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Abstract: Proportional integral (PI) control is still the most widely deployed controller in the industrial
drives due to its simplicity and the fact that it is easy to understand and implement. Nevertheless,
they are successes applied to systems with a complex behavior with a nonlinear representation,
but a disadvantage is the procedure to find the optimal PI controller gains. The optimal values of PI
parameters must be computed during the tuning process. However, traditional tuning techniques are
based on model and do not provide optimal adjustment parameters for the PI controllers because
the transient response could produce oscillations and a large overshoot. In this paper, six swarm
intelligence-based algorithms (whale, moth-flame, flower pollination, dragonfly, cuckoo search,
and modified flower pollination), are correctly conditioned and delimited to tune the PI controllers,
the results are probed in a typical industry actuator. Also, a rigorous study is developed to evaluate
the quality and reliability of these algorithms by a statistical analysis based on non-parametric test and
post-hoc test. Finally, with the obtained results, some time simulations are carried out to corroborate
that the nonlinear system performance is improved for high precision industrial applications subjected
to endogenous and exogenous uncertainties in a wide range of operating conditions.

Keywords: PMSM; swarm intelligence; optimization

1. Introduction

Alternating current (AC) motors are widely used in industrial applications such as electric
vehicles, hybrid electric vehicle, wind generation systems, mining machinery, marine propulsion,
industrial robots, air conditioners, cranes, among other applications, as well as particular demand in
residential and commercial areas [1,2]. There are two main categories of AC motors: induction
motors (IM) and synchronous motors (SM), the last one, are gaining great attention due to its
self-excitation, high efficiency, low maintenance cost, high power density, fast dynamic response,
high torque-to-inertia, and more economic maintenance compared to direct current and induction
machines. [3,4].

During recent decades, the permanent magnet synchronous motor (PMSM) has been used more
and more due to its advantages; but at the same time, too many control structures have been
developed to enhance the performance due to the nonlinears, and endogenous and exogenous
disturbances [5]. Some of them include classical controllers, intelligent control, vector control,
backstepping technique, linear quadratic regulator, fuzzy logic controller, artificial neural networks,
genetic algorithm, predictive control, and robust control [6]. Vector control with classical controllers,
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Figure 1, is the most widely used controller in industries due its easy design and implementation
procedure. Moreover, in the literature, proportional integral derivative (PID) controllers have been
extensively studied to prove stability of PMSM dynamic performance and improve its operation under
critical scenarios [7,8]. In [9] shows that the PMSM is globally regulated around a desired equilibrium
point, with a simple PI control around current errors, if the gains are suitably chosen. Therefore,
a control scheme based on traditional PI controllers is a proper choice for velocity trajectory tracking.

The advantages of a PID controller are its feasibility, simplicity, ease to understand,
and implementation stage. However, a disadvantage of the traditional PID controller is the procedure
to find the optimal PID gains for a particular system that is very difficult and tedious to perform [10–13].
In the literature, there are several techniques to solve the problem of gains tuning of conventional PID
and PI controllers when the system is non-linear, such as the PMSM. Traditional tuning techniques do
not provide optimal adjustment parameters for the PID controllers because the transient response could
produce oscillations and a large overshoot due to the system dynamics [14]. Therefore, new regulation
strategies know as advanced and intelligent schemes have been applied to overcome the main
drawbacks of PID controller in tuning stage, by the solution of an objective function to achieve
optimal gains.

A crucial problem in nonlinear systems control design and PID scheme is the definition of a set of
controller gains that provide a system performance near-optimal. This process, which is usually carried
out at the design stage as a compensation regarding various adverse factors, often produces restricted
results. Thus, algorithms inspired in nature and population seems like an important alternative to
synergistically operate with PID controller for improving the system behavior [10].

In recent literature, various metaheuristic algorithms have been used to carry out an inclusive
search for optimal solutions, which cannot be solved by classical techniques. That the metaheuristic
algorithms try to emulate the natural behavior of different class of animals, outcomes to have a high
level of efficiency, overcome limitations of classical methodologies. Besides, search results depend on
the system complexity or the problem to solve; becouse a metaheuristic algorithm can be more efficient
than other to solve a particular problem, while the same metaheuristic algorithm could present a poor
performance for another system [15].

In this context, different optimization techniques, such as cuckoo search algorithm (CSA) [14],
biogeography-based optimization (BBO) [16], firefly algorithm (FA) [17], hybrid FA-pattern
search [18], krill herd algorithm [19], flower pollination algorithm (FPA) [12], hybrid flower
pollination algorithm (HFPA) [20], grey wolf optimization algorithm (GWO) [21], bacterial foraging
algorithm [22], particle swarm optimization (PSO) [23], differential evolution [24], artificial bee colony
(ABC) [25], whale optimization algorithm (WOA) [26], moth-flame optimization algorithm (MOA) [27],
dragonfly algorithm (DA) [13] have been developed and can be used to compute the optimal PID
controller gains of many dynamic systems. However, useful algorithms’ performance depends on
the adequate search procedure, which implies the correct objective function definition, search limits,
the setting the search algorithm control parameters, and the complexity of the analysis system.

In [28] a WOA application is presented to optimally design PID controllers in the automatic
generation control loops of interconnected power systems, including renewable energy sources.
The effectiveness of the proposed controller to deal with the uncertainties in generation systems
is an essential feature of this study.

An objective function to enhance transient response of terminal voltage in terms of maximum
overshoot, rise time, settling time, and steady state error is solved by CSA algorithm [14]. A PID
controller is used in automatic voltage regulator scheme. Also, in [10] the automatic control problem
of synchronous generator is attended with MOA optimization procedure.

In [13] DA, is applied for design and implementation of a PID controller with three degrees
of freedom. The control stabilizes the frequency and power fluctuations after some disturbance is
presented in a hybrid topology of an electric distribution system.
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In [29] a meta-heuristic optimization algorithm called chaotic whale optimization algorithm is
used to regulate the performance of PMSM when it is affected by load disturbances and changes in
system parameters. In [30] a control system for permanent magnet synchronous motors, together
with an online self-tuning method is presented. In this work, a meta-heuristic bio-inspired approach
has been implemented to find the voltage source converter parameter set which minimizes a specific
objective function. In the last three cases, there is not a robustness analysis, sensitivity analysis,
or statistical test to affirm robust performance of designed controller, analyze the effectiveness of the
controller and verify the significance of the results, respectively.

The purpose of this paper is to compare different reactive, nature-inspired algorithms for tuning
parameters of the PID controller in order to discover the most suitable algorithm for use in solving this
class of problem. The six nature-inspired algorithms such as whale, moth-flame, flower pollination,
dragonfly, cuckoo search, and modified flower pollination are compared in order to show which of
them are the best to work with the same population sizes and generation numbers. This proposal uses
six nature-inspired algorithms to search optimal values of a regulatory scheme for robust tracking
tasks of desired velocity profiles of a PMSM [31]. This evolutionary technique is applied on one
objective/fitness function to find an optimal solution that minimizes the overall error.

In another context, the contributions of a meta-heuristic must be objectively evaluated and
reported; however, as described in [32], this is not always the case. This is due to the fact that the
meta-heuristic procedures are not described in sufficient detail, the experimental adjustments are
very generally described and this results in the impossibility of replicating an experiment exactly
and an equitable comparison as mentioned in [33]. Statistical analysis [34] is used for the objective
evaluation of the performance of metaheuristic algorithms. The statistical procedures developed to
carry out statistical analyzes can be classified into two: parametric and non-parametric, according
to the specific type of data used [35]. In many experimental studies, the lack of properties required
for proper application of parametric procedures (independence, normality, and homoscedasticity)
gives non-parametrics the task of rigorous comparison between algorithms. Due to the above, the use
of non-parametric statistical analysis is widely used in the field of metaheuristics [34] to establish
its performance.

