach is presented. Their approach first generates a raster image encoding each vehicle
actor’s context and uses a CNN model to output several possible trajectories and their probabilities.

These operations are computationally intensive and require computational capabilities for
real-time traffic analysis. On the other hand, the data transferred by V2X are sensitive and need
secure communication, which places additional overhead on the computational requirements and
hence hardens the real-time application [17,18]. It is advisable to compress the trajectory data in such a
way that the compressed data are at least one order of magnitude smaller and capable of reconstructing
the real trajectory with relatively high accuracy. At the same time, carrying useful information about
the latent properties beyond the data distribution.

Contributions of the Paper

This paper presents a Variational Autoencoder (VAE) to compress trajectory data, which can select
useful latent features with little loss and small reconstruction error. It is shown that the representation
learned during compression inherently separates the trajectories according to three maneuver classes
(lane keeping, right, and left lane change). VAEs can be used for learning images and, based on the
encoded information, annotate or label them in an unsupervised way [19,20]. It opens new possibilities
for clustering multi-dimensional data [21,22].

Furthermore, this tool can be used to classify texts even better than LSTM-based encoder–decoder
tools [23]. It is not a new idea to use VAE and generative models for trajectory analysis either.
Krajewski et al. show that Generative Adversarial Networks (GAN)s and VAEs can learn latent
features that are unintelligible by polynomial models [24]. Classification and compression are two very
distinct tasks. Compression is trained in an unsupervised way, without class labels, merely copying
the input trajectory to the output as accurately as possible. During classification, the device learns in
a supervised manner using class labels, only the separation without being forced to find the data’s
appropriate latent properties. Overall, there are two main findings of the research:

• First, the data compression capabilities of the VAE is presented, which is proved to be an effective
tool for representing road vehicle trajectories in a dense, highly compressed context vector.

• Second, coming from the continuous encoding nature of the VAE, the encoding of similar
trajectories are also close to each other in the context vector, hence it can provide maneuver
classification information without training information.

In Section 2, the problem is outlined regarding sequential data encoding and interpretation and
gives the motivation of this research. Briefly, the purpose of this article is to provide examples of
efficient trajectory data compression for behavior prediction using autoencoder neural networks.
Trajectory prediction is not the subject of this article as it attempts to analyze trajectories in more
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depth. Sequential data compression and classification are separate tasks. All the experiments are
performed using the Next Generation Simulation (NGSIM) trajectory database [25,26]. The database
is presented in Section 3, along with each preprocessing step. In Section 4, the models used in the
research are introduced, with special emphasis on the VAE, divided into three sub-sections. The LSTM
and Convolutional Sparse Autoencoders (Sections 4.1 and 4.2) and the Convolutional Variational
Autoencoders (CVAE) Section 4.3 are shown in separate sub-sections. The explanation of the CVAE’s
loss function is a key point, and therefore its introduction is justified in more detail. Section 5 presents
the results of model training and data research. All details regarding the training can be found in
Section 5.1, while the coding ability in Section 5.2 is illustrated with figures. The result of the network’s
coding capability is used for a classification problem and discussed in Section 5.3, and finally Section 5.4
is devoted to the analysis of latent spatial behavior.

2. Problem Formulation

Convolutional neural networks (CNN) and LSTM Recurrent Neural Networks [27,28] for
the optimization are studied in this paper. Different tools can be applied for the maneuver
classification problem, such as Support Vector Machine, Gaussian Classifier, and LSTM neural
networks [10–14]. For more precise trajectory forecasting and analysis, one way is to use some
method of dimension reduction.

The obvious choice for sequence analysis is an RNN architecture. Still, in the case of longer sequences,
the vanishing and exploding gradient problem become the main obstacle of the optimization, according
to [29]. To avoid this, one can use, e.g., LSTM RNN, but its complexity (the number of parameters) can be
high. Therefore, the training, as well as the inference process, can be slow. It is not an important aspect
during the research work if GPUs are available for accelerating the optimization and the inference. Lately,
several forecasting and classification concepts have been thoroughly proven in the literature. However,
carefully choosing the neural networks’ architecture to minimize the model complexity can be useful in
the practice.

