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Abstract: Automatic and accurate prostate segmentation is an essential prerequisite for assisting
diagnosis and treatment, such as guiding biopsy procedures and radiation therapy. Therefore, this paper
proposes a cascaded dual attention network (CDA-Net) for automatic prostate segmentation in MRI
scans. The network includes two stages of RAS-FasterRCNN and RAU-Net. Firstly, RAS-FasterRCNN
uses improved FasterRCNN and sequence correlation processing to extract regions of interest (ROI)
of organs. This ROI extraction serves as a hard attention mechanism to focus the segmentation of
the subsequent network on a certain area. Secondly, the addition of residual convolution block and
self-attention mechanism in RAU-Net enables the network to gradually focus on the area where
the organ exists while making full use of multiscale features. The algorithm was evaluated on the
PROMISE12 and ASPS13 datasets and presents the dice similarity coefficient of 92.88% and 92.65%,
respectively, surpassing the state-of-the-art algorithms. In a variety of complex slice images, especially
for the base and apex of slice sequences, the algorithm also achieved credible segmentation performance.

Keywords: image segmentation; prostate MR image; CDA-Net; ROI extraction; sequence correlation
processing; self-attention mechanism

1. Introduction

According to the assessment data of the American Cancer Society [1], in 2020, the United States is
expected to have 191,930 new cases of prostate cancer, and the number of deaths from prostate cancer
will reach 33,330. Prostate cancer has surpassed lung cancer by turning out to be the most common due
to the extensive increase of screening in 2016 [2]. Accurate prostate gland segmentation and volume
estimation play a vital role in the diagnosis and treatment of prostate-related diseases, especially the
staging assessment of prostate cancer. At present, magnetic resonance imaging (MRI) has become
the main imaging method for assisted prostate diagnosis due to its high-resolution and soft-tissue
contrast [3]. However, the examination of the prostate MRI scan is a slice-by-slice visual inspection
performed by the radiologist, which is quite time-consuming, complicated, and subjective. Hence,
in the past decade, various automatic prostate segmentation methods have been proposed.

For instance, Shi et al. [4] exploited the coupled feature characterization and Spatial-Constrained
Transductive LassO to estimate the 3D prostate likelihood map and used the multimap label fusion
strategy to generate the final segmentation result. A deformable prostate segmentation method
proposed by Guo et al. [5] combined the deep feature learning model and sparse patch matching
method to achieve prostate segmentation. These methods have actually shown an encouraging effect
in the automatic segmentation of the prostate. However, due to the heterogeneity of the gland itself,
the low contrast between the gland and surrounding tissues, and the lack of strong boundaries [6],
the segmentation of prostate remains a challenging task.
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1.1. Deep-Learning Methods for 3D MR Image Segmentation

With the development of deep learning technology [7–11], deep convolutional neural networks
(CNNs) have been proven to be an effective tool for medical image analysis [12,13] and are increasingly
used in segmentation tasks. The deep learning methods applied to 3D MRI segmentation can be
roughly divided into the following three categories according to the data processing dimension.

1.1.1. Methods with 2D Manners

The first way treats each slice of the 3D MR images as a separate image and inputs it into the
network to achieve pixel-wise segmentation. These methods, headed by FCN [14] and U-Net [15],
are famous for their lightweight network architecture, so they are very suitable for medical image
datasets with small-scale. For example, Tian et al. [16] proposed a variant of FCN called PSNet,
which used knowledge transfer from natural images to medical images to yield accurate segmentation
of prostate MRI. Xiao et al. [17] introduced a residual jump connection and weighted attention
mechanism based on U-Net to realize the segmentation of blood vessels in retinal images. Similarly,
Azad et al. [18] designed a bidirectional convolution dense convolution U-Net (BCDU-Net) and
achieved excellent performance in retinal vessel segmentation, skin lesion segmentation, and lung
segmentation. All the above methods show that pixel-wise semantic segmentation has outstanding
advantages in 2D fine-grained segmentation.

1.1.2. Methods with 3D Manners

The second way is to directly utilize 3D images as model input to achieve voxel-wise image
segmentation. Milletari et al. [19] extended U-net to 3D manners to perform volume segmentation of
the prostate. Chen et al. [20] proposed a new voxel residual network, which addressed the challenging
problem of segmentation of key brain tissue in 3D MR images by introducing residual learning to
volume data processing. Compared with 2D methods, 3D segmentation models can capture spatial
context information better and usually have more parameters, which require sufficient training data to
achieve reliable parameter adjustments. However, due to the anisotropy of 3D images, that is, when the
interslice spacing is larger than the intraslice spacing, directly extending the 2D image segmentation
method to 3D manners may not yield satisfactory performance. For instance, Baumgartner, C.F et al. [21]
compared the segmentation performance of modified 2D U-Net and 3D U-Net on the left ventricle,
right ventricle, and myocardium on the ACDC 2017 challenge dataset. Experiments showed that the
modified version of 2D U-Net outperformed the modified 3D U-Net.

