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Abstract: Micro-pore structure has a decisive effect on the physical and mechanical properties of
porous materials. To further improve the composition of rock-like materials, the internal relationship
between microscopic characteristics (porosity, pore size distribution) and macroscopic mechanical
properties of materials needs to be studied. This study selects portland cement, quartz sand, silica fume,
and water-reducing agent as raw materials to simulate sandstone. Based on the Nuclear magnetic
resonance (NMR) theory and fractal theory, the study explores the internal relationship between pore
structure and mechanical properties of sandstone-like materials, building a compressive strength
prediction model by adopting the proportion of macropores and the dimension of macropore pore size
as dependent variables. Test results show that internal pores of the material are mainly macropores,
and micropores account for the least. The aperture fractal dimension, the correlation coefficient
of mesopores and macropores are quite different from those of micropores. Fractal characteristics
of mesopores and macropores are obvious. The macropore pore volume ratio has a good linear
correlation with fractal dimension and strength, and it has a higher correlation coefficient with
pore volume ratio, pore fractal dimension and other variable factors. The compressive strength
increases with the growth of pore size fractal dimension, but decreases with the growth of macropore
pore volume ratio. The strength prediction model has a high correlation coefficient, credibility and
prediction accuracy, and the predicted strength is basically close to the measured strength.
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1. Introduction

In the face of a large number of geotechnical engineering problems at present, it has become the main
means to carry out rock-like test research of simulated field raw rocks by selecting raw materials with
wide sources, safety and environmental protection and low cost. Field testing has important theoretical
guidance and engineering significance for engineering design and construction. Rock-like material
is a kind of rock similar material wrapping up aggregate [1], which is formed by complex chemical
reactions of cementitious material, aggregate, admixture and water. Mechanical properties of the
material mainly depend on the compactness of the specimen and the internal pore microstructure.
Many studies have proved that there is a strong relationship between pore structure and strength in
natural and artificial porous materials, and the existence of pores has a great influence on physical
properties of rocks [2–4]. Research into the effect of pore microscopic characteristics on mechanical
properties can help us to improve our understanding of materials. Therefore, it is necessary to analyze
and study the relationship between pore structure and mechanical properties of rock-like materials.
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In recent years, the research on micro-pore structure detection of porous materials has been
developing rapidly. At present, the methods of micro-pore detection in rocks include mercury injection
test (MICP), scanning electron microscope (SEM), nuclear magnetic resonance (NMR), etc. Among them,
MICP can characterize the spatial structure of rock pores and determine the pore size distribution of
different pores, and SEM is mainly used for high-resolution two-dimensional imaging of rock specimens
and characterization of microscopic pore morphology. Many scholars have carried out experimental
research in related directions combined with detection methods. Mukhamet-dinova [5] confirmed the
existence of two main types of pores in complex carbonate reservoir rock samples by MICP, NMR and
SEM. Zhou [6] and Yang [7] quantitatively characterized the distribution of micro-pore structure in tight
sandstone from multiple angles of SEM, high-pressure mercury injection and other detection methods.
Marszałeks [8] studied the internal microstructure of cement mortar building materials by means of
SEM, MICP and other methods of microscopic pore measurement. Nuclear magnetic resonance (NMR)
testing is non-destructive testing technology which has gained rapid development in recent years, and
has been widely used in the characterization of rock pore microstructure. Many scholars have taken
NMR as the main research method and carried out experimental studies on the microstructure and
mechanical properties of rock materials. Zhang [9] and Deng [10] discussed the micro-pore structure
evolution of sandstone under freeze-thaw cycles by NMR analysis. Liu [11] and Jiang [12] carried
out the cyclic freeze-thaw test and cyclic dynamic impact test on granite and sandstone, studying the
microporosity changes of different rocks under cyclic impact by NMR. Li [13–16] carried out laboratory
freeze–thaw cycle tests on sandstone materials at different cycle numbers and studied the pore structure
evolution and fractal characteristics of pores with different radius under freeze–thaw cycles were
studied by NMR and imaging analysis. Yu [17] used NMR to study the changes of porosity and pore
size distribution of sandstone samples under the coupling of the freeze-thaw cycle and acidic solution.
Sun [18] combined NMR and electron micrography to analyze the internal relationship between the
micro-pore changes and macro mechanical properties of slope rocks under rainfall conditions.