Due to different current drawbacks in PMSM regulation, some objectives could be included in
the controller design stage: (a) Search simultaneously optimum values of a regulation scheme for
robust tracking tasks of desired velocity profiles of a PMSM using six nature-inspired algorithms.
To explore optimum controller settings, an extensive comparative study is carried out with different
performance index and time domain specification; (b) in order to investigate the effectiveness of the
velocity trajectory tracking controller tuned with six nature-inspired algorithms, the comparison of
the transient response of the PMSM subject to different operating conditions is made; (c) to examine
the robustness of the velocity trajectory tracking controller tuned with six nature-inspired algorithms,
a sensitivity analysis under parametric variation and different operating conditions of the PMSM is
done; and (d) The presented results exhibit high quality behavior and is demonstrated by a statistical
analysis based on non parametric test and post hoc test.

The remainder of the paper is organized as follows. Section 2 portrays the mathematical model
of a nonlinear PMSM. The control structure is presented in Section 3. The objective function and
constraints for the optimization of PI gains are described in Section 4. An overview of the six
nature-inspired algorithms are presented in Section 5. In Section 6 presents optimization results,
sensitivity analysis and robustness of controller. Section 6 shows the statistical analysis for comparing
nature-inspired optimization algorithms. Finally, the conclusions of the paper are established.
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2. Analytical Representation Regulation Scheme of PMSM

2.1. Dynamic Model

The set of nonlinear differential equations that describe the dynamics of a three-phase PMSM
drive in the dq reference frame oriented to the rotor flux axis can be written as [36]:

did
dt

= (−Rsid + ωeLqiq − vd)

(
1
Ld

)
(1)

diq

dt
= (−Rsiq + ωeLdid −ωeλm − vq)

(
1
Lq

)
(2)

dωr

dt
=

0.75Piq(λm + (Ld − Lq)id)− Tl − Bωr

J
(3)

dθr

dt
= ωr (4)

where Rs is the stator winding resistance per-phase; ωe is the electrical rotor angular speed; Ld and Lq

are the stator winding self-inductances in the d and q axes, respectively; iq is the q-axis stator current;
vq is the q-axis stator voltage; id is the d-axis stator current; vd is the d-axis stator voltage; λm is the
magnetic flux linkage in the rotor due to the magnets; J and B are the inertia moment and the viscous
friction coeffcient, respectively; Tl is the disturbance signal; P is the number of pole pairs; θr and ωr

are position and the mechanical speed of the rotor (ωe = Pωr), respectively.

2.2. Control Algorithm

The system depicted in (1)–(4) is a set of coupled nonlinear differential equations with two control
inputs, vd and vq and one disturbance signal (Tl). The main task of the PMSM drive based on linear
controllers is to design an asymptotically stable regulation scheme for robust tracking tasks against
different operating conditions and desired speed reference profiles.

The PMSM used in this servo system demands a particular configuration of control scheme,
Figure 1. The system contains a permanent magnet synchronous motor, a field oriented control,
coordinate transformations abc to dq and vice versa, a sinusoidal pulse width modulation, a power
source rectifier based on semiconductor devices, a direct current voltage bus (VCD) an encoder used
to detect speed and three PI controllers. The controllers apply a structure of cascade control loops,
consisting of an external speed loop and two inners currents loops. The cascade control is used to
attenuate the effect of disturbances. In this work, the three control loops are used to track desired
speed reference profiles and provide robustness against exogenous disturbances (mechanical load
torque) and parametric variations due to operating temperature.
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Figure 1. Schematic diagram of the permanent magnet synchronous motor (PMSM) control system.

The external control loop with negative feedback is used for speed regulation and compensate
variations of load torque. Figure 1 shows that the outer control loop computes the desired current
signal (i∗q ) in q axes, for the desired speed ω∗ with the rotor speed error signal eω. The expression to
compute the rotor speed error signal can be represented as,

eω = ω∗ −ωr (5)

where ω∗ is the desired rotor speed and eω is the rotor speed error. The external loop equation can be
expressed as

i∗q = kp,ωr (ω
∗ −ωr) + ki,ωr

∫ t

0
(ω∗(τ)−ωr(τ))dτ (6)

where kp,ωr and ki,ωr are the proportional gain of rotor speed and the integral gain of rotor speed,
respectively. The two internal control loops are called the secondary control. The inner loops attenuate
the effect due to the parametric variations of PMSM. The equations of the two internal control loops
are given by

vd = kp,id(i
∗
d − id) + ki,id

∫ t

0
(i∗d(τ)− id(τ))dτ − Lqωeiq

vq = kp,iq(i
∗
q − iq) + ki,iq

∫ t

0
(i∗q (τ)− iq(τ))dτ + Ldωeid + ωeλm

(7)

where kp,id and ki,id are proportional and integral gains of the current on d-axis, respectively; i∗d is the
d-axis current reference value, kp,iq and ki,iq are proportional and integral gains of the current on q-axis,
respectively; and

vd = Lqωeiq + Ud

vq = −Ldωeid −ωeλm + Uq
(8)

where Ud and Uq are two new auxiliary control variables. The auxiliary variables are used to obtain
the desired dynamics for the PMSM stator currents eliminating the nonlinearities and the coupling of
the mechanical and electrical variables indicated in (1) and (2) [7,37]. Thus, kp,iq , ki,iq , kp,id , ki,id , kp,ωr

and ki,ωr are computed simultaneously using six nature-inspired algorithms to ensure high speeds
tracking performance and efficient disturbances rejection. The purpose of this analysis is to compare
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different reactive, nature-inspired algorithms for tuning parameters of the PID controller in order to
discover the most suitable algorithm for the velocity trajectory tracking controller problem.

3. Objective Function for Parameters Tuning

The objective function to compute the gains of the controllers can be designed in different
ways. In previous works, the objective function is constructed by one or more performance indices,
such as: integral squared error (JISE), integral absolute error (JIAE), integral time and squared error
(JITSE), mean squared error (MSE) and integral of time and absolute error (JITAE). Nevertheless,
some researchers have been used different fitness functions based on time domain specifications
response, such as: settling time (ts), rise time (tr), maximum overshoot (Mp) and steady state
error (ess). In this paper, to design the objective function, both criteria of transient response and
performance indices are used in order to minimize all the indices as mentioned earlier. [14,38,39].
Thus, the respective objective function is defined as [40],

min J = (1− exp−γ)(Mp + ess) + exp−γ(ts − tr) (9)

subject to the following constraints:

kmin
p,j ≤ kp ≤ kmax

p,j

kmin
i,j ≤ ki ≤ kmax

i,j

(10)

where j = [iq, id, ωr]; kmin
p,j , kmin

i,j , kmax
p,j and kmax

i,j are the maximum and minimum values of the gains of
the PI controllers, and γ is the weighting factor which could be changed according to the dynamics of
the system, in this work γ = 0.5. The search space for proportional gains (kp,j) are defined between 0.1
and 100; and that of the integral gains (ki,j) are between 0.1 and 250.