1.1.3. Methods with 2D Sequence Manners

The third method converts 3D MR images into 2D sequence images as model input. This type
of method comprehensively takes into account the defects of 2D and 3D manners. Based on 2D
segmentation, it produces more accurate results by learning the interslice correlation and consistency.
Chen et al. [22] proposed the comprehensive use of FCN and recurrent neural network (RNN) to
mine the intraslice and interslice context information in 3D images, respectively, and realized the
neuron structure segmentation in 3D EM images and 3D fungal segmentation. To improve the prostate
segmentation effect, Zhu et al. [23] introduced a bidirectional convolutional LSTM block to build a
U-shaped network and used subsequences composed of three consecutive slices as input to train
the network. These methods showed encouraging performance for datasets with dense interslice
correlation information. However, for 3D images with greater slice thickness or interslice spacing,
the segmentation effect needs to be further explored.

1.2. Cascaded Multistage Methods for Medical Image Segmentation

At present, the two mainstream segmentation modes of deep learning methods in the field
of image segmentation include end-to-end segmentation and cascade segmentation. End-to-end
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segmentation uses only a single model to directly implement the segmentation task, while cascaded
segmentation refers to the use of multistage processing to achieve stepwise segmentation. In contrast,
end-to-end segmentation better avoids the accumulation of errors in multistage segmentation and
simplifies the segmentation process. However, the high integration of a single model leads to its poor
flexibility, operability, and interpretability. At the same time, a single model may need more training
data to achieve better results. Therefore, there are still many researchers who employ cascade methods
in medical image segmentation [24–26]. Xie et al. [24] proposed a cascaded SE-ResNeXT U-Net for
kidney tumor segmentation. In the wrist reference bone segmentation, Chen et al. [25] first utilized
the target detection algorithm to extract the region of interest and then achieved the reference bone
segmentation using the segmentation network.

1.3. Attention Mechanism in Image Analysis Tasks

The attention mechanism was first applied in machine translation, and its applications in
computer vision tasks such as target detection and image segmentation are gradually increasing [27–31].
The combination of this visual attention mechanism and deep learning has gradually evolved into
two types of attention—hard attention and soft attention. Hard attention, such as spatial pooling and
image cropping, is not differentiable, which emphasizes areas that need attention. Elsayed et al. [29]
proposed a hard-attention model named Saccader, achieving good classification accuracy on ImageNet
while only covering part of the image. In contrast, soft attention, as a probability distribution map
between [0, 1], emphasizes the degree of attention of each area, and it can update the weight through
the back propagation of the neural network. Jaderberg et al. [30] designed a spatial transformer model
to focus on key spatial domain information. Woo et al. [31] constructed a convenient and lightweight
mixed-domain attention module on the channel and space, achieving classification performance
improvements on multiple benchmark architectures.

1.4. Contributions

Some of the above algorithms have achieved promising performance in prostate MR segmentation.
Notwithstanding, in terms of prostate images with fuzzy or even missing edge information, as well as
images at both ends of the sequence with small gland proportions and weak edge features, prostate
segmentation is still a challenge. In addition, exploiting the limited dataset more effectively to improve
the segmentation performance is also a problem worth exploring.

To this end, this paper proposes a cascaded dual attention network (CDA-Net) for prostate MR
segmentation. The algorithm adopts a cascade segmentation method, including two stages of ROI
extraction and fine segmentation. Firstly, the improved Faster R-CNN with sequence correlation
postprocessing (named RAS-FasterRCNN) is utilized to perform preliminary localization of the
prostate. Secondly, an encoder-decoder architecture (called RAU-Net) that integrates residual
learning and soft attention mechanism is used to achieve precise segmentation of the prostate.
The algorithm was evaluated on two public databases, presenting excellent segmentation accuracy
and generalization performance.