With the deepening of research, many scholars have found that macroscopic mechanical properties
of materials not only depend on porosity but also the pore distribution of different internal radii [19–21].
Jin [22] analyzed the correlations among pore volume, pore size distribution and material bearing
strength, and established the prediction model of compressive strength of hardened mortar. Gao [23]
combined multiple linear regression with grey correlation analysis, and studied the influence of pore
size distribution and porosity on the compressive strength of materials in mortar. Bu [24] obtained
the pore volume and pore size distribution of concrete specimens with different proportions by
mercury pressing experiment, then established the statistical model of microscopic characteristics
(porosity and pore size distribution) and compressive strength. At present, experimental studies on
the microstructure (porosity, pore size distribution) and macroscopic mechanical properties of porous
materials are mainly analyzed by mercury intrusion test, while the mercury intrusion test not only
causes damage to the internal pore structure but also can not reflect 100% of the pore space distribution
information adequately. Compared with the traditional mercury intrusion test, the NMR test can
quickly and non-destructively obtain 100% pore spatial distribution information inside the material.
Therefore, the study of rock-like rocks based on the NMR test will be helpful to grasp the internal
relationship between pore structure distribution and mechanical properties.

With the development of fractal theory, it has been widely used in the field of porous materials
pore structure complexity and irregular characterization [25–27]. Hu [28] studied and analyzed
the relationship among the pore structure, fractal dimension and strength of the stone silt tailings
backfill. Qing [29] analyzed the relationship among pore fractal dimension, compressive strength and
permeability of wollastonite concrete by mercury pressing test and electron microscope scanning test.
Zhang [30] carried out the mercury pressing test and X-ray diffraction test on compacted concrete
materials and discussed the microstructure and fractal characteristics. Zhang [31] studied the influence
of electric breakdown energy on the microstructure, and the fractal dimensions of coal block was studied
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by means of NMR. Hazraa [32] discussed the relationships between pore structure, fractal dimension
and material thermal maturity of India shale by systematic analysis.

Based on NMR and fractal theory, this study deeply studies and analyzes the internal relationship
between microscopic pore structure characteristics and macroscopic mechanical properties of
sand-like materials by carrying out the proportion test of sandstone-like materials, and establishes
a strength prediction model based on the porosity and pore size distribution of rock-like materials,
thereby providing reference and innovation space for the subsequent research on rock-like materials
related experiments.

2. Materials and Methodology

2.1. Raw Material Selection and Test Scheme

The selection of raw materials will also affect the accuracy of the test. Based on current research
results of sandstone-like materials at domestic and abroad [33,34], portland cement(P·O42.5) was
selected as the cementing material in the experiment. For a better simulation of the dense structure of
sandstone, the natural river sand with 0.5–1 mm particle size was chosen as aggregate. Its approximate
spherical shape and smooth texture can make the cementitious material fully wrapped. Admixture is
an indispensable component in the production of cementitious materials at present, which has
a great influence on physical properties (bonding strength and bearing strength) of cementitious
materials [35,36]. High purity silicon powder and naphthalene superplasticizer were selected as the
admixture. Specific parameters of experimental raw materials are shown in Tables 1 and 2.

Table 1. Chemical composition of portland cement.

Chemical
Composition 3Ca·SiO2 2Ca·SiO2 3CaO·Al2O3 4CaO·Al2O3·Fe2O3

Content 52.8 20.7 11.5 8.8

Table 2. Parameters of rock-like material.

Material Traits Main Ingredients Particle Size Density (g/cm3)

Quartz sand Yellow and white
particles quartz > 95% 0.5–1.0 mm 1.49

Silica fume White powder SiO2 > 99% 1 µm 2.2–2.6

Naphthalene
water reducer

Brown yellow
powder

β-Naphthal-enesulfonate
sodium formaldehyde

condensate

Water-cement ratio, sand-cement ratio and admixture were used to carry out the experiment
design and comparative tests, and pore structure characteristics of sandstone-like materials vary with
these variables changes. The variation range of factors is shown in Table 3.