4. Description of Search Algorithms

4.1. Overview of Cuckoo Search Optimization

The CSA is an algorithm based on the aggressive strategy of reproduction of the cuckoo birds
and the characteristics of flights called Lévy of some species of birds [41]. CSA starts when the mother
cuckoo lays her eggs in alien nests. The host bird can discover that the eggs are not its own and
either destroy the eggs or leave the nest with all the eggs inside. CSA starts with an initial population
randomly distributed to search for a nest to lay the egg. The random position of the nest where the
egg is placed is decided by carrying out Levy flights, defined as:

x(t + 1) = x(t) + α⊗ Lévy(λ) (11)

where t is the current generation number and α > 0 is the step size. The product ⊗means entry-wise
multiplication. Basically, Lévy flights provide a random walk, while their random steps are extracted
from a Lévy distribution, which for large steps has an infinite variance with an infinite average,
with the form

Lévy ∼ u = t(−λ), (−1 < λ ≤ 3) (12)

In the real world, if the egg of a cuckoo bird is very similar to the egg of the nest-owning bird,
then the egg has less chance of being discovered so the suitability must be related to the difference
in solutions. Following the rules defined above, the optimization algorithm can be summarized in
Algorithm 1.
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Algorithm 1: Cuckoo Search Optimization
begin

Objective function J, ki,j = [kp,id , ki,id , kp,iq , ki,iq , kp,eω ,ki,eω
]

Generate initial population of N host nests xi (i = 1, 2, . . . , N)

while (t < Max Generation) or (stop criterion)
Get a cuckoo randomly by Lévy flights
Evaluate its fitness
Choose a nest among N randomly
if (Fi > Fj)

Replace j by the new solution
end if
Abandon a fraction (pa) of worse nests
Keep the best solutions (or nests with quality solutions)
Rank the solutions and find the current best

end while
Show results and visualization

end

4.2. Overview of Dragonfly Algorith

The dragonfly, is one of the most interesting and fascinating insects of nature. Currently,
more than 5500 different species of dragonflies are known. Dragonfly Algorithm mimicks the swarming
behaviours of a dragonfly. The inspiration of the DA [42] is taken from the social behavior of the
dragonflies to hunt their food (static swarm) and when they migrate (dynamic swarm). Considering
these two behaviors, there are five factors involved in determining the individual dragonfly position:
(a) Separation; (b) Alignment motion; (c) Cohesion motion; (d) Food Attraction; and (e) Predator
distraction. There are two ways for updating the individual dragonfly position depending on the
neighborhood position. If there is no dragonfly in the neighborhood radius, the individual position is
updated considering the Levy flight equation and given as follow:

Xt+1 = Xt + lévy(d)Xt (13)

where d is the number of decision variables. The Lévy flight function is given by

lévy(d) = 0.01
r1ρ

|r2|1/β
(14)

where r1 and r2 are two random numbers in [0, 1]; β is a constant and ρ is computed as

ρ =

Γ (1 + β) sin
(

πβ
2

)
Γ
(

1+β
2

)
β2
(

β−1
2

)


1
β

(15)

where Γ (x) = (x− 1)!. Otherwise, the new position is calculated as follow:

Xt+1 = Xt + ∆Xt+1 (16)

where ∆Xt+1 is the step vector and can be obtained as

∆Xt+1 = (sSi + aAi + cCi + f Fi + eEi) + w∆Xt (17)

where s shows the separation weight; a is the alignment weight; c is the cohesion weight; f is a food
factor; e is the enemy factor; w is the inertia weight, Si indicates the separation of the i-th individual,
Ai is the alignment of i-th individual, Ci is the cohesion of the i-th individual, Fi is the food source
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of the i-th individual, Ei is the position of enemy of the i-th individual and t is the iteration number.
The optimization process of DA is further explained in Algorithm 2:

Algorithm 2: Dragonfly Algorithm
Define population size (M)
Begin the iteration counter t = 1
Initialize the population by generating Xi for i = 1, 2, 3 . . . , M
Calculate the objective function values of all dragonflies
Update the food and the predator’s location
While (the stop criterion is not satisfied) do

For i = 1 : M
Update neighborhood radius (or update w, s, a, c, f , and e)
If a dragonfly has at least one neighborhood dragonfly

Separation motion
Alignment motion
Cohesion motion
Food attraction motion
Predator distraction motion

Else
Update position vector using the Lévy flight function

End if
End for i
Sort the population/dragonflies from best to and find the current best

End while

4.3. Overview of Flower Pollination Algorithm

FPA was developed by Xin-She Yang in 2012 [43] and is considered to be an excellent optimization
method. The algorithm is based on copying or mimicking the process of pollination or reproduction
of flowering plants. This process can occur through various forms and through different pollinators,
manifesting a high degree of adaptation and specialization. There are two types of pollination
according to how the pollen is sent or arrives at the plant: biotic pollination and abiotic pollination.
Biotic pollination is done by pollinators such as insects (bees, wasps, ants, flies and butterflies) or some
animals (mice, bats, and some birds, such as the hummingbird) in flowering plants. Abiotic pollination
does not require the transfer of pollen by alive organisms; this is done by water, wind, or gravity.
The biotic or cross-pollination is considered to be global pollination process with pollen carrying
pollinators performing Lévy flights. Global pollination can be formulated as

xt+1
i = xt

i + γL(λ)(g∗ − xt
i ) (18)

where xt
i denotes pollen i or the solution vector xi at iteration t, g∗ is the current best solution among

all current generation solutions, γ is a scalar factor that is used for controlling the step size and L(λ) is
the Lévy flights based step size that corresponds to the strength of the pollination. Since insects can fly
over a long distance with steps of different distance, where the length of each step or jump follows the
levy probability distribution function.

L ≈ λΓ (λ) sin (πλ/2)
π

1
s1+λ

(s� s0 > 0) (19)

where Γ (λ) is a standard gamma function, and this distribution valid for large steps s > 0. The strength
of pollination is generally considered to be λ = 1.5. For the local pollination, may be represented
as follow
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xt+1
i = xt

i + ε(xt
j − xt

k) (20)

where xt
j and xt

k are pollen from different flowers of the same plant species. For a local random walk,
xt

j and xt
k come from the same species and ε is drawn from a uniform distribution as [0, 1]. The FPA is

summarized in the Algorithm 3:

Algorithm 3: Flower Pollination Algorithm
Find the best solution in the initial population
while (t < MaxGeneration)

for i = 1 : n (all n flowers in the population)
if rand < p,

Draw a step vector L from a Lévy distribution
Do global pollination

else
Draw ε from a uniform distribution in [0, 1]
Do local pollination

end if
Evaluate new solutions
If new solutions are better, update them in the population

end for
Find the current best solution

end

4.4. Overview of Whale Optimization Algorithm

The whale optimization algorithm (WOA) was recently implemented to solve various non-linear
optimization problems [26]. The principle of how the WOA works is based on the way in which
humpback whales trap their food. This special form of hunting is called the bubble net feeding method.
The process consists of several whales coming together and forming a spiral around a school of fish
making bubbles below them so that they do not escape and push them towards the surface. Humpback
whales can recognize the location of the prey and surround it. This behavior is represented by the
following equations:

X(t + 1) = X∗(t)−A ·D (21)

D = |C · X∗(t)− X(t)| (22)

where t indicates the current iteration, A and C are coefficient vectors, X∗ is the position vector of the
best solution obtained so far, X is the position vector, and · is an element-by-element multiplication.
It is worth mentioning here that X∗ should be updated in each iteration if there is a better solution.
The vectors A and C are calculated in the following way:

A = 2a · a (23)

C = 2r (24)

where a decreases linearly from 2 to 0 over the course of iterations and r is a random vector
between [0, 1].

It is worth mentioning that humpback whales swim around their prey by closing a circle and along
a spiral path simultaneously. To model this behavior simultaneously, it is assumed that there is a 50%
probability of selecting if the circle mechanism is closed or the position of the whales. The mathematical
model that describes the previous process is the following:
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X(t + 1) =

{
X∗(t)−A ·D if p ≥ 0.5

D · ebl · cos(2lπ) + X∗(t) if x ≥ 0.5

where b is a constant for defining the shape of the logarithmic spiral, l is a random number in [−1, 1]
and p is a random number in [0, 1]. In each iteration, search agents update their positions with respect
to a randomly chosen search agent or the best solution obtained so far. The parameter a is reduced
from 2 to 0 to provide exploration and exploitation. The basic steps of the WOA are summarized in the
pseudocode as shown in Algorithm 4:

Algorithm 4: Whale Optimization Algorithm
Begin

Calculate the fitness of each search agent
X∗ = the best search agent
while t ≤ Max Iter do

for each search agent do
if |A| ≤ 1 then

Update the position of the current search
else if |A| ≥ 1 then

Select a random search agent Xr and
Update the position of the current agent

end if
end for
Update a, A, and C
Update X∗ if there is a better solution
t = t + 1

end while
return X∗

end Begin

4.5. Overview of Moth-Flame Optimization Algorithm

The moth-flame optimization algorithm (MOA) was developed by Mirjalili [44] taking as
inspiration the moth’s way of traveling during the night. The way of moving from the month-flame is
known as transverse orientation. The two most important elements in the MOA are moths and light
sources (flame). However, in each iteration of the optimization algorithm moths and flames are part
of different processes for its update. For this reason, they can fly in a 1-dimensional, 2-dimensional,
3-dimensional or hyperdimensional area by changing the position vectors.