A CNN can also find and learn temporal features and patterns in a one-dimensional “image”;
in our case, this dimension is the time [16]. Every pixel is one-time step, and the number of channels
is equal to the d feature number. CNN based autoencoder can yield the same or better result as a
Bidirectional LSTM with a tenth of its complexity.

The context vector can be used for maneuver detection, classification, and data visualization.
This paper presents autoencoders trained to copy the trajectories while the context vector is low
dimensional and carries useful information. Using the same architecture for predicting future trajectory
fails because of the lack of information about the surrounding vehicles [15,30,31]. A hypothesis is set
up predicting the future trajectory’s context vector instead of the future trajectory itself. From this,
it is decoded that the performance should be better. It is shown that the experimental result overturns
this hypothesis, so the trajectories do not decode enough latent information about surrounding
vehicle motions.

3. The Training Dataset

The data set for training is X ≡ Rd×s and every x ∈ X data point is a vehicle trajectory with
sequence length s and feature dimension d. Sequence length is s = 60, which means 6 s, and the feature
dimension is d = 2, which is the longitudinal and lateral coordinate of the vehicle in every time step.
The traffic situation is a multi-lane highway road in the US, and the data collection was made by the
New Generation Simulations (NGSIM).

The NGSIM Unites States Highway 101 (US-101) (Figure 1) and Interstate 80 (I-80) (Figure 2)
datasets [25,26] are used for training and evaluating the trajectory autoencoding problem.
This trajectory data has precise location, velocity, and acceleration of each vehicle within a specific
area every 0.1 s. Furthermore, it provides relative positions to surrounding vehicles and lane position
in every frame. There are 11.8 million rows and 25 columns in this dataset. Each row represents one
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vehicle in a specific frame with all the information. The columns in ascending order are the following:
vehicle identification number, frame identification number ascending by start time, the total number
of frames in which the vehicle appears, global time, lateral (x) and longitudinal (y) coordinate of the
vehicle’s front center concerning the left-most edge of the section in the direction of travel, global
x, y coordinate, length and width of the vehicle, vehicle type (1—motorcycle, 2—auto, 3—truck),
instantaneous velocity and acceleration, and lane position.

Figure 1. Top view of the US-101 freeway from which the data are extracted.

Figure 2. Top view of the I-80 freeway from which the data are extracted.

Data Preprocessing and Preparations

The database for the training consists of 1614 vehicles. One-third of them perform a lane-changing
maneuver to the left, and another one third is right lane changing; the rest is lane-keeping.
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Two trajectory pieces are extracted from the complete path data of each vehicle. One is 6 s (60 time-steps)
ahead of the occurrence of the lane index changing, and one other 6 s after. In the case of the
lane-keeping ones, two consecutive pieces of trajectory are taken. All the x, y coordinate units have
been changed from feet to meters. The following steps have been performed on both subsets.

First, we checked if a vehicle had at least 120 time-steps in the data set because two 60 long
sequences are desired, and separated according to what maneuver is done. Second, a vehicle is only
considered in the training set if the lane changing occurred later than the first 60 time-steps, with the
two sequences extracted. Thirdly, the two sets have been added together and the largest possible
balanced data set is randomly chosen and drawn, with the same number of lane-keeping, left, and right
lane changing vehicles.

For the sake of the higher generalization capability, every trajectory sample is translated to start
from the origin.

4. Methodology

The idea behind the presented research uses autoencoders to train a neural network to a simple
task copying the input data into the output as accurately as possible [20]. An Autoencoder (AE)
contains an encoder neural network and a decoder network. The encoder takes the input vector
and transforms it into another vector (usually with a smaller dimension) called the context vector.
The decoder receives this code and dilates it back to the size of the input data. This scheme fits
into any AE’s basic concept, and it is summarized in Figure 3. At each epoch, one feeds the data
forward, the encoder, and the decoder takes the reconstruction error, backpropagates it through the
network, and updates its weights. The process can be trained by any gradient descent optimization
method. All the models are optimized by Adam [32] with different learning rates between 0.0001–0.001,
depending on the convergence performance.