Table 3. Test control factor variation range.

Variable Factor Factor Change Range

Water-cement ratio 0.30 0.33 0.35
Sand to Cement Ratio 0.70 1.0 1.30

Admixture 0.07 0.10 0.13
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2.2. Materials Production and Testing

Specimens were produced and tested with following procedures.
(1) Raw materials weighing. According to the experimental scheme, the specimens were prepared

by weighing ordinary portland cement, quartz sand, silica powder, water-reducing agent and tap
water in turn.

(2) Mixing and filling. Mix prepared ingredients and fill it into the prepared cylindrical test mold
with an inner wall diameter of 50 mm and a height of 100 mm according to Rock Test Rules for Water
Conservancy and Hydropower Projects (SL/T 264-2020) [37].

(3) Vibrating. Put the filled test molds on the vibration table of the laboratory to vibrate the
specimen until the end of the surface slurry.

(4) Demoulding, numbering and curing. The solidified specimen was demoulded and statically
set for 48 h. Specimens were numbered and put into the standard test automatic curing box with
temperature 22 ◦C and relative humidity 98% for 28 days.

(5) Experimental testing. The size and weight of cured sandstone-like specimens were measured
separately to obtain the material density. HS-YS4A rock acoustic parameter tester was used to test the
acoustic wave velocity of the specimen. The microscopic porosity and pore size distribution parameters
of test materials were obtained by the AiniMR-150 rock NMR analysis system [17]. Uniaxial compression
test was carried out on the SHA4206 microcomputer controlled electro-hydraulic servo tester with a
loading rate of 1 KNs−1, The calculation formula of uniaxial compressive strength is as follows [37]:

σ =
F
A

(1)

In the formula, σ is the uniaxial compressive strength of sandstone-like material (MPa), F is the
peak load (N), and A is the section area of the specimen (mm2).Intuitive procedures is shown in Figure 1
as follows.
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2.3. Calculation of Fractal Dimensions Based on the Transformation of Pore Radius of NMR

According to basic principles of nuclear magnetic detection [15], the surface relaxation can be
expressed as:

1
T2

= ρ2(
S
V
)

pore
(2)

Internal pores of the rock are often simplified as spherical pores in NMR testing, and Formula (1)
can be expressed as:

1
T2

= ρ2
Fs

rc
(3)
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In Equations (2) and (3), ( S
V )pore is the ratio of pore surface area to volume, Fs is the pore shape

factor (for spherical pore, Fs = 3), rc is the pore radius. ρ2 represents the surface relaxation strength of
T2, which mainly depends on the mineral composition of the rock and properties of the pore surface.
Based on literature [38] test results of rock surface relaxation strength with high silicate mineral
content are selected, and the value of ρ2 is 0.0045, C is Fs × ρ2, namely, C = 0.0135. The value of C is
also consistent with the value of C (0.01–0.015 µm/ms) of most sandstones in China [15]. Therefore,
Formula (3) can be expressed as:

rc = CT2 = 0.0135T2 (4)

According to Formula (4), the pore radius of rock is a one-to-one correspondence with the
value of T2, and T2 distribution of measured pores represents the pore size distribution of rock.
Many scholars have discussed and analyzed the classification of pore structure in rock and put forward
various methods. Referring to research results of the classification of sandstone pore structure [9,39],
this study divides internal pores of the material into three types: micropore (pore radius < 0.1 µm),
mesopore (0.1 µm < pore radius < 1 µm), macroporous (pore radius > 1µm), the specific division is
shown in Figure 2.
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Furthermore, T2 spectral area is an important parameter reflecting the number of pores with
different radius, it can quantitatively describe the distribution of pores in the total pores of different
structural types within the rock. The ratio of pores with different radii can be expressed as follows:

P(r) =
S(r)

S(all)
=

∫ rupper limit
rlower limit

f(r)dr∫ rmax

rmin
f(r)dr

. (5)

In Formula (5), f(r) is distribution curve of the saturated pore component, S(r) represents the
surface area surrounded by different pore radius and f(r), and S(all) is the total area of the surface
formed by pore radius and f(r) rmax, rmin is the maximum and minimum pore radius respectively.
Calculation results of pore classification are shown in Table 4.
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Table 4. Statistics of pore volume and compressive strength of sample.