In the MOA algorithm, each moth is assumed to have a position in a D-dimensional solution
space. The set of search agents can be expressed as a matrix, just as follows:

M =


m1,1 m1,2 · · · m1,d
m2,1 m2,2 · · · m2,d

...
...

. . .
...

mn,1 mn,2 · · · mn,d

 (25)

where M is the position matrix of moths, mi,j is the value of j-th parameter of the i-th moth, j = 1,2, ... , d
and i = 1,2, ... , n, n is the number of moths and d indicates number of dimensions (problem’s variables)
in the solution space. The corresponding fitness function values for the moths are sorted in an array
represented by
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OM =


OM1

OM2
...

OMn

 (26)

Flame matrix is in the same dimension as moth matrix. Flame also stores the fitness value
accordingly as number of flames. Moth and flame are both solutions but moth is the search agent
and flame is the best position of moth. Flames are the flag which dropped by moth during the search
process and move around that position and update accordingly. Due to this, the moths never lose the
best solution. Moths update its position with respect to flame according to the next equation

Mi,j =S
(
Mi, Fj

)
(27)

where Mi represents the i-th moth, Fj represents the j-th flame and S is the spiral function.
The logarithmic spiral function for the movement can be defined as:

S
(
Mi, Fj

)
= Diebt. cos (2πt) + Fj (28)

where b is a constant to define the shape of the logarithmic spiral, t is a random number between
[−1, 1] and Di is the distance between the i-th moth and the j-th flame, which is defined as:

Di =
∣∣Fj −Mi

∣∣ (29)

To avoid the exploitation degradation of the best promising solutions, the following equation is
expressed for the number of flames about this problem

Flame no = round
(

N − l ∗ N − l
T

)
(30)

where l = current number of iterations, N = maximum number of flames and T = maximum number of
iterations. The steps of the MOA algorithm are given in Algorithm 5:

Algorithm 5: Moth-flame Optimization Algorithm
Begin

Initialize the positions of moths and evaluate their fitness values
While (the stop criterion is not satisfied )

Update flame no.
OM = Fitness Function(M)

if iteration = 1
F = sort(M)

OF = sort(OM)

Else
F = sort(Mt− 1, Mt)
OF = sort(M− 1, Mt) End if

For i = 1 : N
For j = 1 : D

Update r and t
Calculate D with respect to the corresponding moth
Update M(i, j) with respect to the corresponding moth

End for j
End for i

End While
Post-processing the results and visualization.

End Begin
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4.6. Overview of MOD-FPA

In [31], the pollination process is replaced by the generation during each iteration of a set of
complete random orientations under conditions similar to FPA [43]. The main objective of MOD-FPA
is to improve the performance of FPA in terms of intensification, diversification, and speed of
convergence properties.

Two variations were made in the FPA process: (a) The estimation of a set of global orientations
for all members of the population towards global or local pollination; (b) The construction of a set
of better solution vectors related to all generated global orientations. This set is compared with each
iteration with a fixed number of real solution vectors to select the best one among them based on their
fitness values. In MOD-FPA two matrices are calculated at each iteration t; one contain Nor sets, where
each set is represented by a column with a random number of orientations toward global pollination.
The second matrix includes the same number of sets as the first, but has n f − randGlog orientations
toward local pollination. Please note that the filling of each set is computed using the switch FPA
parameter p.

The computed solution vector xt+1
i , in t + 1 requires of (g∗ − xt

i ) and (xt
j − xt

k) according to (14)

and (16), respectively. The MOD-FPA has been proposed to use a solution vector xt+1
i generated Np

pairs of pollen lists extracted from different flowers of the same plants species, each iteration either
using global or local pollination. This presents significant improvements to the FPA basic version in
terms of found solutions quality [31]. The Np (xt

j − xt
k) terms can be generated using successively Np

pairs of pollen determined at each new iteration t. However, it is important to note that each generated
complete orientation is associated with a pair of pollen gametes lists. More specifically, each set
number no is assorted to the pair number np. This means that Nor = 2Np. As a result, the global
exploitation algorithm characteristic is significantly enhanced. It should be noted that MOD-FPA offers
the possibility to have a unique best solution generated during one cycle, either through a local or
global pollination. The flow chart of MOD-FPA algorithm is shown in Figure 2. A detailed description
of these processes is presented in [31].
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Determine the best solution vector and compare it to the old g* 

Rt<RUNTimes

Figure 2. Flowchart of MOD-FPA.

5. Controllers Tuning Methodology

In this section, six different reactive, nature-inspired algorithms with the proposed objective
function (12) are employed to search optimum values of three PI controllers for the velocity trajectory
tracking controller. The block diagram of the control scheme is given in Figure 1 and PMSM
parameters are given in Table 1. Six parameters in velocity trajectory tracking controller can be
tuned simultaneously to attain an improvement in motor performance. The control scheme, together
with optimized PI are implemented using Matlab/Simulink 9.1 on Window 8.1 Professional Intel®

CoreTM i7-4712HQ CPU @ 2.3 GHz 16 GB RAM.
The parameter settings for each algorithm used in the experiment are shown in Table 2.

The six algorithms use the same objective function (12) for the optimization of each algorithm.
The performance of the optimized PI controller is evaluated with objective function (12) that considers
rise time, settling time, steady state error, overshoot, RMSE, JISE, JIAE, JITSE, and JITAE. The search
for optimal gains is done with nominal PMSM parameters and a nominal load torque of 2 Nm.
For finding the optimum values of PI parameters through MOD-FPA, DA, WOA, FPA, MOA, and CSA,
25 independent runs of each algorithm were computed so that a statistical analysis could be performed
on data, see Table 3.
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Table 1. PMSM nominal parameters.

Description Symbol Value

Inertia moment J 3.5 × 10−5 kg/m2

Nominal voltage v 120 V
Rated current 4 A
Stator resistance rs 2.6 Ω
Stator inductance d Ld 6.73 mH
Stator inductance q Lq 6.73 mH
Stator dispersion inductance Lls 0.1Lq
Magnetic flux λm 0.319 Wb
Viscous friction coefficient B 1.0 × 10−4 Nms
Direct current voltage bus VCD 250 V
Pole pairs np 2

Table 2. Parameter settings for each algorithm.

Algorithm

CSA WOA MOA DA FPA MOD-FPA

Parameter Set Parameter Set Parameter Set Parameter Set Parameter Set Parameter Set

Max num iterations 150 Max num iterations 150 Max num iterations 150 Max num iterations 150 Max num iterations 150 Max num iterations 150
Pa 0.25 Pop. size 50 Pop. size 50 Pop. size 50 Pop. size 50 Pop. size 50
α 2.5 p 0.5 b 1 β 1.5 P 0.8 P 0.8
λ 1.5 b 0.95 β 1.5 β 1.5
Nests 50 ~a linearly decreases 2 to 0 λ 1.5 Nor 2Np = 150

The optimal gains value for the velocity trajectory tracking controller are tuned with six different
nature-inspired algorithms are tabulated in Table 4. Table 3 lists the statistical comparison between
six search algorithms in terms of the best, mean, worst fitness values, and computational (CPU)
time. The best results of each study and comparative analysis are highlighted in bold in the
corresponding table.

Table 3. Results for each algorithm.