The main contributions of this work can be summarized as follows:
(1) The algorithm uses a cascaded dual attention mechanism to progressively advance the

extraction of the precise contours of the prostate organs. Firstly, bounding box regression adjustment is
applied to achieve ROI extraction. This hard attention mechanism excludes the influence of adjacent
tissues around the prostate and other redundant background information well. Secondly, a trainable
soft attention gate mechanism is introduced in the subsequent segmentation network. It dynamically
learns the implicit attention distribution in the feature maps to enable the network to focus on the organ
areas, thereby improving the accuracy of segmentation. Compared with the single-stage end-to-end
segmentation method, this algorithm is more robust and flexible.

(2) The algorithm combines the advantages of segmentation methods in 2D and 3D manners.
The application of 2D segmentation allows the network to be fully trained under small-scale
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datasets. Meanwhile, in view of the weak interslice correlation and consistency of organ positions,
the algorithm adds the spatial curve fitting strategy in the sequence direction in the ROI extraction
phase, which significantly improves the initial localization effect, establishing a good foundation for
subsequent segmentation.

The rest of this paper is organized as follows: in Section 2, the source of the datasets and
data augmentation methods are described. Section 3 details the entire framework of the algorithm.
Qualitative and quantitative experimental results obtained on two public datasets are shown in
Section 4. Section 5 presents conclusions about the contributions and segmentation performance as
well as directions for future research.

2. Materials

Two public datasets were used in this study. They are the PROMISE12 dataset published in the
MICCAI2012 Prostate Segmentation Challenge [6] and the ASPS13 dataset published in the ISBI2013
Prostate Structure Segmentation Challenge [32].

2.1. The PROMISE12 Dataset

The PROMISE12 dataset comes from four different medical centers, and it includes both patients
with benign disease (e.g., benign prostatic hyperplasia) and prostate cancer. It contains 80 available
T2-weighted axial MR images of the prostate, 50 of which have expert segmentation masks while the
remaining 30 do not. The in-plane image size varies from 256 × 256 to 512 × 512 pixels. In MRI images,
the pixel/voxel intensities and appearance characteristics of the prostate can significantly depend on
different acquisition protocols and scanners. Table 1 lists the details of the dataset, and Figure 1 shows
one sample scan from each center.

Table 1. Details of the acquisition protocols of PROMISE12 dataset.

Center Manufacturer Field Strength Endorectal Receiver
Coil (ERC)

Resolution (In-Plane/
Through-Plane in mm)

HK Siemens 1.5 T Yes 0.625/3.6
BIDMC GE 3 T Yes 0.25/2.2–3

UCL Siemens 1.5 T or 3 T No 0.325–0.625/3–3.6
RUNMC Siemens 3 T No 0.5–0.75/3.6–4.0
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ERC from BIDMC; (c) 1.5 T without ERC from UCL; (d) 3.0 T without ERC from RUNMC.

2.2. The ASPS13 Dataset

The ASPS13 dataset contains 80 T2-weighted MR images, together with the corresponding
segmentation ground truth annotated by experts. All images collected in this dataset are from prostate
cancer patients. Half of them were obtained at 1.5 T Philips Achieva with an ERC from Boston Medical
Center (BMC), and the other half were obtained at 3 T Siemens TIM with a surface coil (SC) from
Radboud University Nijmegen Medical Center (RUNMC). They were acquired as T2-weighted MR
axial pulse sequences with either 4 mm thick slices at 3 T or 3 mm thick at 1.5 T. Given that this dataset
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has 11 overlapped subjects with PROMISE12, we removed them in the experiment and only kept the
remaining 69 samples. Figure 2 shows one scan from each center.
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from RUNMC.

2.3. Data Augmentation

In this paper, to enable the network to get adequate training and parameter adjustment, before the
network training, data augmentation approaches such as small random rotation, random translation
(along the x and y directions), horizontal or vertical flip, and elastic deformation were performed
on the training set images [33]. In addition, 5% of Gaussian noise was randomly added during data
enhancement to improve the anti-noise ability of the algorithm.

3. Methods

The algorithm proposed in this paper includes the following two steps: ROI extraction based on
the RAS-FasterRCNN (i.e., the initial localization of the prostate) and fine segmentation based on the
RAU-Net. The overall flowchart is shown in Figure 3.
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3.1. RAS-Faster RCNN for ROI Extraction

3.1.1. RA-FasterRCNN

Generally, the area of the prostate organs is relatively small in the original image, especially for the
apex and base parts of the prostate. Therefore, to eliminate the interference with the adjacent tissues
and various artifacts as much as possible, while ensuring the integrity of the organ area, this paper
adopted the improved Faster R-CNN [34–37] based on the residual network and the spatial attention
mechanism (RA-FasterRCNN) to develop initial localization of the organ. Figure 4 shows the main
flow of the network, which mainly includes two parts: region extraction network (RPN) and object
detection network (Fast R-CNN) [38].
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Figure 4. The flowchart of RA-FasterRCNN.