The training uses mean square error (MSE) loss, which is the reconstruction loss. An additional loss
function is also taken to smooth the output. The derivative of the target and decoded sequence is formed,
their MSE is calculated and added to the reconstruction loss after multiplication by the weight of 0.1:

L0 = MSE(x, f (z)) + w1MSE(Dx, D f (z)) , (1)

where (Dx)i = xi − xi+1

.

.

.

1. Autoencoder
This device is capable of lossy
copying of 6-second trajectories.

Meanwhile, in latent space, it tries
to map the probability distribution
that generates the trajectories.

This can later be used for
classification, prediction, or data
visualization.

Trajectory

T(0,1) T^(0,1)

Reconstruction

h(0,1)x(1),    y(1)

x(2),    y(2)

x(60),    y(60)

x(1),    y(1)

x(2),    y(2)

x(60),    y(60)

h(1)
h(2)

.

.

.

h(N)

Trajectory
Encoder

Trajectory
Decoder

Context representation

Figure 3. Concept of the autoencoding scheme to learn latent features from the distribution of
trajectories. The encoder and decoder are enforced to copy the data with the reconstruction loss
as low as possible with an informational bottleneck.

4.1. Bidirectional LSTM Autoencoder

Based on LSTM networks’ success in learning sequential data generation process’s nonlinear,
time-dependent dynamics [27,28], the application of LSTM networks is evident. The structure of the
model is described below. The Encoder is a Bidirectional LSTM RNN with an adjustable c context
dimension—meaning that the LSTM [33] cell has a hidden state and cell state dimension equal to c.
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Coordinates x, y are fed in every time-step. The hidden and cell states are initialized randomly in the
first time step, and the resulting new one is passed to the next step. The last ones are taken as the context
vector and used as the initialization of the Encoder LSTM. During training mode, teacher forcing [34]
is applied with a ratio of 0.5. The decoder in the first step takes the original trajectory’s last time step
x, y coordinates. The other steps take the previous output or the corresponding ground truth from
the original trajectory. In the case of validation and test, teacher forcing is turned off. The context
dimension is set to be c = 10, 12, 15, 20 using three LSTM layers and 0.5 dropout.

4.2. Convolutional Sparse Autoencoder

The encoder and decoder are one-dimensional CNNs with four compound convolutional layers
and one linear layer. The numbers of input channels of the layers are 2, 6, 12, and 8 and the kernel sizes
4, 6, 8, and 5, respectively. PReLU activation function is applied in every layer with one parameter
per channel. The last two layers use maximum pooling to reduce sequence length. Their kernel size
is 3, and 2 with the dilation of 1. Thus, the output shape of the compound convolutional layers is
5× 5 = 25. A single fully connected layer is used to reduce this number to the c context dimension.

The decoder’s transposed convolutional layers upscale the channel number and the sequence
length. The channel numbers are 1, 3, 8, 4, and 2:

Loss(x, z) =
1
N

N

∑
i=1

(
||xi − f (zi)||2

2c

)
+ λ

1
C

C

∑
i=1
|zi| (2)

4.3. Convolutional Variational Autoencoder

Variational Autoencoder inherently has an explicit regularization during the training process [35].
VAEs encode the input as a distribution over the latent space instead of encoding it as a point. The context
vector is then sampled from this distribution, the sampled context is decoded, and the reconstruction
error is computed. One data point from the data set is denoted by x and the encoded representation,
called “context vector” is z. Let’s denote the prior distribution over the latent space by p(z).

Probabilistic decoder: This is defined by p(x|z), and it describes the distribution of the decoded
variable given the encoded variable.

Probabilistic encoder: This is defined by p(z|x), and it describes the distribution of the encoded
variable given the decoded variable.

The probabilistic encoder and decoder concept is not enough to solve the regularization problem
regarding the content generation. It is easy to see that the model is not prevented from returning
distributions like Dirac delta or punctual functions behave like classic models leading to overfitting.
In the next paragraphs, the details of the mathematical concepts of the VAE are covered, and the
deduction of the correct loss function for the optimization is presented.