Algorithm WOA CSA MOA DA FPA MOD-FPA

Fmin Time (s) Fmin Time (s) Fmin Time (s) Fmin Time (s) Fmin Time (s) Fmin Time (s)

1 22.6994 9.7629 12.6686 11.1216 16.1739 100.8926 12.1782 60.3278 19.4428 61.9032 13.1286 50.8423
2 24.6300 10.0120 13.3347 20.0250 16.0381 17.8061 12.6654 173.4184 17.5573 68.5206 12.1802 53.8376
3 24.1075 9.8840 13.8902 12.9715 15.1834 19.8049 12.2521 198.9473 14.3185 68.6631 12.9781 63.3364
4 31.9663 15.9494 14.2112 25.9766 15.0710 171.1894 12.4561 65.9023 18.3437 67.9709 13.9798 56.6246
5 26.0397 10.4179 12.3965 11.5067 15.6704 42.3323 12.3193 61.3436 17.1240 68.2875 12.2019 76.9480
6 24.2628 10.2366 13.4341 13.2358 15.0166 456.2442 12.1703 62.1292 17.2445 69.3678 15.4764 66.5200
7 25.0451 15.3526 13.2952 24.3957 15.0218 401.0097 12.2335 124.8784 17.0061 68.2612 11.7130 82.0027
8 25.1760 15.9661 13.3476 33.8889 15.1331 91.3249 12.3435 159.4066 15.3419 67.6977 12.0062 73.9802
9 23.4427 12.3607 12.7400 37.0928 15.0987 57.7924 12.2090 140.4617 15.9161 68.9211 14.0449 64.1778

10 23.0715 14.2450 12.5240 23.4901 15.9019 26.4847 12.1547 155.3517 19.1114 69.5845 12.2709 57.2700
11 25.7892 16.0392 12.2125 24.7140 15.8864 53.1811 12.2761 166.6872 17.6686 69.7636 11.6044 82.5346
12 24.5148 10.2259 12.2005 13.7651 16.0996 24.5379 12.4171 62.3930 18.6116 71.2002 11.9056 60.7460
13 20.0042 13.0276 13.2360 11.0687 15.8925 22.6724 12.1286 162.2462 18.7515 69.7693 13.6080 80.2960
14 23.7718 10.0917 12.7649 21.7170 15.2064 42.8231 12.1749 144.8146 15.7143 71.5348 12.9382 88.3238
15 23.8330 11.3413 12.2352 26.7393 15.1215 53.4467 12.2862 127.0251 17.7395 70.5596 11.6248 68.3444
16 23.4915 18.3564 13.5295 16.3069 15.9487 21.4712 12.4545 184.5878 16.8993 69.4661 15.4240 85.9715
17 19.9996 28.7599 14.8069 8.9223 16.1761 23.9274 12.1259 172.1421 16.2686 69.7409 11.9933 85.0920
18 24.4517 15.3679 14.1889 12.4056 15.1758 32.2807 12.1928 183.7906 16.6907 70.4172 13.1080 67.1999
19 23.2751 9.4537 13.2900 16.4322 15.5920 26.1728 12.1271 171.7891 17.3482 69.4995 12.7458 74.1920
20 29.2304 17.1070 12.6198 11.8579 15.0467 288.8992 12.3381 154.1914 15.9538 70.7724 14.6669 57.7763
21 22.8498 9.9913 13.0761 26.2660 15.1684 84.8600 12.2090 144.6471 17.4028 68.8338 13.4155 77.1744
22 22.7927 16.1717 12.2834 17.5838 16.2844 23.1870 12.2886 168.5149 17.6001 94.7242 11.7557 61.6966
23 25.7762 15.7192 14.6626 18.8585 15.4847 36.4363 12.5411 195.4198 15.9356 94.4562 12.6093 53.6038
24 22.1067 16.0310 12.5529 31.5798 15.0241 362.9245 12.2561 175.5576 16.2506 93.0406 11.7642 50.0331
25 24.4228 17.7745 13.3719 25.2745 15.0251 280.7601 12.4785 173.8678 15.9975 97.4004 12.7630 83.3687

Minimum 19.9996 9.4537 12.2005 8.9223 15.0166 17.8061 12.1259 60.3278 14.3185 61.9032 11.6044 50.0331
Maximum 31.9663 28.7599 14.8069 37.0928 16.2844 456.2442 12.6654 198.9473 19.4428 97.4004 15.4764 88.3238
Average 24.2700 13.9858 13.1549 19.8879 15.4976 110.4985 12.2911 143.5937 17.0496 73.2143 12.8763 68.8757

Standard deviation 2.4595 4.2957 0.7555 7.8228 0.4575 134.2499 0.1418 45.2255 1.2426 9.8454 1.1349 12.1583
Variance 6.0490 18.4526 0.5709 61.1955 0.2093 18,023.0341 0.0201 2045.3484 1.5442 96.9313 1.2881 147.8247

The best results of each study and comparative analysis are highlighted in bold in the corresponding table.

The results presented in Table 3 show that MOD-FPA offered the best fitness values (11.6044)
compared to other nature-inspired algorithms. From these analyses, CSA has the best average



Appl. Sci. 2020, 10, 6592 15 of 27

computation (8.92225 s); on the other hand, WOA has the worst fitness value than MOD-FPA, MOA,
DA, and FPA.

Table 4. Optimal value for PI controller gains using CSA, WOA, MOA, DA, MOD-FPA and FPA.

Algorithm kp,ωr ki,ωr kp,iq ki,iq kp,id ki,id Fmin

CSA 1.0262 8.8369 6.9248 23.4701 7.1267 2.2591 12.2005
WOA 0.1104 46.4259 62.3245 0.1756 47.8563 0.1756 19.9996
MOA 0.2727 97.3000 11.1623 25.1522 1.3187 18.6495 15.0166
DA 0.0411 17.1440 28.1149 7.1869 12.9935 5.0739 12.1259
FPA 1.5970 88.4017 23.5742 185.9878 74.7438 194.9891 14.3185

MOD-FPA 0.4004 70.8571 39.7645 207.3428 51.864 180.338 11.6044

The best results of each study and comparative analysis are highlighted in bold in the corresponding table.

5.1. Robustness Study

5.1.1. Simulation Result for Speed Tracking Task without Load and Nominal Parameters Condition

The velocity reference trajectory planned for the PMSM operation was specified to efficiently
track the smooth motion profile defined as [45].

ω∗(t) =


0 for 0 ≤ t ≤ Ti

ω̃ (t, T1, T2) ω̄1 for Ti ≤ t ≤ Tf
ω̄3 for t > Tf

(31)

where ω̄1 = 500 rpm, Ti = 0 s, Tf = 0.02 s, ω̃
(

t, Ti, Tf

)
is a Bézier interpolation polynomial,

with ω̃ (Ti, Ti, Ti+1) = 0 and ω̃ (Ti+1, Ti, Ti+1) = 1, given by

ω̃(t, Ti, Ti+1) =

(
t− Ti

Ti+1 − Ti

)5 [
d1 − d2

(
t− Ti

Ti+1 − Ti

)
+d3

(
t− Ti

Ti+1 − Ti

)2
− ...− d6

(
t− Ti

Ti+1 − Ti

)5
]

with d1 = 252, d2 = 1050, d3 = 1800, d4 = 1575, d5 = 700, d6 = 126.
Figure 3 shows the closed-loop tracking response of the velocity reference trajectory without load

condition with set speed of 500 rpm of six algorithms. The performance parameter of the speed tracking
task response is shown in Table 5. The performance of the optimized PI controller is evaluated for
trajectory tracking control in terms of time domain specifications in speed response and performance
indices ( MSE, JISE, JIAE, JITSE, JITAE, ts, tr, Mp and ess). The main parameters, such as the overall
error rate (0.46720) and overshoot (0.20369) are in favor of the MOD-FPA controller. The MOD-FPA
controller has a better MSE, JISE, JIAE, JITSE, JITAE, and steady state error than other considered
controllers, as shown in Table 5.
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Figure 3. Speed tracking task without load and nominal parameters condition.

Table 5. Performance analysis for speed tracking task without load and nominal parameters condition.