This algorithm first performs pixel intensity normalization and size normalization on each 2D
axial scan in the 3D MR image. Then, each of the 2D slices is inputted into the RA-FasterRCNN
to obtain a collection of prostate region proposals with high predicted probability and accurate
locations. Compared with the original Faster RCNN, we used ResNet50 with spatial attention modules,
which is described in detail in Figure 5, instead of the original VGG16 as the feature extraction part of
the network.
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Besides, the function of the spatial attention module is shown in Equation (1), in which F ∈ RH×W×C

represents the input feature map, FGAP, FGMP ∈ RH×W×1 denote the global average pooling and global
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maximum pooling of F along the channel axis, respectively, Conv7×7 represents a convolution operation
with a 7 × 7 convolution kernel, S is the Sigmoid function, [ ] means the splicing operation of two
feature maps.

Attention_map(F) = S(Conv7×7[FGAP, FGMP]), (1)

Considering the two tasks of bounding box classification and regression prediction, the training
loss function is defined in Equation (2). Among them, Lcls and Lreg represent the binary cross-entropy
loss and smoothL1 regression loss, respectively [39], λ is a weight coefficient between classification
loss and regression loss.

L = Lcls + λLreg, (2)

It is worth noting that the trainable parameters in Resnet-50 in the network are pretrained on the
ImageNet dataset [40]. The transfer learning from natural images to medical images is often used to
improve the small-scale defects of prostate image datasets [41,42].

3.1.2. Sequence Correlation Processing

Since Faster R-CNN was initially applied to object detection tasks in natural images, in the
detection results of RA-FasterRCNN, multiple objects or lack of objects appeared in individual slice
images (Figure 4a,b). However, this situation should not exist for the task of prostate localization. Thus,
this paper utilizes the uniqueness of the organ and the slight variation of the organ position in the same
sequence of images and introduces sequence correlation processing to improve organ localization.
Taking a sequence of MR images as an example, the detailed description is the following three steps:

Step 1: The object proposals with the credibility of RA-FasterRCNN detection results greater than
a certain threshold are retained. In this paper, the threshold is set as 0.80 after repeated experiments.

Step 2: For the multi-box phenomenon shown in Figure 6a: first, we take advantage of the
uniqueness of the organ and the slight variation of the organ position in the sequence images to
firstly select the slice images which have a single reliable organ bounding box in the sequence images.
Nine key points (including the four vertices, the midpoint of each boundary and the center point of
the organ proposal) of these slices are utilized for spatial curve fitting based on sequence direction.
The fitting method is the least-square polynomial fitting. Then, the fitted spatial curves and the
minimum spatial Euclidean Distance are applied to screen and determine the object bounding boxes
closest to the fitted position in the slice images with multiple prediction boxes as the final position of
the organ. Figure 7 is a schematic diagram illustrating the above process. And Equation (3) describes
the mathematical formula basis for screening. It is worth noting that the spatial curve parameters are
updated after each screening.

b∗ = argmin
b

9∑
j=1

((y∗j − yb
j )

2
+ (z∗j − zb

j )
2
), (3)

where b∗ indicates the final organ bounding box selected in a slice image, y∗j and z∗j denote the fitting

prediction values of the y-axis and z-axis at the j − th key point, yb
j and zb

j represent the coordinate
values of the j− th key point of the object box b predicted by the network on the y-axis and z-axis.
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Figure 7. Schematic diagram of spatial curve fitting and adjustment (x-direction is the sequence direction,
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Step 3: For the missing object phenomenon, as shown in Figure 6b: the final updated spatial
curve is used to fit the organ position in the missing detection images.

3.1.3. Postprocessing

To ensure the spatial consistency of the sequence image in the subsequent segmentation, the final
ROIs obtained by RAS-FasterRCNN are cropped in a uniform size according to the sequence unit
and normalized to 256 × 256. The part of the cropped area beyond the ROI area is blacked out,
meaning the background area. Afterward, for each 2D MR scan, pixel intensity normalization, contrast
limited adaptive histogram equalization (CLAHE) [43], and curvature driven image smoothing
are implemented.