Below, two assumptions are made about the distributions:

p(z) ≡ N (0, I) (3)

p(x|z) ≡ N ( f (z), cI) f ∈ F; c > 0 . (4)

F denotes a set of functions that can be parametrized by a finite number of parameters, so it does not
cover all the functions in general. The F elements can be approximated by neural networks, which is
the key to finding the optimal decoding. On the other hand, the Bayesian theorem can unfold the
probabilistic encoder

p(z|x) = p(x|z)p(z)
p(x)

=
p(x|z)p(z)∫
p(x|u)p(u)du

(5)

which is used in Equation (7) for the deduction of a practical formula. Otherwise, the integral in
Equation (5) cannot be evaluated, so it cannot be used in practice. By means of the variational inference
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formulation, the p(z|x) encoder distribution is approximated by an other Gaussian qx(z), where the
mean and the variance are functions of variable x:

qx(z) ≡ N (g(x), h(x)) g ∈ G; h ∈ H . (6)

Here, G and H are sets of parametrized functions just like F. Among these functions,
one needs to find the best approximation of the g, h functions by determining their parameters.
The best approximation is supposed to minimize the Kullback–Leibler divergence [36] between the
approximation and the original p(z|x) distribution. The optimal g∗ and h∗ functions obtained by

(g∗, h∗) = arg min
(g,h)∈G×H

KL(qx(z), p(z|x)) . (7)

Here, Equation (5) is substituted and one gets

(g∗, h∗) = arg min
(g,h)∈G×H

(
E(log(qx(z)))−E

(
log

p(x|z)p(z)
p(x)

))
, (8)

(g∗, h∗) = arg min
(g,h)∈G×H

(
E(log(qx(z))−E(log p(z))−E(log p(x|z)) +E(log p(x))

)
. (9)

After rearranging the terms, the Kullback–Leibler divergence of qx(z) and p(z) distributions
appears, which can be calculated. The last term does not depend on g and h, so, generally, it gives only
a constant contribution so that it can be omitted in the minimization problem:

(g∗, h∗) = arg min
(g,h)∈G×H

(
−E(log p(x|z) + KL(qx(z), p(z))

)
(10)

(g∗, h∗) = arg min
(g,h)∈G×H

(
E
(
||x− f (z)||2

2c

)
+KL(qx(z), p(z))

)
. (11)

The last equation expresses that the optimizer needs to find a balance between the reconstruction
loss, which is the maximization of the log-likelihood for the p(x|z) and the KL divergence of qx(z)
and the prior which enforce the encoder to stay close to the standard normal distribution. This is a
trade-off between how much one can rely on the data and how fair assumption is the prior.

In case of the function f , one should maximize the expected log-likelihood of output x given a z
context vector sampled from gx(z):

f ∗ = arg max
f∈F

E(log p(x|z)) = arg max
f∈F

E
(
−||x− f (z)||2

2c

)
. (12)

Taking Equation (11) into account, the final optimization problem is formulated in maximizing
the following expression with respect to the parameters of the three functions ( f , g, h):

( f ∗, g∗h∗) = arg max
( f ,g,h)∈F×G×H

(
E
(
−||x− f (z)||2

2c

)
− KL(qx(z), p(z))

)
. (13)

The mean square error approximates the first term. The second term is the Kullback–Leibler
divergence between the normal distribution qx(z) with a diagonal covariance matrix and the standard
normal distribution. After performing the calculation, one gets the loss function for the VAE;

Loss(x, z) = ∑
i

(
||xi − f (zi)||2

2c

)
+

1
2 ∑

i

(
h(xi)−g(xi)

2−log(h(xi))−1
)

(14)
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In addition, using the mean squared error of the first derivatives gives a better and smoother
result, thus the final loss function for the VAE with Equation (1) takes the following form:

LossCVAE(x, z) = L0(x, f (z), Dx, D f (z)) + λ
1
2 ∑

i

(
h(xi)−g(xi)

2−log(h(xi))−1
)

(15)

All the functions f , g, h are parametrized by the parameters of neural networks, and F, G, H sets
are defined by their architectural design. Empirically determined parameters for the encoder and
decoder are given in Tables 1 and 2.