Algorithm MSE JISE JIAE JITSE JITAE Rise Time Overshoot Settling Time ess Overall Error Rate

MOA 0.59069 0.11814 0.04121 0.00089 0.00042 0.00561 0.39198 0.01111 0.00005 1.1601
FPA 0.38809 0.07762 0.03409 0.00058 0.00037 0.00564 0.26066 0.01117 0.00001 0.77823
WOA 1.18869 0.23775 0.05967 0.00178 0.00065 0.00561 0.46571 0.01113 0.00003 1.97103
DF 0.55037 0.11008 0.0404 0.00083 0.00043 0.00562 0.33686 0.01115 0.00004 1.05577
CSA 0.48287 0.09658 0.03757 0.00073 0.00039 0.00562 0.33492 0.01114 0.00003 0.96986
MOD-FPA 0.18572 0.03715 0.02329 0.00028 0.00024 0.00564 0.20369 0.01117 0.00001 0.4672

The best results of each study and comparative analysis are highlighted in bold in the corresponding table.

5.1.2. Simulation Result for Speed Tracking Task with Constant Load and Nominal Parameters Condition

The Figure 4 shows the closed-loop tracking response for full load (2 N.m) condition with set
speed of 500 rpm. The performance parameter of the speed response is shown in Table 6. From these
results, it is clear that MOD-FPA controller has better time domain specifications in speed response
and performance indices. Parameters such as overshoot, MSE, JISE, JITAE and steady state error are
favoring only for MOD-FPA controller.

Figure 4. Simulation result for speed tracking task with constant load and nominal parameters condition.
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Table 6. Performance analysis for speed tracking task with constant load and nominal
parameters condition.

Algorithm MSE JISE JIAE JITSE JITAE Rise Time Overshoot Settling Time ess Overall Error Rate

MFA 1.23729 0.24747 0.05894 0.00134 0.00044 0.00558 0.32295 0.01114 0.0002 2.66301
FPA 0.8914 0.17829 0.04805 0.00096 0.00035 0.00561 0.15897 0.01122 0.00005 1.91997
WOA 2.72607 0.54524 0.08411 0.00297 0.00062 0.00557 0.28417 0.0112 0.00015 5.29016
DF 1.22334 0.24468 0.05736 0.00133 0.00043 0.00564 0.23535 0.01119 0.00019 2.56649
CSA 1.0413 0.20827 0.05359 0.00113 0.0004 0.00559 0.25751 0.01117 0.00015 2.2548
MOD-FPA 0.40039 0.08008 0.03323 0.00043 0.00025 0.00562 0.15739 0.01119 0.00008 1.0014

The best results of each study and comparative analysis are highlighted in bold in the corresponding table.

5.1.3. Simulation Result for Varying Load at Constant Speed and Nominal Parameters Condition

To validate the effectiveness of controllers, PMSM is subjected to sudden load changes also,
and the response is analyzed. The speed response characteristics for varying load conditions are
observed for this case. The speed is set at 500 rpm, load torque is varied from no load to full load
at 0.065 s, and 0.051 s, later load torque is varied from full load to zero load. Figure 5 shows the
speed response for sudden load changes condition and performance parameters are shown in Table 7.
The total performance indices are less for MOD-FPA controller than other considered controllers.
Moreover, performance indices such as recovery time, overshoot, and steady state error are also in
support of MOD-FPA controller.

Figure 5. Simulation result for varying load and nominal parameters conditionn.

Table 7. Performance analysis for speed tracking task with constant load and nominal
parameters condition.

Algorithm MSE JISE JIAE JITSE JITAE Rise Time Overshoot Settling Time ess Overall Error Rate

MFA 1.18804 0.23762 0.09067 0.01345 0.00574 0.00561 0.94610 0.01111 0.00009 3.40021
FPA 0.83917 0.16784 0.08446 0.01015 0.00589 0.00564 0.73195 0.01117 0.00071 2.55113
WOA 2.56335 0.5127 0.1477 0.03095 0.01029 0.00561 1.23909 0.01113 0.00123 5.70655
DF 1.15618 0.23125 0.09577 0.01364 0.00645 0.00562 0.85329 0.01115 0.00035 3.1855
CSA 0.99115 0.19824 0.08565 0.01144 0.00559 0.00562 0.82687 0.01114 0.00013 2.92222
MOD-FPA 0.38175 0.07635 0.05300 0.00441 0.00345 0.00564 0.54046 0.01117 0.00008 1.58563

The best results of each study and comparative analysis are highlighted in bold in the corresponding table.

5.1.4. Simulation Result for Varying Set Rotor Speed and Load Torque, at Nominal Parameters Condition

To make the comparative analysis of the dynamic performance of the algorithms under different
operating conditions, the PMSM is subjected to varying set of conditions with parameters at their
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nominal values. In this case, the load torque is varied suddenly three times during the simulation:
(a) from 2.0 Nm to 0 Nm at 0.04 s, (b) from 0 Nm to 2.0 Nm at 0.11 s and (c) from 2.0 Nm to
0 Nm at 0.145 s The velocity reference trajectory planned for the motor operation was specified to
efficiently track the smooth motion profile given by (17). The reference trajectory is taken from 950 rpm
at t = 0.065 s. to 1450 rpm in a period of 0.3 s, following a Bézier polynomial trajectory. Finally,
the reference trajectory is taken from 1450 rpm at t = 0.17 s to 0 rpm in 0.025 s, following a Bézier
trajectory, too. The simulation results of the optimized PI controllers for speed tracking under different
operating conditions are shown in Figure 6. The corresponding performance parameters are shown in
Table 8. In this case, all considered parameters such as steady state error, overall error rate, MSE, JISE,
JIAE, JITAE are favoring to MOD-FPA algorithm. Figure 6 exhibits that the overshoot due to external
variations (load torque) is between ±3 rpm for the MOD-FPA algorithm and between ±6.4 rpm for
WOA algorithm.

Figure 6. Speed Tracking Task for Varying Set Rotor Speed and Load Torque, at Nominal
Parameters Condition.

Table 8. Performance analysis for varying set rotor speed and load torque, at nominal
parameters condition.

Algorithm MSE JISE JIAE JITSE JITAE ess Overall Error Rate

MFA 4.27836 0.85571 0.26784 0.09793 0.0272 0.66563 6.19267
FPA 3.22526 0.64509 0.24272 0.07169 0.0244 0.79300 5.00217
WOA 9.85985 1.97207 0.42451 0.21935 0.04269 1.39249 13.91096
DF 4.36026 0.8721 0.27866 0.09798 0.02811 0.85499 6.49211
CSA 3.65564 0.73117 0.25146 0.08294 0.02545 0.70312 5.44978
MOD-FPA 1.40489 0.28099 0.15569 0.03186 0.01576 0.43126 2.32046

The best results of each study and comparative analysis are highlighted in bold in the corresponding table.

5.1.5. Simulation Result for Random Load Torque, Varying Set Rotor Speed and Nominal
Parameters Condition

To investigate the robustness of the PI controllers, the PMSM is subjected to a random load
torque, it is simulated by a the Lorenz system, described by the next first-order differential equations
system [46].
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dx
dt

= a(y− x)

dy
dt

= x(b− z)− y

dy
dt

= xy− cz

(32)

where Tl = 0.04z, where a = 5, b = 12 y c = 25; with initial conditions: x(0) = 0.1, y(0) = 0.1 and z(0) = 0.5.
Figure 7 depicts the random perturbation load torque applied to the PMSM. The velocity reference
trajectory planned for the motor operation is the same as the previous cases. The simulation results
of the optimized PI controllers for speed tracking under nominal parameters and at chaotic load
torque pattern are shown in Figure 8. The tracking error and the performance indices for PI controller
tuned with six heuristic algorithms are shown in Figure 9 and Table 9 respectively. The JISE (0.00283),
JIAE (0.05939), and the steady state error (0.00519) of MOD-FPA are lower than MOA, WOA, FPA,
DA, and CSA algorithms as shown in Table 9. Table 9 shows clearly that the performance of the
MOD-FPA is least affected by the random load torque variations as compared to MOA, WOA, FPA,
DA, and CSA algorithms.

Figure 7. Random perturbation load torque applied to the PMSM.