3.2. RAU-Net for Prostate Segmentation

3.2.1. The Architecture of RAU-Net

Recently, U-Net has become the backbone for many medical image segmentation tasks due to its
ingenious U-shaped architecture and its low data demand [9,18,19,23,24,44]. The network consists
of encoding and decoding paths. The encoder performs feature extraction and captures context
information through a series of convolution and downsampling operations. The decoder is gradually
restored to the original image size through upsampling to produce segmentation maps. Besides,
the short connection between the codec parts enables the feature maps of the decoder to incorporate
more low-level features, thereby increasing the segmentation accuracy of the model.

At present, the variant ideas of the network are mainly concentrated in two aspects. The first is
how to better use the image features of different levels in the encoding and decoding stage, such as
introducing the idea of dense connections or residual connections. The second is how to establish a
better connection between the encoding and decoding stages to achieve better information fusion.
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This paper draws on the above two ideas. We introduce the residual mechanism and soft attention
mechanism to build an encoder-decoder architecture to achieve fine segmentation of the prostate
organs. The architecture diagram of the network is shown in Figure 8.
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Figure 8. The architecture of RAU-Net.

The network inputs a 2D image to be segmented and outputs a probability prediction map of the
same size as the input image. In order to better improve the network’s utilization of features at different
levels and ensure the network’s training convergence during the network deepening process, this paper
introduces ResConv Block before downsampling and upsampling operations in the encoding and
decoding stages. It consists of two Conv/BN blocks (as shown in Figure 9a). The BatchNormalization
layer improves the gradient dispersion by normalizing the convolution output and speeds up the
network convergence [45]. The encoding stage is composed of seven sub-blocks, which comprise
ResConv Block and Max pooling. Each time the input feature map passes through the ResConv Block,
the number of channels is doubled (i.e., Nl+1 = Nl × 2), and the image size halved after each Max
pooling (i.e., Hl+1 = Hl/2, Wl+1 = Wl/2). As the number of downsampling increases, the receptive
field of feature extraction gradually increases. Therefore, the network’s grasp of image details and
features gradually weakens, and the grasp of image deep semantic information gradually increases.
Symmetrically, the decoding stage consists of seven sub-blocks, which are composed of ResConv Block
and upsampling. Each time the input passes through the ResConv Block, the number of channels is
halved, and the image size is doubled after each pass through upsampling.
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3.2.2. Self-Attention Gating Mechanism

To improve the accuracy of network segmentation and better integrate the deep semantic
features and shallow detail features, this paper introduces a self-attention gating module before
the splicing operation similar to U-Net. As shown in Figure 9b, taking Input1 : dl ∈ RHl×Wl×Fl+1 ,
Input2 : ul ∈ RHl−1×Wl−1×Cl as input and Output : ol ∈ RHl−1×Wl−1×Cl as output, the attention gating
module αl can be formulated as:

ϕ2(conv1×1,1(ϕ1(conv1×1,N1(dl) + conv1×1,N1(ul)))), (4)

where ϕ1 and ϕ2 denote the ReLU function and Sigmoid function, respectively.
Input1 in the decoding path is added to the low-level feature map Input2 to generate the attention

weight map. The weight map is multiplied by Input2 to achieve the activation of different degrees
of importance to different regions in Input2. As the feature map in the decoding stage integrates
more image semantic information and contextual information, the soft region suggestion generated
implicitly in combination with it is closely related to the segmentation task. The attention distribution
acts as a gating signal on the shallow feature map generated in the encoding stage, which can filter
out the noise information of the background area in the low-level features that are not related to the
segmentation task, reduce the feature activation of the background area, and achieve more efficient
fusion of encoding and decoding features to improve the accuracy of label prediction.

3.2.3. The Objective Function

The loss function chosen in this paper is based on the Dice Similarity Coefficient (DSC). Compared
with the binary cross-entropy loss function, this loss function can pay more attention to the segmentation
of the foreground area, and can better deal with the problem of category imbalance. In recent years, it has
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gradually been widely used in many medical image segmentation competitions and papers [20,23,46–48].
The DSC function is usually used to measure the overlap rate between the predicted segmentation and
the ground truth, as shown in Equation (5).

DSC(Sp, Sg) =
2
∣∣∣Sp ∩ Sg

∣∣∣∣∣∣Sp
∣∣∣+ ∣∣∣Sg

∣∣∣ , (5)

in which Sp and Sg represent predicted mask and the ground truth, respectively.
Since a higher DSC index means better segmentation performance, we hope that the training loss

function value can converge to a minimum. Furthermore, the ground truth in this paper is a binary
image, and the prediction segmentation is a probability map. Therefore, the training loss function is
defined as:

Loss = 1−DSC(pi, gi) = 1−
2

N∑
i

pigi

N∑
i

pi +
N∑
i

gi

, (6)

where N represents the total number of pixels in the image, and pi, gi, respectively, indicate the
probability that pixel i from predicted segmentation and ground truth belongs to the foreground organ.