Table 1. Parameters of the Variational Autoencoder Architecture.

The Parameters of the Common Part of the Encoder

Channels

Input Output Kernel Dilation

Conv1D 2 6 4 -
PReLU 6 6 -

Conv1D 6 12 6 -
PReLU 12 12 - -

Conv1D 12 8 8 -
PReLU 8 8 - -

MaxPool1D - - 3 1

The Two Separate Part for the µ and σ Generation

Conv1D 8 5 5 -
PReLU 5 5 - -

MaxPool1D - - 2 1
Dense 25 Dint - -
PReLU Dint D1nt - -
Dense Dint C - -

Table 2. The parameters of the decoder.

Input Output Padd. Kernel Stride Dilat.

Dense C 10

ConvTranspose1D 1 3 2 3 1 1
PReLU 3 3

AdaptiveAvgPool1D Dimension: 10
ConvTranspose1D 3 8 2 5 2 1

PReLU 8 8
AdaptiveAvgPool1D Dimension: 15

ConvTranspose1D 8 4 2 5 2 1
PReLU 4 4

AdaptiveAvgPool1D Dimension: 30
ConvTranspose1D 4 2 0 5 1 1

AdaptiveAvgPool1D Dimension: 60

5. Results

5.1. Training

All the models and the training are implemented using the Pytorch [37] framework. In training
mode, random Gaussian noise with zero mean and 0.1 variance is added to every trajectory sample in
the training set. Meanwhile, during the validation and test mode, the noise is not applied. This method
helps the neural network to learn denoising capabilities and reconstruct the trajectories more smoothly.
In this subsection, the training loss values are presented in Tables 3 and 4. The tables contain the lowest
value of the validation losses and the corresponding training losses. All values are derived from the
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reconstruction loss and the regularization term. An average per sample is taken on the data set, so this
value is the expected value of the reconstruction and regularization error of a sample trajectory with
2× 60-parameters. Furthermore, the learning curves of SAE, LSTM AE, and CVAE are presented in
Figure 4 in the case of 10-dimensional latent space. A moving average smoothes the curves with a
window size of 1000 epochs for the sake of better visibility.

0 10000 20000 30000 40000 50000 60000 70000 80000
Epoch number

102

103

Tr
ai

ni
ng

 a
nd

 v
al

id
at

in
g 

lo
ss

es

SAE train loss
SAE valid loss
CVAE train loss
CVAE valid loss
LSTM AE train loss
LSTM AE valid loss

Figure 4. Training and validating losses are shown for the autoencoders being compared. All three
equipped 10-dimensional latent space for comparability. The number of epochs is on the horizontal
axis and the loss values are on logarhythmically scaled vertical axis.

The Convolutional Sparse Autoencoder (SAE) described in Section 4.2 fails to converge during the
training process. Using the regularization term in loss function Equation (2) gives a better result than
without using it though the training loss freezes around 50–100 based on the learning rate and latent
space dimension. In Figure 4, the red lines show that the SAE gets stuck in a local optimum during
the optimization, unable to make that progress like the CVAE (cyan blue curves) does. Since the loss
values are the sum of the losses along the 2 times 60 components of the meters’ trajectory, the value
above 35 means that the average deviation is around 0.5 m for each component. This is too big to say
that SAE training is satisfactory. A similar finding can be made for the LSTM AE.

The LSTM AE (Section 4.1) with the same regularization gives slightly better results regarding the
loss values in Table 4. The LSTM can only approach CVAE’s loss values with much greater complexity.
Once the latent space dimension is chosen below 10, the training process can not converge, so the
losses become unmanageable big values and extremely fluctuating. On Figure 4, the purple lines
correspond to the LSTM AE. Much less epoch number is used for the training due to the larger run-time.
The training error could be further reduced, but the validation loss’s rise indicates the overfitting
phenomenon; therefore, it does not make sense. These results suggest that the sparse regularization
term in Equation (2) assumes a prior distribution in the latent space that does not approximate the real
one well.