Water-
Cement

Ratio

Sand to
Cement

Ratio
Admixture Porosity

Percentage
of

Micropore

Percentage
of

Mesopore

Percentage
of

Macropore

Uniaxial
Compressive
Strength/MPa

0.30

0.70
0.07 5.7470 0.1988 0.1725 0.6287 28.0725
0.10 5.3261 0.1371 0.2320 0.6309 33.3596
0.13 6.4188 0.1724 0.1580 0.6696 25.8754

1.00
0.07 7.9812 0.0117 0.1320 0.8563 12.3486
0.10 4.6157 0.1865 0.1992 0.6143 34.6290
0.13 3.3437 0.1682 0.2234 0.6085 36.8885

1.30
0.07 5.9445 0.2496 0.1109 0.6395 27.8376
0.10 5.6107 0.2305 0.1209 0.6486 28.2588
0.13 4.9982 0.0555 0.1566 0.7879 33.1568

0.33

0.70
0.07 8.7581 0.0409 0.1389 0.8202 12.4586
0.10 6.4043 0.1438 0.2460 0.6103 25.2527
0.13 5.4177 0.1404 0.1794 0.6802 28.3275

1.00
0.07 7.1317 0.0991 0.1122 0.7886 17.5747
0.10 9.9657 0.0695 0.0882 0.8423 11.5799
0.13 6.7898 0.0614 0.1465 0.7921 20.0908

1.30
0.07 7.7785 0.1005 0.0662 0.8332 12.9857
0.10 7.3258 0.0919 0.1022 0.8059 16.9800
0.13 6.7425 0.1170 0.1705 0.7124 22.2345

0.35

0.70
0.07 7.3831 0.0447 0.1292 0.8261 15.2602
0.10 9.9875 0.0149 0.1339 0.8512 11.2586
0.13 6.8863 0.0836 0.1881 0.7283 18.9264

1.00
0.07 7.5579 0.0619 0.1014 0.8367 13.5750
0.10 6.7476 0.1158 0.2443 0.6399 22.4181
0.13 10.0031 0.0379 0.1069 0.8552 10.1587

1.30
0.07 9.9854 0.0469 0.1209 0.8323 11.2789
0.10 7.0357 0.0674 0.2093 0.7233 17.9190
0.13 6.2118 0.1723 0.2055 0.6221 26.5328

Research results of fractal theory [40–44] show that the internal pore structure of porous materials
such as rock and concrete has obvious fractal characteristics, and the ratio of pore cumulative volume
(pore radius < r) to pore volume (Sv) and T2 accords with the following expressions:

ln(Sv) = (3−D)[ln(T2c) − ln(Tmax)] (6)

Formula (6) shows that if the pore size distribution of the material conforms to the fractal geometric
characteristics, there is a linear correlation between ln (Sv) and ln (Tmax). Accordingly, the fractal
dimension of pore size distribution can be calculated by linear regression analysis, and results are
shown in Table 5.
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Table 5. Sample size fractal dimension statistics.

Water to
Cement

Ratio

Sand to
Cement

Ratio
Admixture

Micropore Mesopore Macropore

K D1 R2 K D2 R2 K D3 R2

0.30

0.70
0.07 1.3603 1.6397 0.7008 0.0374 2.9626 0.9089 0.0049 2.9951 0.8891
0.10 1.2262 1.7738 0.8967 0.0248 2.9752 0.9655 0.0024 2.9976 0.9489
0.13 1.3339 1.6661 0.6973 0.0409 2.9591 0.9757 0.0039 2.9961 0.9526