4. Experiments and Discussion

4.1. Implementation Details

In our experiments, the training and inference of the proposed algorithm CDA-Net were
implemented in Tensorflow and Keras with Tensorflow backend. Additionally, all the experiments ran
on a PC with Intel® Core™ i7 3.00 GHz processors, 32 GB of RAM, and 1 NVIDIA GeForce RTX 2080
SUPER Graphics Processing Unit (GPU).

The model training in our algorithm used Adam [49] optimizer with default parameters β1 = 0.9,
β2 = 0.999, epsilon = 10−8. Among them, the initial learning rate of RAS-FasterRCNN is set as 0.1,
and the iteration is 70 times. The initial learning rate of the RAU-Net model is set to 0.1, and the
iteration is 50 times. The total training time of the two networks is about 12 h. The average processing
time of each test slice image is approximately 0.4 s.

4.2. Experiment Setting and Evaluations

This paper conducted a series of quantitative and qualitative comparison experiments to evaluate
the effectiveness of the CDA-Net. In this paper, 50 cases with ground truths in PROMISE12 were
randomly divided into a training set and a test set according to the ratio of 4:1. The remaining
30 samples without annotations (referred to as Test30) were applied to the visual evaluation of the
algorithm generalization performance. In addition, all 69 cases in the ASPS13 dataset were used as
test sets and did not participate in model training. The intermediate results of the algorithm during
the testing of the two data sets are shown in Figure A1, which also shows the improvement of the
localization effect before and after the sequence correlation processing.

4.2.1. Quantitative Comparison with State-of-the-Art Algorithms

We compared the results of our CDA-Net against several other algorithms, which have also been
applied to the PRIMOSE12 dataset. Since most methods do not give open source implementation code,
we directly used the test results given by these algorithms except the FCN and U-Net. The comparison
results are listed in Table 2. Due to the inconsistent evaluation mechanisms adopted by different
approaches, we utilized the most commonly used DSC in the field of medical image segmentation
to compare the segmentation effects. The comparison results indicate that the value of DSC of our
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algorithm on the PROMISE12 dataset is significantly higher than other popular algorithms, which
means that the predicted segmentation result of our algorithm is closest to the real segmentation mask.

Table 2. Comparison results with state-of-the-art algorithms.

Algorithm Mean_DSC (%)

FCN 78.66
U-Net 86.35

UNet_S.2.0.1.1 [50] 89.00
Deep dense multi-path neural network [51] 89.01

Atlas registration and ensemble deep convolutional neural network [25] 91.00
HD-net [52] 91.35

nnU-Net [53] 91.61
BOWDA-Net [54] 92.54

CDA-Net (Proposed) 92.88

4.2.2. Ablation Experiments

In this paper, two ablation experiments were conducted on the PROMISE12 test sets and ASPS13
dataset. In order to fully guarantee the effectiveness of the comparison experiment, the U-Net-1 here
maintained the same basic architecture parameters as the algorithm RAU-Net in this paper. Based on
U-Net [15], the initial network channel number is set to 8, and the downsampling and upsampling
depths are both 7. ResU-Net and RAU-Net also use U-Net-1 as the benchmark, and successively add
residual convolution blocks and attention gate mechanism. At the same time, the four algorithms are
consistent in dataset allocation, image preprocessing, and data augmentation operations.

The segmentation effects were assessed by five criteria—DSC, relative volume difference (RVD),
segmentation accuracy (SA), oversegmentation rate (OR), undersegmentation rate (UR).

• RVD measures the difference between the predicted segmentation volume X and the real
segmentation volume Y.

RVD =
(
|X|
|Y|
− 1

)
× 100%, (7)

• SA, which is equivalent to the segmentation recall rate, is calculated as the ratio of correct
prediction of pixels in the real foreground area by the algorithm.

SA =
TP

TP + FN
, (8)

• OR represents the oversegmentation rate of the algorithm, which can be described as follows:

OR =
FP

TP + FP + FN
, (9)

• UR reflects the undersegmentation rate of the algorithm, that is

UR =
FP

TP + FP + FN
, (10)

where TP, FP, TN, and FN denote the number of true positives, false positives, true negatives, and
false negatives.