The lowest loss values (Table 3) are resulted by the Convolutional Variational Autoencoder
(Section 4.3) with the inherent regularization term in Equation (14). This is included in the assumption
of the standard normal distribution for the prior distribution in the latent space. The result of the
CVAE is reported below.
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Table 3. Loss values of Variational Autoencoder Training.

V-AE Latent Dimension

C 3 4 5 6 7 8 9 10
Valid 12.87 8.78 6.91 6.27 6.64 6.02 5.67 6.11

Training 14.51 10.67 7.95 6.55 6.42 6.34 5.91 5.87
Complexity 2825 2861 2959 2997 3101 3141 3251 3293

Table 4. Loss values of Bidirectional LSTM AE Training.

BiLSTM-AE Latent Dimension

C 10 12 15 20
Valid 31.2 21.74 14.81 9.6

Training 76.8 32.45 21.94 12.36
Complexity 12,522 17,714 27,182 47,442

5.2. Encoding and Decoding Performance

In Figure 5, the CVAE encoding performance is illustrated on three maneuvers. From top to
bottom: Reconstruction with 10-, 6-, and 4-dimensional latent space. From left to right: The same
trajectory of a lane-keeping and lane changing on the right and left. The red curve is the ground
truth trajectory, while the green one is the most probable reconstruction given the latent distribution.
With blue lines, several reconstructions are plotted using 100 different context vectors sampled from
the latent distribution. The transparency of the line is proportional to its likelihood. The horizontal axis
is the longitudinal y coordinate of the vehicle’s trajectory, and the vertical is the lateral x coordinate.
Under the trajectory graphs, the hidden state vector is plotted.

It can be seen that, by reducing the dimension, the reconstruction ability deteriorates, which can
also be observed in the values in Table 3. However, this does not have such a significant effect on the
classification, see Table 5.

Table 5. Results of SVM classification on latent representations.

C-SVM Latent Dimension

C 3 4 5 6 7 8 9 10
0.1 0.767 0.811 0.755 0.860 0.854 0.829 0.888 0.857
1 0.820 0.829 0.866 0.876 0.888 0.869 0.913 0.882
20 0.817 0.827 0.901 0.891 0.888 0.888 0.910 0.894

5.3. Maneuver Classification

In a maneuver classification task, a learning algorithm is trained to specify which maneuver
from a fixed class belongs to the input trajectories. Supervised learning algorithms solve this task by
producing a function mapping from the input space X to a finite category class C, which is a subset
of the natural numbers N. In this case, the input trajectory is a tensor of X ≡ R2×60 and the category
set is C = {left lane changing, lane keeping, right lane changing} and can be identified by a numeric
label code {0, 1, 2} respectively. Although the CVAE is not trained as a classifier, it can cluster the data
by learning its intrinsic properties, which is useful for classification as well.
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(b) Context dimension:
10; Maneuver: left lane
changing.
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(c) Context dimension:
10; Maneuver: right
lane changing.
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(d) Context dimension:
6; Maneuver: lane
keeping.
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(e) Context dimension:
6; Maneuver: left lane
changing.
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(f) Context dimension:
6; Maneuver: right lane
changing.
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(g) Context dimension:
4; Maneuver: lane
keeping.
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4; Maneuver: left lane
changing.
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(i) Context dimension:
4; Maneuver: right lane
changing.

Figure 5. Variational Autoencoder performance on copying the trajectory data without using the
traffic information of surrounding vehicles. From top to bottom: Reconstruction with 10-, 6-,
and 4-dimensional latent space. From left to right: The same trajectory of a lane-keeping and lane
changing on the right and the left, respectively. The red curve is the ground truth; the green one is
the most probable reconstruction trajectory. The horizontal axis is the longitudinal y coordinate of the
vehicle’s trajectory, and the vertical is the lateral x coordinate. Under the trajectory graphs: The hidden
state vector is plotted.