1.00
0.07 1.6660 1.3340 0.7096 0.0859 2.9141 0.9715 0.0093 2.9907 0.9431
0.10 1.2959 1.7041 0.7198 0.0234 2.9766 0.9221 0.0016 2.9984 0.9504
0.13 1.1945 1.8055 0.6975 0.0209 2.9791 0.9645 0.0010 2.9990 0.9321

1.30
0.07 1.3719 1.6281 0.6820 0.0376 2.9624 0.9602 0.0032 2.9968 0.9727
0.10 1.3374 1.6626 0.6990 0.0355 2.9645 0.9767 0.0031 2.9969 0.9601
0.13 1.2001 1.7999 0.6885 0.0248 2.9752 0.9055 0.0025 2.9975 0.9537

0.33

0.70
0.07 1.6908 1.3092 0.7173 0.0767 2.9233 0.9756 0.0091 2.9909 0.9394
0.10 1.4543 1.5457 0.6748 0.0412 2.9588 0.9113 0.0041 2.9959 0.9956
0.13 1.3176 1.6824 0.7429 0.0312 2.9688 0.9468 0.0027 2.9973 0.9406

1.00
0.07 1.4942 1.5058 0.7077 0.0563 2.9437 0.9264 0.0056 2.9944 0.9833
0.10 1.6958 1.3042 0.7200 0.0859 2.9141 0.9710 0.0113 2.9887 0.9386
0.13 1.4858 1.5142 0.6770 0.0465 2.9535 0.9470 0.0048 2.9952 0.9341

1.30
0.07 1.5595 1.4405 0.6692 0.0663 2.9337 0.9268 0.0080 2.9920 0.9511
0.10 1.5377 1.4623 0.6627 0.0604 2.9396 0.9446 0.0062 2.9938 0.9436
0.13 1.3476 1.6524 0.7023 0.0448 2.9552 0.9844 0.0046 2.9954 0.9665

0.35

0.70
0.07 1.5298 1.4702 0.6870 0.0615 2.9385 0.8483 0.0065 2.9935 0.9020
0.10 1.6693 1.3307 0.7101 0.1075 2.8925 0.9672 0.0218 2.9782 0.9390
0.13 1.4951 1.5049 0.6732 0.0487 2.9513 0.8948 0.0049 2.9951 0.9466

1.00
0.07 1.5949 1.4051 0.7051 0.0634 2.9366 0.8891 0.0074 2.9926 0.9080
0.10 1.3264 1.6736 0.6765 0.0446 2.9554 0.8908 0.0044 2.9956 0.9249
0.13 1.6818 1.3182 0.7147 0.1789 2.8211 0.9828 0.0238 2.9762 0.9145

1.30
0.07 1.6910 1.3090 0.7184 0.0911 2.9089 0.9804 0.0133 2.9867 0.9046
0.10 1.4805 1.5195 0.6640 0.0490 2.9510 0.9597 0.0053 2.9947 0.9556
0.13 1.3653 1.6347 0.6649 0.0382 2.9618 0.9507 0.0038 2.9962 0.9919

Note: K—the slope of linear fitting curve, D—fractal dimension of aperture, R2—linear regression correlation coefficient.
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3. Analysis of Test Results

Based on the calculated results of pore classification and fractal dimension of pore size, the variation
range of pore volume ratio and fractal dimensions of pore size of sandstone-like materials is calculated.
Statistical results are shown in Table 6.

Table 6 shows that the pore distribution in sandstone-like materials is mainly macroporous.
macropores occupy the biggest proportion of total porosity, account for 73.65 % of total porosity,
then followed by mesoporous pore, account for 15.54 %, and microporous pore is the least, account for
only 10.82% of the total porosity. Except for the fractal dimension of individual micropore is lower
than 0.70, the correlation coefficient R2 of fractal dimension of other apertures are greater than 0.70,
which indicates that calculation results of fractal dimension of aperture have high reliability in this study.
Meanwhile, the fractal dimension and correlation coefficient of pore size increase with the growth of
pore radius. The mean fractal dimension of mesopores and macropores are higher than 0.9436, and the
mean value of correlation coefficient are higher than 0.9425, while mean values of fractal dimension
and correlation coefficient of microporous pore are only 1.5406 and 0.7026. The data difference shows
that the mesopore and macropore of sandstone-like materials have obvious fractal characteristics.