Experiment 1. Ablation Experiments on the test set of PROMISE12

Table 3 lists the segmentation comparison results of the above four algorithms in the PROMISE12
test set. It can be seen that,
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• Compared with U-Net [12], U-Net-1 and ResU-Net have a significant improvement in the value of
DSC, which shows that the network’s mining of image deep features and full use of features at
different levels does improve the effect of the predicted segmentation;

• Besides, the addition of the attention gate mechanism in RAU-Net forces the network to pay more
attention to real organ regions, therefore it shows more obvious advantages than the previous two
algorithms in the results of multiple metrics, especially RVD and SA;

• Finally, although the CDA-Net proposed in this paper is slightly worse in the OR and RVD,
it increases by 2.71% and 4.72% in the DSC and SA compared to the RAU-Net. It indicates that
although the algorithm may have a slight oversegmentation phenomenon, the recall rate for the
real organ area and the prediction accuracy for the organ area is higher. This is closely related to
the ROI patch extraction based on bounding box regression prediction performed by the algorithm
before organ segmentation. Therefore, it also fully illustrates that the segmentation idea of using a
cascaded dual attention mechanism is also worthy of respect.

Table 3. Evaluation results of four algorithms on PROMISE12.

Algorithm DSC RVD SA UR OR

U-Net-1
Avg 0.8893 0.0438 0.8697 0.0047 0.0029
Std 4.6 8.0 5.2 4.7 4.5

ResU-Net
Avg 0.8935 0.0629 0.8700 0.0045 0.0025
Std 3.9 7.6 4.8 4.0 3.8

RAU-Net
Avg 0.9017 0.0190 0.8931 0.0037 0.0030
Std 3.5 7.3 4.7 3.7 3.6

CDA-Net
Avg 0.9288 0.0248 0.9403 0.0033 0.0036
Std 3.4 6.7 4.4 3.6 3.6

In addition, in order to further intuitively present the segmentation performance of the algorithm,
we visually displayed and compared the predicted segmentation and ground truth of the above four
algorithms. The comparison results are shown in Figure 10, where the red line marks the actual contour
of the organ, the yellow line marks the outline of the predicted segmentation result obtained by the
algorithms, and the fourth row is the segmentation result after ROI cropping.

Since slice images with high imaging quality and clear organ contours have almost achieved
perfect segmentation performance in many segmentation algorithms, especially those based on deep
learning, this paper does not involve much of such images. As shown in Figure 10,

• The first column compares the segmentation performance of each algorithm in the images with
endorectal coils. It can be seen that the four algorithms based on the U-Net architecture are
not excessively affected by coil artifacts and image contrast, and they have achieved relatively
good performance;

• The second column shows the performance of the four algorithms when the gray distribution
inside the gland is obviously uneven. We can see that the predicted segmentation results of
the U-Net-1 and ResU-Net algorithms are affected to varying degrees at this time. In contrast,
the contours obtained by the RAU-Net and CDA-Net proposed in this paper can still have a
good matching effect with the real segmentation contour, which fully reveals that the attention
gate mechanism added in this paper can have a more accurate estimation of attention to the
region where the organ is located, thereby guiding the algorithm to obtain a more reasonable
segmentation result;

• Besides, columns 3–5 specifically compare the segmentation performance of the algorithm on the
apex and base of the slice sequences. It can be observed that the proportion of organs in the slice
images at both ends of the organ is very small, and the contours of the organs in the base slices
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are often blurred. Therefore, this is usually the most challenging part of prostate segmentation,
and it is also the key part that can distinguish the performance of the algorithm. Comparing the
segmentation results of the four algorithms in the third and fourth columns, we can see that the
algorithms ResU-Net and RAU-Net can better obtain the position of the organs than U-Net-1, but
the accurate segmentation of the organs is still inferior to CDA-Net;

• Similarly, in the fifth column, even though the organs are relatively small and the contours are
irregular, the algorithm CDA-Net in this paper still achieves a better segmentation performance
than the first three algorithms. It demonstrates that the initial ROI extraction based on the sequence
correlation used in this paper can effectively locate the organ position, thereby greatly reducing
the focus of subsequent fine segmentation, and making the CDA-Net algorithm present more
significant advantages in the segmentation of prostate base and apex.
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Figure 10. Qualitative comparison results of the algorithms on the test set from PROMISE12 (the red
line masked the true contour of the prostate and the green line masked the contour obtained by the
algorithm; (a) the images with ERC; (b) the image with an uneven gray distribution of glands; (c) the
images at the base of sequences; (d) the images at the base of sequences with irregular organ shapes,
(e) the images at the apex of sequences.