Figure 8. Simulation result for random load torque, varying set rotor speed and nominal
parameters condition.
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Figure 9. Tracking error for random load torque, varying set rotor speed and nominal
parameters condition.

Table 9. Performance analysis for speed tracking task for random load torque, varying set rotor speed
and nominal parameters condition.

Algorithm MSE JISE JIAE JITSE JITAE ess Overall Error Rate

MFA 5.51743 1.10354 0.32558 0.09823 0.03218 0.31769 7.39465
WOA 3.91025 0.78209 0.2685 0.06973 0.0265 0.11209 5.16916
FPA 11.97204 2.39453 0.46988 0.21359 0.04639 0.20831 15.30475
DF 5.40697 1.08145 0.31817 0.09649 0.03142 0.00153 6.93602
CSA 4.62539 0.92512 0.29627 0.08248 0.02927 0.14116 6.09969
MOD-FPA 1.77692 0.3554 0.18368 0.03167 0.01814 0.09578 2.46159

The best results of each study and comparative analysis are highlighted in bold in the corresponding table.

It can be inferred that the PI controllers optimized by MFA, WOA, FPA, DF, CSA, and MOD-FPA
exhibit sufficient robustness despite different operating conditions.

5.2. Sensitivity Study

The sensitivity analysis is performed to determine, quantify, and analyze the transient response
and performance of the PMSM when the machine is subjected under parameter uncertainty and
external load disturbances. Some internal parameters (electrical and mechanical) of PMSM are changed
in the range of +300% and −50% from the nominal parameters. The external load torque increases its
initial value from 0 to 2 Nm, which represents its full load at t = 0.075 s; this value is maintained until
t = 0.14 s, where it reaches a value of 0 Nm; finally, it increases its value from 0 to 2 Nm at t = 0.325 s;
this value is maintained until t = 0.45 s. To investigate the sensitivity analysis of the implemented PI
controllers, the following four cases are considered.

5.2.1. Case 1, Load Torque Is Varied from 0 to 2 Nm and Nominal Parameters

To have a point of comparison between the transient response and performance of the PMSM
with nominal parameters and under parameter uncertainty, the speed response characteristics six
different reactive, nature-inspired algorithms are investigated. The performance parameter of the
speed response with nominal parameters and external load disturbances is shown in Table 10. Table 10
shows that all performance indices (MSE, JISE, JIAE, JITSE, and JITAE) and the overall error rate are
lower for the MOD-FPA (17.71227). In this case, the MOD-FPA has the overshoot (3.08115) higher than
the other controllers, but steady state error lower, as shown in Table 10. The time domain specification
of the transient response is calculated at 0.05 s.
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Table 10. Performance analysis, Case 1.

Algorithm MSE JISE JIAE JITSE JITAE Rise Time Overshoot Settling Time ess Overall Error Rate

MFA 12.50636 5.62799 0.38234 1.25215 0.08207 0.00013 1.72334 0.0202 0.00054 23.25371
FPA 9.93659 4.47156 0.30742 1.00099 0.06584 0.00009 3.01638 0.02026 0.00291 21.73004
WOA 16.66305 7.49854 0.52442 1.65803 0.11185 0.00017 2.19356 0.02042 0.00511 30.78568
DF 10.90907 4.90919 0.3557 1.09617 0.07615 0.00012 0.96234 0.0202 0.00192 19.25247
CSA 10.72061 4.82438 0.33895 10.77787 0.07271 0.00012 1.1434 0.02019 0.00091 28.99652
MOD-FPA 7.32725 3.29734 0.21939 0.74688 0.04731 0.00007 3.08115 0.02019 0.00053 17.71227

The best results of each study and comparative analysis are highlighted in bold in the corresponding table.

5.2.2. Case 2, Load Torque Is Varied from 0 to 2 Nm, Ld = 2.5Ld, Rs = 2Rs and Nominal J, B, λ

The simulation results of the optimized PI controllers for closed-loop tracking response of the
velocity under variations parameters (Ld = 2.5Ld, Rs = 2Rs) and load torque of 0 to 2.0 Nm are shown
in Figure 10. The performance parameter of the speed response is shown in Table 11. MOD-FPA
controller has lower performance indices than the other considered controllers, as shown in Table 11.
Nevertheless, the percentage increase in MSE for MOD-FPA is 45.487%, and for DF algorithm the
increase is 33.27%. The percentage increase in JIAE for MOD-FPA is 28.78%, and for MOA the increase
is 20.12%.

Table 11. Performance analysis, Case 2.

Algorithm MSE JISE JIAE JITSE JITAE Rise Time Overshoot Settling Time ess Overall Error Rate

MFA 17.27716 7.7749 0.4593 1.90973 0.0988 0.00013 13.86177 0.02048 0.00069 54.8034
FPA 14.42528 6.49152 0.39242 1.59971 0.0843 0.0001 17.99874 0.0205 0.00296 58.41653
WOA 23.51284 10.58101 0.64259 2.5873 0.13753 0.00017 15.58144 0.02063 0.00526 68.12983
DF 14.53939 6.54287 0.40931 1.61197 0.08779 0.00012 10.31931 0.0204 0.00208 43.50611
CSA 14.51638 6.53252 0.39766 1.60957 0.08546 0.00011 11.85184 0.0204 0.00103 46.47098
MOD-FPA 10.66016 4.79718 0.28254 1.19076 0.06102 0.00008 18.23277 0.02037 0.00059 52.87439

The best results of each study and comparative analysis are highlighted in bold in the corresponding table.

Figure 10. Simulation result for speed tracking task, Case 2.

5.2.3. Case 3, Load Torque Is Varied from 0 to 2 Nm, Ld = 0.8Ld, Rs = 3Rs, J = 3J, B = 3B and λ = 0.9λ

The simulation results of the optimized PI controllers for closed-loop tracking response of the
velocity under the said parameter variations are shown in Figure 11 and Table 12. The percentage
increase in the MSE for MOD-FPA is 159.592%, and for DF algorithm, the growth was 180.279%.
The percentage increase in the JIAE for MOD-FPA is 167.304% and for MFA, the increase is 170.688%;
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in both cases, the time settling is less than 0.02507 s. These comparative results indicate that MOD-FPA
exhibits better time response characteristics as compared to others.

Table 12. Performance analysis, Case 3.

Algorithm MSE JISE JIAE JITSE JITAE Rise Time Overshoot Settling Time ess Overall Error Rate

MFA 28.49916 12.82491 1.03495 4.22236 0.22567 0.00052 3.73184 0.02506 0.00153 16.95471
FPA 21.58834 9.71497 0.79872 3.20608 0.17419 0.00039 2.05505 0.02182 0.00929 11.35382
WOA 37.43438 16.84584 1.3628 5.53542 0.29695 0.00068 3.32796 0.0261 0.01558 19.17052
DF 25.47986 11.46619 0.95456 3.77837 0.20813 0.00049 2.7343 0.02389 0.00584 14.01472
CSA 24.74792 11.13681 0.91795 3.67089 0.20018 0.00046 2.98296 0.02406 0.00268 14.24489
MOD-FPA 15.85082 7.13303 0.58644 2.36369 0.12806 0.00029 1.99922 0.02047 0.00165 9.30956

The best results of each study and comparative analysis are highlighted in bold in the corresponding table.

Figure 11. Simulation result for speed tracking task, Case 3.

5.2.4. Case 4, Load Torque Is Varied from 0 to 2 Nm, Ld = 3Ld, Rs = 3Rs, J = 3J, B = 3B and λ = 0.75λ

The simulation results of the optimized PI controllers for closed-loop tracking response of the
velocity under variations external (Load torque is varied from 0 to 2 Nm) and internal disturbances
(3Ld, 3Rs, 3J, 3B and 0.75λ) are shown in Figure 12 and Table 13. The percentage increase in the MSE
and JITSE for MOD-FPA algorithm is 273.739%, and 262.753% is lower as compared to DF algorithm
281.797% and 274.698%, respectively. Almost all considered parameters, such as MSE, JISE, JIAE,
and JITAE, favor the MOD-FPA algorithm. Compared to MFA, FPA, WOA, DF and CSA in terms of
maximum overshoot, rise time and settling time, the MOD-FPA algorithm is quick and has better in
disturbance rejection as observed in Figure 12 and Table 13.