Table 6. Statistics of different pore fractal dimension ranges.

Pore Classification Micropore
(r < 0.1µm)

Mesopore
(0.1 µm < r < 1µm)

Mecropore
(1 µm < r < 100 µm)

Percentage of porosity 0.0117–0.2496 0.0662–0.2460 0.6085–0.8563
Average percentage of porosity 0.1082 0.1554 0.7365

Fractal dimension of pore radius 1.3042–1.8055 2.8211–2.9791 2.9762–2.9990
Average of fractal dimension of pore

radius 1.5406 2.9436 2.9934

Fractal dimension calculation
correlation coefficient 0.6627–0.8967 0.8483–0.9844 0.8891–0.9956

Average of calculation correlation 0.7029 0.9425 0.9438

To verify the correlation between the ratio of different pore volume, the fractal dimension of pore
size and the compressive strength of materials, the correlation coefficient between variable factors and
strength are calculated, and the corresponding scatter plot are drawn and shown in Figures 3 and 4.
According to the correlation analysis of fractal dimension and strength of different pore sizes,
correlation coefficients of fractal dimension and strength of micropore, mesopore and macropore are
0.95, 0.80 and 0.76, respectively. Combined with the scatter plot of fractal dimension and compressive
strength of Figure 3, it can be found that the fractal dimension of micropore, mesopore and macropore
are positively correlated with compressive strength, in which the fractal dimension of micropore has a
high linear correlation with compressive strength, while the fractal dimension of the mesopore and
macroporous aperture has low correlation coefficient with the strength, and the distribution of most
scattered points is consistent with the trend of linear increase, but individual points deviate from the
main trend line. To simplify the model calculation, the relationship between fractal dimension and
compressive strength of mesopores and macropores is considered as a linear positive correlation.
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From Figure 4, it can be seen that the pore ratio of micropore and mesopore are also positively
correlated with the strength, while both the proportion of macroporous in pore volume and porosity
show different change rules. The correlation coefficient between the macroporous pore ratio and
compressive strength is −0.85, and the correlation coefficient between porosity and strength is −0.93.
By analyzing the comprehensive scatter diagram, the correlation between compressive strength and
the proportion of macroporous pores and porosity are highly negative linear.
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4. Strength Prediction Model

4.1. Selection of Representative Model Parameters

To ensure the high reliability of the rock-like material strength prediction model, model-dependent
variables should include both pore size distribution and porosity parameters. However, there are
many different characterization methods for material pore size distribution and porosity parameters.
Therefore, the selection of representative factors has an important impact on the accuracy and operability
of the model. Based on the correlation analysis of different pore volume ratio, pore fractal dimension
and compressive strength in sandstone-like materials, the single factor linear regression analysis of
each characterization parameter and strength is carried out, and then, the correlation analysis between
dependent variables is carried out. The results are shown in Table 7.

Table 7. Summarizes the single-factor linear regression results of pore structure parameters and
compressive strength.

Parameter Type Pore Structure Parameter Type R2 F p Value

Percentage of porosity

Porosity 0.8731 171.9648

0.0000

Percentage of micro-pore 0.8319 113.8068
Percentage of meso-pore 0.9212 292.2251
Percentage of macro-pore 0.9582 572.6658

Fractal dimension of
pore radius

Fractal dimension of micropore 0.9010 227.5951
Fractal dimension of mesopore 0.9292 315.0203
Fractal dimension of macropore 0.9360 292.2676

Table 7 shows that the linear regression coefficient of pore volume ratio and compressive strength
is greater than 0.8319, the correlation coefficient between pore fractal dimension and strength is more
than 0.90, and the value of p is 0.0000 (<0.05). The data show that both of the pore volume ratio and
fractal dimension have a good linear relationship with compressive strength. To avoid the prediction
model being not conducive to practical operation due to complex expression, this study carries out the
correlation test of different pore parameters and selects the representative parameters to establish a
simple strength prediction model. Test results are shown in Tables 8 and 9.

Table 8. Analysis of pore volume parameters.