Experiment 2. Ablation Experiments on ASPS13

Table 4 lists the average results of the above four algorithms tested on the ASPS13 dataset. It can be
seen that because the ASPS13 dataset is relatively less complex than the PROMISE12 dataset, it shows
a more excellent segmentation performance in the ResU-Net and RAU-Net algorithms without ROI
extraction. In addition, the segmentation results gap between RAU-Net and ResU-Net and between
ResU-Net and U-Net-1 is obviously widened. This shows that in the case of relatively low image
complexity, the residual convolution block and soft-attention mechanism introduced in RAU-Net
can better mine the generalized features of the image, thereby better improving the pixel prediction
effect. Through the comparison of Tables 3 and 4, the ROI extraction proposed in CDA-Net has a



Appl. Sci. 2020, 10, 6678 15 of 20

more prominent effect on the final segmentation in organ segmentation with higher image complexity.
However, in any case, the test results of CDA-Net on the two datasets showed the best performance.

Table 4. Evaluation results of four algorithms on ASPS13.

Algorithm DSC RVD SA UR OR

U-Net-1
Avg 0.8494 0.1516 0.7848 0.0087 0.0126
Std 5.6 8.2 5.8 4.9 5.0

ResU-Net
Avg 0.9046 0.0598 0.8775 0.0065 0.0019
Std 4.7 7.5 4.9 4.2 4.5

RAU-Net
Avg 0.9206 0.0157 0.9279 0.0037 0.0018
Std 3.9 7.3 4.4 3.8 4.2

CDA-Net
Avg 0.9265 0.0283 0.9388 0.0021 0.0026
Std 3.8 7.0 4.3 3.8 4.0

4.2.3. Qualitative Evaluation

Figure 11 shows the segmentation performance of our algorithm in Test30 of PROMISE12 and
ASPS13. It displays that the algorithm we proposed can overcome the low contrast of the image,
the serious uneven distribution of the gray gradient inside the gland, and the poor gray contrast
between the gland and surrounding tissues in the segmentation results of the central organ slices.
In addition, in the slice image segmentation at both ends of the sequence, although some slices still have
over- or undersegmentation, the contour extraction results of the algorithm can also match the ground
truth to a large extent. All of the above illustrates the promising performance of the algorithm in organ
segmentation at both ends of the sequence and the strong generalization ability of the whole algorithm.
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5. Conclusions

Reliable prostate contour segmentation is essential for radiotherapy planning for prostate cancer.
In order to improve the time-consuming problem of slice-by-slice visual inspection by traditional
radiologists and the inter- and intraobserver difference, this paper presents a cascaded dual attention
network CDA-Net for the fully automatic segmentation of prostate MR images. Taking the flexibility and
robustness of the stage-wise segmentation algorithm into account, we firstly used the RAS-FasterRCNN
method to realize the organ localization of the 2D slice image, and secondly employed the RAU-Net
method to further realize the accurate segmentation of the prostate organ based on the ROI extraction.

(1) Due to the anisotropy of the prostate image, that is, the layer spacing between the axial slices is
large, taking advantage of the weak correlation between the slices, this paper introduces sequence
correlation processing based on spatial curve fitting to the back end of RA-FasterRCNN to improve
poorly detected images. After the correlation processing, the success rate of organ localization on
PROMISE12 and ASPS13 test sets reached 99.78% and 99.88%, respectively.

(2) In addition, we introduced residual connections based on U-Net to fuse the shallow and deep
features of different levels. Channel splicing based on the attention gating mechanism is also added
to highlight the network’s attention to the foreground organ area, suppress the feature activation of
the background area and noise points, and effectively improve the pixel-level prediction accuracy of
the network.

The experimental results show that exploiting only 40 training samples, the CDA-Net proposed
in this paper achieved a mean dice score of 92.88% and 92.65% on the PROMISE12 test set with high
heterogeneity and the ASPS13 dataset with larger scale. Similarly, in the visualization experiment,
the algorithm has significantly improved the prediction effect of organ segmentation for difficult images
such as obvious uneven gray distribution inside glands and blurred organ boundaries, especially for
slice images at both ends of the sequence. It can be concluded that the advantages of the step-by-step
attention focusing mechanism introduced by the algorithm are indeed convincing.

In future work, we will further improve the loss function settings of the segmentation algorithm,
such as introducing boundary-based loss functions or cross-entropy loss function or combined loss
functions, hoping to further improve the algorithm’s prediction effect on gland contours.
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