Table 13. Performance analysis, Case 4.

Algorithm MSE JISE JIAE JITSE JITAE Rise Time Overshoot Settling Time ess Overall Error Rate

MFA 34.01983 15.30926 1.26848 4.69363 0.27648 0.00052 4.72747 0.02600 0.00174 64.88439
FPA 26.57352 11.95835 0.98649 3.67106 0.21501 0.00039 2.82158 0.02316 0.01085 48.97353
WOA 45.17517 20.32928 1.67679 6.22424 0.36527 0.00068 4.29291 0.02740 0.01782 82.23961
DF 29.75036 13.38796 1.15716 4.10735 0.2522 0.0005 3.36452 0.02507 0.00674 55.29176
CSA 29.17462 13.12887 1.11698 4.02846 0.24348 0.00047 3.70605 0.02512 0.00307 54.99965
MOD-FPA 19.56057 8.80245 0.72501 2.70932 0.15818 0.00028 2.78621 0.02228 0.00192 37.45108

The best results of each study and comparative analysis are highlighted in bold in the corresponding table.



Appl. Sci. 2020, 10, 6592 23 of 27

Figure 12. Simulation result for speed tracking task, Case 4.

As a result, the PI controller tuned by MOD-FPA using the proposed objective function
outperforms PI controllers tuned with WOA, CSA, MOA, DA, and FPA optimization techniques
in angular velocity tracking of the PMSM under parameter uncertainty and external load disturbances.

6. Statistical Analysis

To statistically evaluate the results obtained by the algorithms used (MOD-FPA, WOA, CSA,
MOA, DA, and FPA) for the estimation of the parameters of the PI controllers. When comparing pairs,
through statistical tests, we seek to establish the performance of two algorithms when applied to
a common set of problems [47]. Table 14 presents the critical number of wins with a ∝ = 0.05 level of
significance. We established that MOD-FPA as the comparison algorithm and the table shows that this
algorithm is significantly better compared to the others.

Table 14. Sing test for pairwise comparisons with a level of significance ∝ = 0.05.

MOD-FPA WOA CSA MOA DA FPA

Wins (+) 25 17 24 10 25
Loses (−) 0 8 1 15 0

In this work, we used a non-parametric analysis called Wilcoxon test to compare two sets of
ordinal data subject to different conditions [47]. For this statistical analysis, MOD-FPA algorithm is
compared separately with other strategies proposed in order to test whether there is a significant
difference between the proposed algorithm and the others with which it is compared. For this test,
we have two hypotheses.:

1. Null hypothesis (H0), there is no difference between the results of the compared strategies,
2. Alternative hypothesis (H1), there is a difference between the results of the differentiated strategies,

in other word when the null hypothesis is false.

Table 15 shows the R+, R−, and the p-values computed for all pairwise comparisons concerning
MOD-FPA. As the table states, MOD-FPA exhibits a significant improvement over WOA, CSA, MOA
and FPA on the other hand; DA algorithm shows a better performance than MOD-FPA on average
with a level of significance ∝ = 0.05. Another non-parametric statistical test called Friendman’s test
was also performed [48]. In this test, a two-way analysis of the variations by ranges is performed.
The statistical test is performed in the second step using the calculated ranges. In this test, a low range
implies a better algorithm [34]. Table 16 shows the Friedman Ranks.
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Table 15. Wilcoxon signed rank test results with a level of significance ∝ = 0.05.

Comparison R+ R− p-Value Conclusions

MOD-FPA VS WOA 0 325 1.2290× 10−5 Reject the null hypothesis H0
MOD-FPA VS CSA 106 219 1.2900× 10−1 Retain de null hypothesis H0
MOD-FPA VS MOA 2 323 1.5705× 10−5 Reject the null hypothesis H0
MOD-FPA VS DA 240 85 3.7000× 10−2 Reject the null hypothesis H0
MOD-FPA VS FPA 0 325 1.2300× 10−5 Reject the null hypothesis H0

The p-value is less than the level of significance 0.05, the null hypothesis is rejected, and it is
concluded that at least 1 of the 6 algorithms has a different effect. The mean for DA and MOD-FPA are
lowers and indicates that it could be more effective than other algorithms.

Finally, a post-hoc test was performed called Nemenyi test [49]. The results obtained show that
there is a significant difference between the tests as shown in Table 17, except for DA and MOD-FPA,
whose performance is similar. If we consider the sum of ranges, we conclude that the DA test is slightly
better than the other algorithms.

Table 16. Friedman Ranks.

P = 0.000

Treatment Median Sum of Ranks

WOA 24.083 150
CSA 13.226 63
DA 12.37 39
FPA 17.073 124

MOA 15.531 100
MOD-FPA 12.734 49

The best results of each study and comparative analysis are highlighted in bold in the corresponding table.

Table 17. Multiple comparisons through Nemenyi Test.

Comparison Difference in
Rank Sum (DRS)

Standard
Error (SE) DRS/SE Critical Q Value

at 0.05 Level Conclusions

WOA VS CSA 2171 217.22684 9.99416094 3.658 Reject the null hypothesis H0
WOA VS MOA 1206 217.22684 5.55180014 3.658 Reject the null hypothesis H0
WOA VS DA 2810 217.22684 12.9357864 3.658 Reject the null hypothesis H0
WOA VS FPA 702 217.22684 3.23164486 3.658 Retain de null hypothesis H0
WOA VS MOD-FPA 2486 217.22684 11.444258 3.658 Reject the null hypothesis H0
CSA VS MOD-FPA −965 217.22684 −4.4423608 3.658 Retain de null hypothesis H0
CSA VS DA 639 217.22684 2.94162545 3.658 Retain de null hypothesis H0
CSA VS FPA −1469 217.22684 −6.7625161 3.658 Retain de null hypothesis H0
CSA VS MOD-FPA 315 217.22684 1.45009705 3.658 Retain de null hypothesis H0
MOA VS DA 1604 217.22684 7.38398625 3.658 Reject the null hypothesis H0
MOA VS FPA −504 217.22684 −2.3201553 3.658 Retain de null hypothesis H0
MOA VS MOD-FPA 1280 217.22684 5.89245786 3.658 Reject the null hypothesis H0
DA VS FPA −2108 217.22684 −9.7041415 3.658 Retain de null hypothesis H0
DA VS MOD-FPA −324 217.22684 −1.4915284 3.658 Retain de null hypothesis H0
FPA VS MOD-FPA 1784 217.22684 8.21261314 3.658 Reject the null hypothesis H0

After performing the nonparametric statistical analysis, we find than the DA and MOD-FPA
algorithms have a statistically best performance result than other algorithms.

7. Conclusions

In this paper, the implementation of six nature-inspired heuristic techniques was used to tune
the six gains of three PI controllers that regulate the speed of a PMSM. To find the optimal six gains,
six particle swarm intelligence algorithms were taken into account: MOD-FPA, CSA, WOA, MOA,
DA, and FPA. To verify the performance, 25 independent runs of each algorithm were done so that
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a statistical analysis could be performed on data. The performance of the optimized PI controller was
evaluated for trajectory tracking control in terms of integral squared error (JISE), integral absolute error
(JIAE), integral time absolute error (JITAE), and integral time squared error (JITSE). The effectiveness
and performance of these algorithms were tested under nominal parameters with constant load torque
and external load disturbances. The results of these algorithms were statistically analyzed in order to
get the best algorithm. The analysis of the statistical results shows that MOD-FPA is better than CSA,
WOA, MOA, FPA, DA in terms of the fitness value, JISE, JIAE, JITAE, and JITSE metrics. It should be
mentioned that the six algorithms present with excellent performance, so there would be no preference
or problem of using each of them indistinctly in the process of tuning the PI controllers.
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