Pore Parameter Porosity Percentage of
Micropore

Percentage of
Mesopore

Percentage of
Macropore

Porosity 1 −0.4766 (**) −0.5709 (**) 0.4856 (**)
Percentage of

micropore −0.4766 (**) 1 0.7819 (**) 0.7341 (**)

Percentage of
mesopore −0.5709 (**) 0.7819 (**) 1 −0.8196 (**)

Percentage of
macropore 0.4856 (**) 0.7341 (**) −0.8196 (**) 1

Note: (**) indicates that the correlation test is significant at a significance level of 0.01.

The correlation coefficient between macroporous pore ratio and other parameters of porosity is
higher, especially with mesopore. Moreover, the correlation coefficient between pore volume ratio
and strength of macropores is 0.9582 in single factor regression analysis. In the same way, the fractal
dimension of macroporous aperture has a high correlation coefficient with that of micropore and
mesopore, and the correlation coefficient with the fractal dimension of the mesopore is 0.9555 particularly.
Furthermore, the correlation coefficient between fractal dimension and compressive strength of
macropores is also the highest. It has been proved in relevant literatures that pore size can affect
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the elastic behavior and strength of rock. Under the condition of keeping the porosity of the porous
material unchanged, the change of pore position will lead to the change of sample strength [45,46].
At the same time, the failure and fracture of materials usually tend to develop along macropores [47].
Therefore, the proportion of macropores and the fractal dimension of macropores are selected as
representative parameters to establish the prediction model.

Table 9. Analysis of pore size fractal dimension.

Fractal Dimension
Parameter

Fractal Dimension of
Micropore

Fractal Dimension of
Mesopore

Fractal Dimension of
Macropore

Fractal dimension of
micropore 1 0.8126 (**) 0.7777 (**)

Fractal dimension of
mesopore 0.8126 (**) 1 0.9555 (**)

Fractal dimension of
macropore 0.7777 (**) 0.9555 (**) 1

Note: (**) indicates that the correlation test is significant at a significance level of 0.01.

4.2. Establishment of Strength Prediction Model

Through the analysis of the above independent variables, it can be certain that the expression of
the strength prediction model of sandstone-like materials is a binary function with the percentage of
macropores and fractal dimension of macropores as independent variables, that is:

Mc = f(Dmac, Vmac) (7)

In Formula (7), Mc is the compressive strength of the material, Dmac is the fractal dimension of
macropore aperture, and the Vmac is the percentage of macropore.

To make the strength prediction model more reliable and operational, this study carried out the
linear fitting for compressive strength, macroporous pore volume and fractal dimension of macroporous
pore size respectively, to infer the concrete expression of strength model. From the Figures 5 and 6 of
linear fitting results, the correlation coefficient among compressive strength, macropore volume ratio
and pore size fractal dimension of fitting curve are 0.8947 and 0.8854. That is to say, the independent
variables have a good correlation with compressive strength. However, the variation trend of different
independent variables and strength is different. The compressive strength increases with the growth of
pore size fractal dimension, but decreases with the growth of pore volume.
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Based on the fitting relationship between the above independent variables and compressive
strength, it is assumed that the expression of the predicted strength model is expressed as follows:

Mc = β0 + β1Dmac + β2Vmac + β3Dmac ×Vmac (8)

The multivariate regression analysis of the hypothetical expression is carried out, and the results
are shown in Table 10.

Table 10. Calculation results of multiple linear regression of independent variables.

Regression
Coefficients

Independent
Variable Calculated Value t p

β0 Constant term −36148.5 −4.63784 0.000115
β1 Dmac 12082.66 4.646216 0.000112
β2 Vmac 40771.45 4.464933 0.000177
β3 Dmac × Vmac −13621.8 −4.47106 0.000174

Equation Expression R2 = 0.940344 p = 6.34957 × 10−11

Table 10 shows that the correlation coefficient of the strength model regression equation reaches
0.943081, the p-value of the equation and the dependent variable are far less than the significant level
0.05, and the correlation coefficient of model expression is also greater than that of the single factor
and the strength equation. The data show that regression results of the strength prediction model
are significant, and the correlation coefficient of the model expression is better than that of the single
factor expression. Therefore, Formula (8) is selected as the strength prediction model equation for
sandstone-like materials. The complete expression is shown in Formula (9):