The CVAE has learned latent information about the maneuvers in an unsupervised way, illustrated
by the 3D latent space visualization in Figure 6. An arbitrary 6-second trajectory is mapped into the
latent space as a Gaussian distribution by the trained CVAE encoder part. The centrum of this
distribution is the expected value vector. These vectors can be visualized using a projection from the
latent space to the three-dimensional space. On the three-dimensional space in Figure 6, every dot
colored by the maneuver label belongs to a trajectory. According to the maneuvers, the points
representing different trajectories are automatically separated in the latent space, although the labels
belonging to the maneuvers haven’t been used during the training. This is due to the construction
of the CVAE with adequate regularizing ability, in which the prior distribution of the latent space
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variable is assumed to be standard normal, and the probabilistic encoder and decoder follow a normal
distribution. The CVAE preprocessed the trajectories by selecting the characteristic features, making it
easier to find planes that separate the classes with a small error. A Support Vector Machine [38] on
context vectors can classify trajectories according to maneuvers with 88–91% accuracy (see Table 5),
which is more than the tools can that have been specifically trained for maneuver detection [14].

Figure 6. The 10-dimensional latent space visualized by t-SNE embedding in three dimensions. Every
dot represents a trajectory, and the colors encode the maneuver classes.

5.4. Latent Space Visualization

In Figure 7, an interpolation is visualized in the latent representation space. The series begins with
a right lane change and ends with a left lane change. The three internal states result from decoding
the weighted average of the two extreme states’ context vectors. Continuous transition is observed in
terms of the distance traveled longitudinally and laterally and in the trajectory shape. The continuous
transition between two completely different trajectories suggests that the regularization properly
organizes the latent space. The decoded trajectories from the internal states are not uncertain as
expected without regularization but eligible ones, thus the decoder can be used for content generation.
The VAE described in Section 4.3 learns meaningful mapping and coding.

The t-distributed Stochastic Neighbor Embedding (t-SNE) is a widespread technique for the latent
space visualization [39]. After 120 data trajectories are encoded by the VAE into a 3 to 10-dimensional
vector space, this procedure is applied to visualize the data in three dimensions.
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Figure 7. An interpolation between two different maneuvers is visualized. The series of trajectory
plots begin with a right lane change and ends with a left lane change. There are three internal
states that are the result of decoding the weighted average of the context vectors of the two extreme
states. The continuous transition illustrates the well-organized nature of the latent space generated by
the encoder.

6. Conclusions

The research presented in this paper shows that a CVAE, with an appropriate neural network
structure, is capable of the lossy compression of real-world vehicle trajectories. The compressed code,
also known as the context vector, or latent representation, can also be used for maneuver detection
and classification. In addition, a representation that continuously maps similar patterns is learned,
successfully modeling the vehicle trajectories automatically and meaningfully.

In the future, the input for trajectory data analysis and behavior prediction should be further
investigated. A more realistic model should have the three lateral classes for lane changing behavior,
multiplied by several longitudinal ones. Longitudinal classes could separate acceleration behaviors.
Environmental conditions can also affect driver behavior, as light and dense traffic have different
inner structures. Hence, a more sophisticated model should handle maneuvers that are specific to
this situation.

The paper also shows that the encoded context vector can be used for maneuver classification.
It could be used for trajectory prediction, but it is essential to consider more information about the
traffic situation to make predictions. One should take the trajectory of surrounding vehicles into
account in some manner. It would be possible to test whether such networks can encode the vehicle’s
trajectory under investigation with the information of vehicles moving around it. An autoencoder
network should be trained for yielding the future trajectory of the vehicle to the output by feeding the
historical trajectory of the ego vehicle and the surroundings to the input. It is possible to separate the
input encoding (and copying) task to the prediction task. In other words, on the one hand, one can
train to predict the future trajectory, but one can also train the method to predict in latent space. In the
latter case, it is quite simply a matter of a separately trained device encoding the trajectories and
mapping them into the latent space, followed by another performing the prediction on the context
vector from which the decoder decrypts the future trajectory.
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