Mc = −36148.5 + 12082.66Dmac + 40771.45Vmac − 13621.8Dmac ×Vmac (9)

The mean absolute percentage (MAPE) is adopted to evaluate the degree of closeness of the model
prediction results to the real data, it can reflect the true situation of the predicted value error of the
model. If MAPE is smaller, it means that the model fitting effect is better and the model prediction
accuracy is higher. Kepniak [48,49] combined MAPE and multiple regression method statistical
methods to analyze the dependence of concrete tensile strength, flexural strength and compressive
strength, as well as the durability study of concrete with limestone powder instead of fine aggregate
under the condition of chemical erosion. The calculation formula of MAPE is as follows:

MAPE =
1
n

T∑
i=n

∣∣∣Yi −Yip
∣∣∣

Yi
× 100 (10)
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In Formula (10), T is total number of data samples, n is forecast periods number, Yi is the actual
value of the variable in the period i, Yip is the prediction value of the variable in period i. By substituting
the data in Tables 4 and 5 into Formula (9) and Formula (10), it turns out that MAPE equals 4.9841%.
In conclusion, the expression of sandstone -like material strength prediction model established in this
paper has a high correlation coefficient and small MAPE. Therefore, Formula (9) can be used as the
model expression for the next analysis.

4.3. Model Rationality Verification

To verify the rationality of the model, the compressive strength of non-test group specimens is
predicted by using the established model. The results are shown in Table 11 and Figure 7.

Table 11. Statistics of the strength prediction results of non-test group sandstone specimens.

Specimen Numbering 1 2 3 4 5 6 7

Vmac 2.9787 2.9916 2.9943 2.9946 2.9950 2.9968 2.9987
Dmac 0.8583 0.8514 0.8372 0.6983 0.6956 0.6909 0.6950

Measured strength 10.2068 13.4162 17.5577 21.5947 21.3907 28.0236 33.3838
Forecast strength 10.0549 13.287 17.3615 21.5414 21.5848 28.0728 33.3795

error 1.48% 0.96% 1.11% 0.24% 0.90% 0.17% 0.01%
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From Table 11 and Figure 7, it can be seen that prediction results are basically close to actual
indoor test results. Forecast results show that the strength prediction model has high reliability and
can predict the compressive strength of sandstone-like materials.

5. Conclusions

In this study, raw materials were mixed to make sandstone-like specimens of different ratios.
Based on the principle of fractal theory and NMR, the prediction model of compressive strength
with the percentage of macroporous pore volume and fractal dimension of macropore as dependent
variables is established. Conclusions drawn from this study are as follows.

(1) Internal pores of sandstone-like materials are mainly macropores, followed by mesopores,
and the proportion of small pores is the smallest. The fractal dimension of pore size gradually
increases with the growth of pore radius. Correlation coefficients of fractal dimension of mesopore and
macropore are different from that of micropore, and pores of mesopore and macropore show obvious
fractal characteristics.

(2) The proportion of different pores volume and the fractal dimension of pore size are both
linearly related to the compressive strength of materials. The fractal dimension of macroporous pore
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size and the proportion of macroporous pores have a good correlation with their respective factors and
compressive strength. Therefore, the percentage of macropore and the fractal dimension of macropore
pore size are selected as representative parameters of the prediction model.

(3) The sandstone-like strength prediction model established in this study has high correlation
coefficient and small MAPE. The compressive strength of non-test group specimens predicted by the
strength model is close to the measured strength of the indoor test, the model has high reliability, and it
could be used to predict the compressive strength of sandstone-like materials.

In this study, some limitations still exists. The slurry–aggregate transition interface has a great
influence on the macroscopic mechanical properties of sandstone-like materials. Therefore, it should be
taken into account as an important internal microstructure in the subsequent research on the internal
relationship between the microscopic characteristics and the macroscopic mechanical properties
of sandstone.
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